1
|
Breakstone M, Chen SC, Vadapalli S, Chavez E, Parsonnet LS, Gross RE, Tescarollo F, Barker DJ, Sun H. Multi-Frequency Interpolation X-talk Removal Algorithm: Enabling Combinations of Concurrent Optogenetics and Lock-in Amplification Fiber Photometry via Removal of Optogenetic Stimulation Crosstalk. ACS Chem Neurosci 2025; 16:1694-1709. [PMID: 40228799 PMCID: PMC12063611 DOI: 10.1021/acschemneuro.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 04/16/2025] Open
Abstract
Simultaneous fiber photometry and optogenetics is a powerful emerging technique for precisely studying the interactions of neuronal brain networks. However, spectral overlap between photometry and optogenetic components has severely limited the application of an all-optical approach. Due to spectral overlap, light from optogenetic stimulation saturates the photosensor and occludes photometry fluorescence, which is especially problematic in physically smaller model organism brains like mice. Here, we demonstrate the multi-frequency interpolation X-talk removal algorithm (MuFIX or μFIX) for recovering crosstalk-contaminated photometry responses recorded with lock-in amplification. μFIX exploits multifrequency lock-in amplification by modeling the remaining uncontaminated data to interpolate across crosstalk-affected segments (R2 ≈ 1.0); we found that this approach accurately recovers the original photometry response after demodulation (Pearson's r ≈ 1.0). When applied to crosstalk-contaminated data, μFIX recovered a photometry response closely resembling the dynamics of noncrosstalk photometry recorded simultaneously. Upon further verification using simulated and empirical data, we demonstrated that μFIX reproduces any signal that underwent simulated crosstalk contamination (r ≈ 1.0). We believe adopting μFIX will enable experimental designs using simultaneous fiber photometry and optogenetics that were previously not feasible due to crosstalk.
Collapse
Affiliation(s)
- Maxim Breakstone
- Department
of Neurosurgery, Rutgers Robert Wood Johnson
Medical School, Piscataway, New Jersey 08854, United States
| | - Spencer C. Chen
- Department
of Neurosurgery, Rutgers Robert Wood Johnson
Medical School, Piscataway, New Jersey 08854, United States
| | - Sreya Vadapalli
- Department
of Neurosurgery, Rutgers Robert Wood Johnson
Medical School, Piscataway, New Jersey 08854, United States
| | - Emmanuel Chavez
- Department
of Neurosurgery, Rutgers Robert Wood Johnson
Medical School, Piscataway, New Jersey 08854, United States
| | - Lauren S. Parsonnet
- Department
of Neurosurgery, Rutgers Robert Wood Johnson
Medical School, Piscataway, New Jersey 08854, United States
| | - Robert E. Gross
- Department
of Neurosurgery, Rutgers Robert Wood Johnson
Medical School, Piscataway, New Jersey 08854, United States
| | - Fabio Tescarollo
- Department
of Neurosurgery, Rutgers Robert Wood Johnson
Medical School, Piscataway, New Jersey 08854, United States
| | - David J. Barker
- Department
of Psychology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Hai Sun
- Department
of Neurosurgery, Rutgers Robert Wood Johnson
Medical School, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Islam J, Rahman MT, Ali M, Kc E, Lee HJ, Hyun SH, Park YS. CaMKIIα-NpHR-Mediated Optogenetic Inhibition of DRG Glutamatergic Neurons by Flexible Optic Fiber Alleviates Chronic Neuropathic Pain. Neuromolecular Med 2025; 27:26. [PMID: 40227491 DOI: 10.1007/s12017-025-08848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/22/2025] [Indexed: 04/15/2025]
Abstract
Glutamatergic neurons of the dorsal root ganglion (DRGg) exert a significant effect on peripheral nociceptive signal transmission. However, assessing the explicit modulatory effect of DRGg during chronic neuropathic pain (CNP) with neuromodulation techniques remains largely unexplored. Therefore, we inhibited DRGg by optogenetic stimulation and examined whether it could alleviate CNP and associated anxiety-related behaviors in a chronic compressed DRG (CCD) rat model. The CCD pain model was established by inserting an L-shaped rod into the lumbar 5 (L5) intervertebral foramen, and either AAV2-CaMKIIα-eNpHR3.0-mCherry or AAV2-CaMKIIα-mCherry was injected into the L5 DRG. Flexible optic fibers were implanted to direct yellow light into the L5 DRG. Pain and anxiety-related behavioral responses were assessed using mechanical threshold, mechanical latency, thermal latency, and open field tests. In vivo single-unit extracellular recording from the DRG and ventral posterolateral (VPL) thalamus was performed. CNP and anxiety-related behavioral responses along with increased neural firing activity of the DRG and VPL thalamus were observed in CCD animals. Enhanced expression of nociception-influencing molecules was found in the DRG and spinal dorsal horn (SDH). In contrast during optogenetic stimulation, specific DRGg inhibition markedly alleviated the CNP responses and reduced the DRG and VPL thalamic neural hyperactivity in CCD animals. Inhibition of DRGg also reduced the active expression of nociceptive signal mediators in the DRG and SDH. Taken together, our findings suggest that CaMKIIα-NpHR-mediated optogenetic inhibition of DRGg can produce antinociceptive effects in CCD rats during peripheral nerve injury-induced CNP condition by altering peripheral nociceptive signal input in the spinothalamic tract.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Muhammad Ali
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang Hwan Hyun
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, 776, 1 Sunhwanro, Seowon-gu, Cheongju, 28644, Chungbuk, Korea.
| |
Collapse
|
3
|
Dixit N, Pyari G, Bansal H, Roy S. Theoretical analysis of low power optogenetic control of synaptic plasticity with subcellular expression of CapChR2 at postsynaptic spine. Sci Rep 2025; 15:11166. [PMID: 40169824 PMCID: PMC11962105 DOI: 10.1038/s41598-025-95355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
Precise control of intracellular calcium ([Formula: see text]) concentration at the synaptic neuron terminal can unravel the mechanism behind computation, learning, and memory formation inside the brain. Recently, the discovery of [Formula: see text]-permeable channelrhodopsins (CapChRs) has opened the opportunity to effectively control the intracellular [Formula: see text] concentration using optogenetics. Here, we present a new theoretical model for precise optogenetic control with newly discovered CapChR2 at postsynaptic neuron. A detailed theoretical analysis of coincident stimulation of presynaptic terminal, postsynaptic spine and optogenetic activation of CapChR2-expressing postsynaptic spine shows different ways to control postsynaptic intracellular [Formula: see text] concentration. Irradiance-dependent [Formula: see text] flow is an additional advantage of this novel method. The minimum threshold of light irradiance and optimal ranges of time lag among different stimulations and stimulation frequencies have also been determined. It is shown that synaptic efficacy occurs at 20 µW/mm2 at coincident electrical stimulation of presynaptic terminal and postsynaptic spine with optogenetic activation of CapChR2-expressed postsynaptic spine. The analysis provides a new means of direct optogenetic control of [Formula: see text]-based synaptic plasticity, better understanding of learning and memory processes, and opens prospects for targeted therapeutic interventions to modulate synaptic function and address various neurological disorders.
Collapse
Affiliation(s)
- Nripesh Dixit
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Gur Pyari
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India.
| |
Collapse
|
4
|
Roy S, Pyari G, Bansal H. Theoretical analysis of low-power deep synergistic sono-optogenetic excitation of neurons by co-expressing light-sensitive and mechano-sensitive ion-channels. Commun Biol 2025; 8:379. [PMID: 40050670 PMCID: PMC11885482 DOI: 10.1038/s42003-025-07792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
The present challenge in neuroscience is to non-invasively exercise low-power and high-fidelity control of neurons situated deep inside the brain. Although, two-photon optogenetic excitation can activate neurons to millimeter depth with sub-cellular specificity and millisecond temporal resolution, it can also cause heating of the targeted tissue. On the other hand, sonogenetics can non-invasively modulate the cellular activity of neurons expressed with mechano-sensitive proteins in deeper areas of the brain with less spatial selectivity. We present a theoretical analysis of a synergistic sono-optogenetic method to overcome these limitations by co-expressing a mechano-sensitive (MscL-I92L) ion-channel with a light-sensitive (CoChR/ChroME2s/ChRmine) ion-channel in hippocampal neurons. It is shown that in the presence of low-amplitude subthreshold ultrasound pulses, the two-photon excitation threshold for neural spiking reduces drastically by 73% with MscL-I92L-CoChR (0.021 mW/µm2), 66% with MscL-I92L-ChroME2s (0.029 mW/µm2), and 64% with MscL-I92L-ChRmine (0.013 mW/µm2) at 5 Hz. It allows deeper excitation of up to 1.2 cm with MscL-I92L-ChRmine combination. The method is useful to design new experiments for low-power deep excitation of neurons and multimodal neuroprosthetic devices and circuits.
Collapse
Affiliation(s)
- Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, India.
| | - Gur Pyari
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, India
| | - Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, India
| |
Collapse
|
5
|
Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H. Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression. Front Neural Circuits 2025; 19:1516839. [PMID: 40070557 PMCID: PMC11893610 DOI: 10.3389/fncir.2025.1516839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Optogenetics and chemogenetics are emerging neuromodulation techniques that have attracted significant attention in recent years. These techniques enable the precise control of specific neuronal types and neural circuits, allowing researchers to investigate the cellular mechanisms underlying depression. The advancement in these techniques has significantly contributed to the understanding of the neural circuits involved in depression; when combined with other emerging technologies, they provide novel therapeutic targets and diagnostic tools for the clinical treatment of depression. Additionally, these techniques have provided theoretical support for the development of novel antidepressants. This review primarily focuses on the application of optogenetics and chemogenetics in several brain regions closely associated with depressive-like behaviors in rodent models, such as the ventral tegmental area, nucleus accumbens, prefrontal cortex, hippocampus, dorsal raphe nucleus, and lateral habenula and discusses the potential and challenges of optogenetics and chemogenetics in future research. Furthermore, this review discusses the potential and challenges these techniques pose for future research and describes the current state of research on sonogenetics and odourgenetics developed based on optogenetics and chemogenetics. Specifically, this study aimed to provide reliable insights and directions for future research on the role of optogenetics and chemogenetics in the neural circuits of depressive rodent models.
Collapse
Affiliation(s)
- Shaowei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianying Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiehui Li
- Shengli Oilfield Central Hospital, Dongying Rehabilitation Hospital, Dongying, China
| | - Yajie Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkuan Zhang
- College of Medical and Healthcare, Linyi Vocational College, Linyi, China
| | - Haijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Johnsen KA, Cruzado NA, Menard ZC, Willats AA, Charles AS, Markowitz JE, Rozell CJ. Bridging model and experiment in systems neuroscience with Cleo: the Closed-Loop, Electrophysiology, and Optophysiology simulation testbed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.27.525963. [PMID: 39026717 PMCID: PMC11257437 DOI: 10.1101/2023.01.27.525963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Systems neuroscience has experienced an explosion of new tools for reading and writing neural activity, enabling exciting new experiments such as all-optical or closed-loop control that effect powerful causal interventions. At the same time, improved computational models are capable of reproducing behavior and neural activity with increasing fidelity. Unfortunately, these advances have drastically increased the complexity of integrating different lines of research, resulting in the missed opportunities and untapped potential of suboptimal experiments. Experiment simulation can help bridge this gap, allowing model and experiment to better inform each other by providing a low-cost testbed for experiment design, model validation, and methods engineering. Specifically, this can be achieved by incorporating the simulation of the experimental interface into our models, but no existing tool integrates optogenetics, two-photon calcium imaging, electrode recording, and flexible closed-loop processing with neural population simulations. To address this need, we have developed Cleo: the Closed-Loop, Electrophysiology, and Optophysiology experiment simulation testbed. Cleo is a Python package enabling injection of recording and stimulation devices as well as closed-loop control with realistic latency into a Brian spiking neural network model. It is the only publicly available tool currently supporting two-photon and multi-opsin/wavelength optogenetics. To facilitate adoption and extension by the community, Cleo is open-source, modular, tested, and documented, and can export results to various data formats. Here we describe the design and features of Cleo, validate output of individual components and integrated experiments, and demonstrate its utility for advancing optogenetic techniques in prospective experiments using previously published systems neuroscience models.
Collapse
Affiliation(s)
- Kyle A. Johnsen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Zachary C. Menard
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam A. Willats
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam S. Charles
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey E. Markowitz
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Bansal H, Pyari G, Roy S. Theoretical prediction of broadband ambient light optogenetic vision restoration with ChRmine and its mutants. Sci Rep 2024; 14:11642. [PMID: 38773346 PMCID: PMC11109128 DOI: 10.1038/s41598-024-62558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
Vision restoration is one of the most promising applications of optogenetics. However, it is limited due to the poor-sensitivity, slow-kinetics and narrow band absorption spectra of opsins. Here, a detailed theoretical study of retinal ganglion neurons (RGNs) expressed with ChRmine, ReaChR, CoChR, CatCh and their mutants, with near monochromatic LEDs, and broadband sunlight, halogen lamp, RGB LED light, and pure white light sources has been presented. All the opsins exhibit improved light sensitivity and larger photocurrent on illuminating with broadband light sources compared to narrow band LEDs. ChRmine allows firing at ambient sunlight (1.5 nW/mm2) and pure white light (1.2 nW/mm2), which is lowest among the opsins considered. The broadband activation spectrum of ChRmine and its mutants is also useful to restore color sensitivity. Although ChRmine exhibits slower turn-off kinetics with broadband light, high-fidelity spikes can be evoked upto 50 Hz. This limit extends upto 80 Hz with the improved hsChRmine mutant although it requires double the irradiance compared to ChRmine. The present study shows that ChRmine and its mutants allow activation of RGNs with ambient light which is useful for goggle-free white light optogenetic retinal prostheses with improved quality of restored vision.
Collapse
Affiliation(s)
- Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Gur Pyari
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India.
| |
Collapse
|
8
|
Islam J, Kc E, Kim S, Chung MY, Park KS, Kim HK, Park YS. Optogenetic Inhibition of Glutamatergic Neurons in the Dysgranular Posterior Insular Cortex Modulates Trigeminal Neuropathic Pain in CCI-ION Rat. Neuromolecular Med 2023; 25:516-532. [PMID: 37700212 DOI: 10.1007/s12017-023-08752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023]
Abstract
In individuals with chronic neuropathic pain, the posterior insular cortex (PIC) has been found to exhibit increased glutamatergic activity, and the dysgranular portion of PIC (DPIC) has been investigated as a novel cortical target for pain modulation. However, the role of DPIC glutamatergic neurons (DPICg) in trigeminal neuropathic pain (TNP) remains unclear. Here, we examined the outcomes of DPICg inhibition in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Animals were randomly divided into TNP, sham, and control groups. TNP animals underwent CCI-ION surgery. Either optogenetic or null viruses were delivered to the contralateral DPICg of TNP and sham animals. In vivo single-unit extracellular recordings from the ipsilateral spinal trigeminal nucleus caudalis (TNC) and contralateral ventral posteromedial (VPM) thalamus were obtained under both "ON" and "OFF" stimulation states. Behavioral responses during the stimulation-OFF and stimulation-ON phases were examined. Expression of c-Fos, pERK, and CREB immunopositive neurons were also observed. Optogenetic inhibition of contralateral DPICg decreased the neural firing rate in both TNC and VPM thalamus, the expression of sensory-responsive cell bodies, and transcriptional factors in the DPIC of TNP group. Improvements in hyperalgesia, allodynia, and anxiety-like responses in TNP animals were also observed during stimulation-ON condition. In fine, descending pain processing is influenced by neuroanatomical projections from the DPIC to the pain matrix areas, and DPICg could play a necessary role in this neural circuitry. Therefore, the antinociceptive effect of DPICg inhibition in this study may provide evidence for the therapeutic potential of DPICg in TNP.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Soochong Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Moon Young Chung
- Department of Neurosurgery, Soonchunhyang University, Bucheon, Korea
| | - Ki Seok Park
- Department of Neurosurgery, Eulji University Hospital, Daejeon, Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, 776, 1 Sunhwanro, Seowon-gu, Cheongju, 28644, Korea.
| |
Collapse
|
9
|
Pyari G, Bansal H, Roy S. Optogenetically mediated large volume suppression and synchronized excitation of human ventricular cardiomyocytes. Pflugers Arch 2023; 475:1479-1503. [PMID: 37415050 DOI: 10.1007/s00424-023-02831-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
A major challenge in cardiac optogenetics is to have minimally invasive large volume excitation and suppression for effective cardioversion and treatment of tachycardia. It is important to study the effect of light attenuation on the electrical activity of cells in in vivo cardiac optogenetic experiments. In this computational study, we present a detailed analysis of the effect of light attenuation in different channelrhodopsins (ChRs)-expressing human ventricular cardiomyocytes. The study shows that sustained illumination from the myocardium surface used for suppression, simultaneously results in spurious excitation in deeper tissue regions. Tissue depths of suppressed and excited regions have been determined for different opsin expression levels. It is shown that increasing the expression level by 5-fold enhances the depth of suppressed tissue from 2.24 to 3.73 mm with ChR2(H134R) (ChR2 with a single point mutation at position H134), 3.78 to 5.12 mm with GtACR1 (anion-conducting ChR from cryptophyte algae Guillardia theta) and 6.63 to 9.31 mm with ChRmine (a marine opsin gene from Tiarina fusus). Light attenuation also results in desynchrony in action potentials in different tissue regions under pulsed illumination. It is further shown that gradient-opsin expression not only enables suppression up to the same level of tissue depth but also enables synchronized excitation under pulsed illumination. The study is important for the effective treatment of tachycardia and cardiac pacing and for extending the scale of cardiac optogenetics.
Collapse
Affiliation(s)
- Gur Pyari
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India.
| |
Collapse
|
10
|
Ma C, Zhou N, Ma K, Niu J, Mi T, He Z, Wen Y, Liu C, He Z, Niu J. Neural pathways from hypothalamic orexin neurons to the ventrolateral preoptic area mediate sleep impairments induced by conditioned fear. Front Neurosci 2023; 17:1122803. [PMID: 36998723 PMCID: PMC10043189 DOI: 10.3389/fnins.2023.1122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionFear and sleep impairments common co-exist, but the underlying mechanisms remain unclear. Hypothalamic orexinergic neurons are involved in the regulation of sleep-wake and fear expression. The ventrolateral preoptic area (VLPO) is an essential brain region to promote sleep, and orexinergic axonal fibers projecting to the VLPO are involved in the maintenance of sleep-wake. Neural pathways from hypothalamic orexin neurons to the VLPO might mediate sleep impairments induced by conditioned fear.MethodsTo verify above hypothesis, electroencephalogram (EEG) and electromyogram (EMG) were recorded for analysis of sleep-wake states before and 24 h after conditioned fear training. The retrograde tracing technique and immunofluorescence staining was used to identify the projections from the hypothalamic orexin neurons to the VLPO and to observe their activation in mice with conditioned fear. Moreover, optogenetic activation or inhibition of hypothalamic orexin-VLPO pathways was performed to observe whether the sleep-wake can be regulated in mice with conditioned fear. Finally, orexin-A and orexin receptor antagonist was administered into the VLPO to certify the function of hypothalamic orexin-VLPO pathways on mediating sleep impairments induced by conditioned fear.ResultsIt was found that there was a significant decrease in the non-rapid eye movement (NREM) and rapid eye movement (REM) sleep time and a significant increase in the wakefulness time in mice with conditioned fear. The results of retrograde tracing technique and immunofluorescence staining showed that hypothalamic orexin neurons projected to the VLPO and observed the CTB labeled orexin neurons were significantly activated (c-Fos+) in the hypothalamus in mice with conditioned fear. Optogenetic activation of hypothalamic orexin to the VLPO neural pathways significantly decreased NREM and REM sleep time and increased wakefulness time in mice with conditioned fear. A significant decrease in NREM and REM sleep time and an increase in wakefulness time were observed after the injection of orexin-A into the VLPO, and the effects of orexin-A in the VLPO were blocked by a pre-administrated dual orexin antagonist (DORA).ConclusionThese findings suggest that the neural pathways from hypothalamic orexinergic neurons to the VLPO mediate sleep impairments induced by conditioned fear.
Collapse
Affiliation(s)
- Caifen Ma
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Ning Zhou
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Kang Ma
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Jiandong Niu
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Ting Mi
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Zhenquan He
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yujun Wen
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Chunhong Liu
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhongyi He
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- *Correspondence: Zhongyi He,
| | - Jianguo Niu
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
- Jianguo Niu,
| |
Collapse
|
11
|
Islam J, KC E, So KH, Kim S, Kim HK, Park YY, Park YS. Modulation of trigeminal neuropathic pain by optogenetic inhibition of posterior hypothalamus in CCI-ION rat. Sci Rep 2023; 13:489. [PMID: 36627362 PMCID: PMC9831989 DOI: 10.1038/s41598-023-27610-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Posterior hypothalamus (PH), an important part of the descending pain processing pathway, has been found to be activated in trigeminal autonomic cephalalgias. However, there are very few studies conducted and information regarding its implications in trigeminal neuropathic pain (TNP). Therefore, we aimed to ascertain whether optogenetic inhibition of PH could affect the outcomes of a chronic constriction injury in the infraorbital nerve (CCI-ION) rat model. Animals were divided into the TNP animal, sham, and naive-control groups. CCI-ION surgery was performed to mimic TNP symptoms, and the optogenetic or null virus was injected into the ipsilateral PH. In vivo single-unit extracellular recordings were obtained from both the ipsilateral ventrolateral periaqueductal gray (vlPAG) and contralateral ventral posteromedial (VPM) thalamus in stimulation "OFF" and "ON" conditions. Alterations in behavioral responses during the stimulation-OFF and stimulation-ON states were examined. We observed that optogenetic inhibition of the PH considerably improved behavioral responses in TNP animals. We found increased and decreased firing activity in the vlPAG and VPM thalamus, respectively, during optogenetic inhibition of the PH. Inhibiting PH attenuates trigeminal pain signal transmission by modulating the vlPAG and trigeminal nucleus caudalis, thereby providing evidence of the therapeutic potential of PH in TNP management.
Collapse
Affiliation(s)
- Jaisan Islam
- grid.254229.a0000 0000 9611 0917Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina KC
- grid.254229.a0000 0000 9611 0917Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyoung Ha So
- grid.254229.a0000 0000 9611 0917Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea ,grid.31501.360000 0004 0470 5905Bio-Max/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, Republic of Korea
| | - Soochong Kim
- grid.254229.a0000 0000 9611 0917Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyong Kyu Kim
- grid.254229.a0000 0000 9611 0917Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoon Young Park
- grid.411725.40000 0004 1794 4809Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea. .,Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea. .,Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea. .,Department of Neurosurgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, 776, 1 Sunhwanro, Seowon-gu, Cheongju-Si, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
12
|
Pyari G, Bansal H, Roy S. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: A computational study. J Physiol 2022; 600:4653-4676. [PMID: 36068951 DOI: 10.1113/jp283366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Formulation of accurate theoretical models of optogenetic control of HVCMs expressed with newly-discovered opsins (ChRmine, bReaChES, and CsChrimson). Under continuous illumination, action potentials in each opsin-expressing HVCMs can only be evoked in a certain range of irradiances. Action potentials in ChRmine-expressing HVCMs can be triggered at ultra-low power (6 μW/mm2 at 10 ms pulse or 0.7 μW/mm2 at 100 ms pulse at 585 nm), which is 2-3 orders of magnitude lower than reported results. Ongoing APs in ChRmine-expressing HVCMs can be suppressed by continuous illumination of 585 nm light at 2 μW/mm2 . ChRmine enables sustained excitation due to its faster recovery from the desensitized state. Optogenetic excitation of deeply situated cardiac cells is possible upto ∼ 7.46 mm and 10.2 mm with ChRmine on illuminating the outer surface of pericardium at safe irradiance at 585 nm and 650 nm, respectively. The study opens up prospects for designing energy-efficient light-induced pacemakers, resynchronization, and termination of ventricular tachycardia. ABSTRACT The main challenge in cardiac optogenetics is to have low-power, high-fidelity, and deep excitation of cells with minimal invasiveness and heating. We present a detailed computational study of optogenetic excitation of human ventricular cardiomyocytes (HVCMs) with new ChRmine, bReaChES and CsChrimson red-shifted opsins to overcome the challenge. Action potentials (APs) in ChRmine expressing HVCMs can be triggered at 6 μW/mm2 (10 ms pulse) and 0.7 μW/mm2 (100 ms pulse) at 585 nm which are two orders of magnitude lower than ChR2(H134R). This enables safe sustained excitation of deeply situated cardiac cells with ChRmine (7.46 mm) and with bReaChES (6.21 mm) with the light source at the pericardium surface. Deeper excitation upto 10.2 mm can be achieved with ChRmine by illuminating at 650 nm. Photostimulation conditions for minimum charge transfer during AP have been determined, which are important for tissue health under sustained excitation. The action potential duration for all the opsins is constant upto 100 ms pulse-width but increases thereafter. Interestingly, the AP frequency increases with irradiance under continuous illumination, which gets suppressed at higher irradiances. Optimal range of irradiance for each opsin to excite HVCMs has been determined. Under optimal photostimulation conditions, each opsin can precisely excite APs up to 2.5 Hz, while latency and power of light pulse for each AP in a sequence remain most stable and an order lower respectively, in ChRmine-expressing HVCMs. The study highlights the importance of ChRmine and bReaChES for resynchronization, termination of ventricular tachycardia, and designing optogenetic cardiac pacemakers with enhanced battery life. Abstract figure legend Deep optogenetic excitation of opsin-expressing cardiomyocytes by placing the light source (maximum output 5.5 mW/mm2 ) at the outer surface of the pericardium. Excitation of cardiomyocytes upto 10.2 mm (at 650 nm) and 7.46 mm (at 585 nm) is possible with ChRmine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gur Pyari
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, INDIA
| | - Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, INDIA
| | - Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, INDIA
| |
Collapse
|
13
|
Bansal H, Pyari G, Roy S. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study. J Neural Eng 2022; 19. [PMID: 35320791 DOI: 10.1088/1741-2552/ac6061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Objective A fundamental challenge in optogenetics is to elicit long-term high-fidelity neuronal spiking with negligible heating. Fast channelrhodopsins (ChRs) require higher irradiances and cause spike failure due to photocurrent desensitization under sustained illumination, whereas, more light-sensitive step-function opsins (SFOs) exhibit prolonged depolarization with insufficient photocurrent and fast response for high-fidelity spiking. Approach We present a novel method to overcome this fundamental limitation by co-expressing fast ChRs with SFOs. A detailed theoretical analysis of ChETA co-expressed with different SFOs, namely ChR2(C128A), ChR2(C128S), SSFO and SOUL, expressing hippocampal neurons has been carried out by formulating their accurate theoretical models. Main results ChETA-SFO-expressing hippocampal neurons show a more stable photocurrent that overcomes spike failure. Spiking fidelity in these neurons can be sustained even at lower irradiances of subsequent pulses (77 % of initial pulse intensity in ChETA-ChR2(C128A)-expressing neurons) or by using red-shifted light pulses at appropriate intervals. High-fidelity spiking up to 60 Hz can be evoked in ChR2-C128S-ChETA-expressing neurons, which cannot be attained with only SFOs. Significance The present study provides important insights about photostimulation protocols for bi-stable switching of neurons. This new approach provides a means for sustained low-power, high-frequency, and high-fidelity optogenetic switching of neurons, necessary to study various neural functions and neurodegenerative disorders and enhance the utility of optogenetics for biomedical applications.
Collapse
Affiliation(s)
- Himanshu Bansal
- Department of Physics and Computer science, Dayalbagh Educational Institute Faculty of Science, AGRA, Agra, UP, 282005, INDIA
| | - Gur Pyari
- Department of Physics & Computer Science, Dayalbagh Educational Institute Faculty of Science, Faculty of Science, Dayalbagh, Agra-282 005, Agra, Uttar Pradesh, 282005, INDIA
| | - Sukhdev Roy
- Department of Physics & Computer Science, Dayalbagh Educational Institute Faculty of Science, Faculty of Science, Dayalbagh, Agra-282 005, Agra, Uttar Pradesh, 282005, INDIA
| |
Collapse
|
14
|
Bansal H, Gupta N, Roy S. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses. J Neural Eng 2021; 18. [PMID: 34229315 DOI: 10.1088/1741-2552/ac1175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/06/2021] [Indexed: 01/10/2023]
Abstract
Objective.Optogenetics has emerged as a promising technique for neural prosthetics, especially retinal prostheses, with unprecedented spatiotemporal resolution. Newly discovered opsins with high light sensitivity and fast temporal kinetics can provide sufficient temporal resolution at safe light powers and overcome the limitations of presently used opsins. It is also important to formulate accurate mathematical models for optogenetic retinal prostheses, which can facilitate optimization of photostimulation factors to improve the performance.Approach.A detailed theoretical analysis of optogenetic excitation of model retinal ganglion neurons (RGNs) and hippocampal neurons expressed with already tested opsins for retinal prostheses, namely, ChR2, ReaChR and ChrimsonR, and also with recently discovered potent opsins CsChrimson, bReaChES and ChRmine, was carried out.Main results.Under continuous illumination, ChRmine-expressing RGNs begin to respond at very low irradiances ∼10-4mW mm-2, and evoke firing upto ∼280 Hz, highest among other opsin-expressing RGNs, at 10-2mW mm-2. Under pulsed illumination at randomized photon fluxes, ChRmine-expressing RGNs respond to changes in pulse to pulse irradiances upto four logs, although very bright pulses >1014photons mm-2s-1block firing in these neurons. The minimum irradiance threshold for ChRmine-expressing RGNs is lower by two orders of magnitude, whereas, the first spike latency in ChRmine-expressing RGNs is shorter by an order of magnitude, alongwith stable latency of subsequest spikes compared to others. Further, a good set of photostimulation parameters were determined to achieve high-frequency control with single spike resolution at minimal power. Although ChrimsonR enables spiking upto 100 Hz in RGNs, it requires very high irradiances. ChRmine provides control at light powers that are two orders of magnitude smaller than that required with experimentally studied opsins, while maintaining single spike temporal resolution upto 40 Hz.Significance.The present study highlights the importance of ChRmine as a potential opsin for optogenetic retinal prostheses.
Collapse
Affiliation(s)
- Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra 282005, India
| | - Neha Gupta
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra 282005, India
| | - Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra 282005, India
| |
Collapse
|