1
|
Ahmad N, Ahmad AN, Ahmad SN. Features of Maternal HIV-1 Associated with Lack of Vertical Transmission. Open Virol J 2017; 11:8-14. [PMID: 28458735 PMCID: PMC5388788 DOI: 10.2174/1874357901710011008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 11/22/2022] Open
Abstract
HIV-1 is transmitted from mother-to-child (vertical transmission) at an estimated rate of approximately 30% without any antiretroviral therapy (ART). However, administration of ART during pregnancy considerably diminishes the rate of mother-to-child transmission of HIV-1, which has become a standard of perinatal care in HIV-infected pregnant females in developed countries. Moreover, a majority of children born to HIV-infected mothers are uninfected without any ART. In addition, characteristics of HIV-1 and/or cellular factors in the mothers may play a role in influencing or preventing vertical transmission. Several studies, including from our laboratory have characterized the properties of HIV-1 from infected mothers that transmitted HIV-1 to their infants (transmitting mothers) and compared with those mothers that failed to transmit HIV-1 to their infants (non-transmitting mothers) in the absence of ART. One of the striking differences observed was that the non-transmitting mothers harbored a less heterogeneous HIV-1 population than transmitting mothers in the analyzed HIV-1 regions of p17 gag, env V3, vif and vpr. The other significant and distinctive findings were that the functional domains of HIV-1 vif and vpr proteins were less conserved in non-transmitting mothers compared with transmitting mothers. Furthermore, there were differences seen in two important motifs of HIV-1 Gag p17, including conservation of QVSQNY motif and variation in KIEEEQN motif in non-transmitting mothers compared with transmitting mothers. Several of these distinguishing properties of HIV-1 in non-transmitting mothers provide insights in developing strategies for preventing HIV-1 vertical transmission.
Collapse
|
2
|
Ahmad N. Molecular mechanisms of HIV-1 infection in neonatal target cells. Future Virol 2012. [DOI: 10.2217/fvl.12.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1-infected neonates and infants have a higher viral load and progress to symptomatic AIDS more rapidly than their own infected mothers, as well as other infected adults, with differences in clinical manifestations, recurrent bacterial infections and CNS disorders. Two major reasons have been attributed to this differential HIV pathogenesis and disease; the relative immaturity of the neonate’s immune system and it’s inability to contain the highly replicating and mutating HIV-1, and the more efficient replication of HIV-1 in neonatal cells than in adult target cells. In this context, it has been demonstrated that HIV-1 replicates more efficiently in neonatal (cord) blood monocytes/macrophages and T lymphocytes – including naive and memory T lymphocytes – compared with adult blood cells. We have also determined the mechanisms of the differential HIV-1 replication in cord versus adult blood monocytes/macrophages and T lymphocytes (naive and memory), finding that it was influenced at the level of HIV-1 gene expression. The increased HIV-1 gene expression in neonatal versus adult target cells was regulated by differential expression of host factors, transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9 and Cyclin T1), signal transducers (STAT3 and STAT5A) and cytokines (IL-1β, IL-6 and IL-10). We also showed that nuclear extracts from cord cells interacted with HIV-1 long terminal repeat cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6, to a greater extent when compared with adult peripheral blood mononuclear cell nuclear extracts. Additionally, shRNA of retroviral origin for STAT3 and IL-6 downregulated both their own gene expression as well as that of HIV-1, indicating that these factors influenced the differential expression of HIV-1 genes in cord cells compared with adult cells. In addition, HIV-1 integration plays an important role in differential HIV-1 replication and gene expression in neonatal versus adult cells by integrating into more actively transcribed genes in neonates compared with adults. We characterized 468 HIV-1 integration sites within cord and adult blood T lymphocytes and monocytes/macrophages, including genes coding for cellular components, and those involved with maintenance of the intracellular environment, enzyme regulation, cellular metabolism, catalytic activity and cation transport, as well as several potential transcription factor binding sites at the sites of integration. Additionally, the genes at the integration sites, transcription factors and transcription binding sites were expressed at higher levels in cord than adult target cells. In summary, the increased HIV-1 gene expression and replication in neonatal target cells due to differential expression of host factors all contribute to an increased viral load and faster disease progression in neonates and infants when compared with similar situations in adult patients. Based on these findings, it may be possible to identify new viral and host targets for use in developing strategies for the treatment and prevention of HIV-1.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Immunobiology, College of Medicine University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Ahmad N. Molecular mechanisms of HIV-1 mother-to-child transmission and infection in neonatal target cells. Life Sci 2010; 88:980-6. [PMID: 20888841 DOI: 10.1016/j.lfs.2010.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/02/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
Abstract
HIV-1 mother-to-child transmission (MTCT) occurs mainly at three stages, including prepartum, intrapartum and postpartum. Several maternal factors, including low CD4+ lymphocyte counts, high viral load, immune response, advanced disease status, smoking and abusing drugs have been implicated in an increased risk of HIV-1 MTCT. While use of antiretroviral therapy (ART) during pregnancy has significantly reduced the rate of MTCT, selective transmission of ART resistant mutants has been reported. Based on HIV-1 sequence comparison, the maternal HIV-1 minor genotypes with R5 phenotypes are predominantly transmitted to their infants and initially maintained in the infants with the same properties. Several HIV-1 structural, regulatory and accessory genes were highly conserved following MTCT. In addition, HIV-1 sequences from non-transmitting mothers are less heterogeneous compared with transmitting mothers, suggesting that a higher level of viral heterogeneity influences MTCT. Analysis of the immunologically relevant epitopes showed that variants evolved to escape the immune response that influenced HIV-1 MTCT. Several cytotoxic T-lymphocyte (CTL) epitopes were identified in various HIV-1 genes that were conserved in HIV-1 mother-infant sequences, suggesting a role in MTCT. We have shown that HIV-1 replicates more efficiently in neonatal T-lymphocytes and monocytes/macrophages compared with adult cells, and this differential replication is influenced at the level of HIV-1 gene expression, which was due to differential expression of host factors, including transcriptional activators, signal transducers and cytokines in neonatal than adult cells. In addition, HIV-1 integration occurs in more actively transcribed genes in neonatal compared with adult cells, which may influence HIV-1 gene expression. The increased HIV-1 gene expression and replication in neonatal target cells contribute to a higher viral load and more rapid disease progression in neonates/infants than adults. These findings may identify targets, viral and host, for developing strategies for HIV-1 prevention and treatment.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
4
|
Abstract
OBJECTIVE Review the role and mechanism of in utero placental transmission of HIV-1. STUDY DESIGN A thorough review based on a literature search for publications relevant to this subject was performed using relevant search terms. Articles that describe the genetic and pathophysiology of vertical transmission have been acknowledged. The articles pertinent to the topic were selected to support the discussion. RESULTS Vertical transmission may occur through CD4+ endothelial tissues or CD4+ Hofbauer cells. Trophoblasts and villi have CD4 receptors, which make them potential candidates for HIV infection. Placental cytokines and chemokines influence HIV replication in trophoblasts. Genetic analysis of HIV-1 sequences verify the interaction of HIV-1 and placental tissue. The vertical transmission of HIV-1 characterized by selection of genotype variant that escape the mother's immune system. CONCLUSION Placental transmission of HIV-1 is a complex incompletely understood process which requires advanced studies. The available literature provides information with regards to the interactions of placental cells with HIV.
Collapse
|
5
|
Ahmad N. THE VERTICAL TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1: Molecular and Biological Properties of the Virus. Crit Rev Clin Lab Sci 2008; 42:1-34. [PMID: 15697169 DOI: 10.1080/10408360490512520] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The vertical (mother-to-infant) transmission of human immunodeficiency virus type 1 (HIV-1 ) occurs at an estimated rate of more than 30% and is the major cause of AIDS in children. Numerous maternal parameters, including advanced dinical stages, low CD4+ lymphocte counts, high viral load, immune response, and disease progression have been implicated in an increased risk of vertical transmission. While the use of antiretroviral therapy (ART) during pregnancy has been shown to reduce the risk of vertical transmission, selective transmission of ART-resistant mutants has also been documented. Elucidation of the molecular mechanisms of vertical transmission might provide relevant information for the development of effective strategies for prevention and treatment. By using HIV-1 infected mother-infant pairs as a transmitter-recipient model, the minor genotypes of HIV-1 with macrophage-tropic and non-syncytium-inducing phenotypes (R5 viruses) in infected mothers were found to be transmitted to their infants and were initially maintained in the infants with the same properties. In addition, the transmission of major and multiple genotypes has been suggested. Furthermore, HIV-1 sequences found in non-transmitting mothers (mothers who failed to transmit HIV-1 to their infants in the absence of ART) were less heterogeneous than those from transmitting mothers, suggesting that viral heterogeneity may play an important role in vertical transmission. In the analysis of other regions of the HIV-1 genome, we have shown a high conservation of intact and functional gag p17, vif, vpr, vpu, tat, and nef open reading frames following mother-to-infant transmission. Moreover the accessory genes, vif and vpr, were less functionally conserved in the isolates of non-transmitting mothers than transmitting mothers and their infants. We, therefore, should target the properties of transmitted viruses to develop new and more effective strategies for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ 85724, USA.
| |
Collapse
|
6
|
Ahmad N. Molecular Mechanisms of HIV-1 Vertical Transmission and Pathogenesis in Infants. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:453-508. [DOI: 10.1016/s1054-3589(07)56015-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ramakrishnan R, Mehta R, Sundaravaradan V, Davis T, Ahmad N. Characterization of HIV-1 envelope gp41 genetic diversity and functional domains following perinatal transmission. Retrovirology 2006; 3:42. [PMID: 16820061 PMCID: PMC1526753 DOI: 10.1186/1742-4690-3-42] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 07/04/2006] [Indexed: 01/17/2023] Open
Abstract
Background HIV-1 envelope gp41 is a transmembrane protein that promotes fusion of the virus with the plasma membrane of the host cells required for virus entry. In addition, gp41 is an important target for the immune response and development of antiviral and vaccine strategies, especially when targeting the highly variable envelope gp120 has not met with resounding success. Mutations in gp41 may affect HIV-1 entry, replication, pathogenesis, and transmission. We, therefore, characterized the molecular properties of gp41, including genetic diversity, functional motifs, and evolutionary dynamics from five mother-infant pairs following perinatal transmission. Results The gp41 open reading frame (ORF) was maintained with a frequency of 84.17% in five mother-infant pairs' sequences following perinatal transmission. There was a low degree of viral heterogeneity and estimates of genetic diversity in gp41 sequences. Both mother and infant gp41 sequences were under positive selection pressure, as determined by ratios of non-synonymous to synonymous substitutions. Phylogenetic analysis of 157 mother-infant gp41 sequences revealed distinct clusters for each mother-infant pair, suggesting that the epidemiologically linked mother-infant pairs were evolutionarily closer to each other as compared with epidemiologically unlinked sequences. The functional domains of gp41, including fusion peptide, heptad repeats, glycosylation sites and lentiviral lytic peptides were mostly conserved in gp41 sequences analyzed in this study. The CTL recognition epitopes and motifs recognized by fusion inhibitors were also conserved in the five mother-infant pairs. Conclusion The maintenance of an intact envelope gp41 ORF with conserved functional domains and a low degree of genetic variability as well as positive selection pressure for adaptive evolution following perinatal transmission is consistent with an indispensable role of envelope gp41 in HIV-1 replication and pathogenesis.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
- Current Address : Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Roshni Mehta
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | - Vasudha Sundaravaradan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | - Tiffany Davis
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | - Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| |
Collapse
|
8
|
Wellensiek BP, Sundaravaradan V, Ramakrishnan R, Ahmad N. Molecular characterization of the HIV-1 gag nucleocapsid gene associated with vertical transmission. Retrovirology 2006; 3:21. [PMID: 16600029 PMCID: PMC1459197 DOI: 10.1186/1742-4690-3-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 04/06/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) plays a pivotal role in the viral lifecycle: including encapsulating the viral genome, aiding in strand transfer during reverse transcription, and packaging two copies of the viral genome into progeny virions. Another gag gene product, p6, plays an integral role in successful viral budding from the plasma membrane and inclusion of the accessory protein Vpr within newly budding virions. In this study, we have characterized the gag NC and p6 genes from six mother-infant pairs following vertical transmission by performing phylogenetic analysis and by analyzing the degree of genetic diversity, evolutionary dynamics, and conservation of functional domains. RESULTS Phylogenetic analysis of 168 gag NC and p6 genes sequences revealed six separate subtrees that corresponded to each mother-infant pair, suggesting that epidemiologically linked individuals were closer to each other than epidemiologically unlinked individuals. A high frequency (92.8%) of intact open reading frames of NC and p6 with patient and pair specific sequence motifs were conserved in mother-infant pairs' sequences. Nucleotide and amino acid distances showed a lower degree of viral heterogeneity, and a low degree of estimates of genetic diversity was also found in NC and p6 sequences. The NC and p6 sequences from both mothers and infants were found to be under positive selection pressure. The two important functional motifs within NC, the zinc-finger motifs, were highly conserved in most of the sequences, as were the gag p6 Vpr binding, AIP1 and late binding domains. Several CTL recognition epitopes identified within the NC and p6 genes were found to be mostly conserved in 6 mother-infant pairs' sequences. CONCLUSION These data suggest that the gag NC and p6 open reading frames and functional domains were conserved in mother-infant pairs' sequences following vertical transmission, which confirms the critical role of these gene products in the viral lifecycle.
Collapse
Affiliation(s)
- Brian P Wellensiek
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Vasudha Sundaravaradan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Rajesh Ramakrishnan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
9
|
Sundaravaradan V, Hahn T, Ahmad N. Conservation of functional domains and limited heterogeneity of HIV-1 reverse transcriptase gene following vertical transmission. Retrovirology 2005; 2:36. [PMID: 15918905 PMCID: PMC1166575 DOI: 10.1186/1742-4690-2-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 05/26/2005] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The reverse transcriptase (RT) enzyme of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the life cycle of the virus by converting the single stranded RNA genome into double stranded DNA that integrates into the host chromosome. In addition, RT is also responsible for the generation of mutations throughout the viral genome, including in its own sequences and is thus responsible for the generation of quasi-species in HIV-1-infected individuals. We therefore characterized the molecular properties of RT, including the conservation of functional motifs, degree of genetic diversity, and evolutionary dynamics from five mother-infant pairs following vertical transmission. RESULTS The RT open reading frame was maintained with a frequency of 87.2% in five mother-infant pairs' sequences following vertical transmission. There was a low degree of viral heterogeneity and estimates of genetic diversity in mother-infant pairs' sequences. Both mothers and infants RT sequences were under positive selection pressure, as determined by the ratios of non-synonymous to synonymous substitutions. Phylogenetic analysis of 132 mother-infant RT sequences revealed distinct clusters for each mother-infant pair, suggesting that the epidemiologically linked mother-infant pairs were evolutionarily closer to each other as compared with epidemiologically unlinked mother-infant pairs. The functional domains of RT which are responsible for reverse transcription, DNA polymerization and RNase H activity were mostly conserved in the RT sequences analyzed in this study. Specifically, the active sites and domains required for primer binding, template binding, primer and template positioning and nucleotide recruitment were conserved in all mother-infant pairs' sequences. CONCLUSION The maintenance of an intact RT open reading frame, conservation of functional domains for RT activity, preservation of several amino acid motifs in epidemiologically linked mother-infant pairs, and a low degree of genetic variability following vertical transmission is consistent with an indispensable role of RT in HIV-1 replication in infected mother-infant pairs.
Collapse
Affiliation(s)
- Vasudha Sundaravaradan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | - Tobias Hahn
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | - Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| |
Collapse
|
10
|
Hahn T, Ramakrishnan R, Ahmad N. Evaluation of genetic diversity of human immunodeficiency virus type 1 NEF gene associated with vertical transmission. J Biomed Sci 2003; 10:436-50. [PMID: 12824703 DOI: 10.1007/bf02256435] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Accepted: 03/14/2003] [Indexed: 10/25/2022] Open
Abstract
The NEF gene is conserved among members of human and simian immunodeficiency viruses and may play an important role in viral pathogenesis. To determine the evolutionary dynamics and conservation of functionality of the human immunodeficiency virus type 1 (HIV-1) NEF gene during maternal-fetal transmission, we analyzed NEF sequences from seven mother-infant pairs following perinatal transmission, including a mother with infected twin infants. The NEF open reading frame was maintained in mother-infant isolates with a frequency of 86.2% following vertical transmission. While there was a low degree of viral heterogeneity and estimates of genetic diversity and high population growth rates of NEF sequences from mother-infant isolates, the infants' NEF sequences were slightly higher with respect to these parameters compared with the mothers' sequences. Both the mothers' and infants' NEF sequences were under positive selection pressure, as determined by a new method of Nielsen and Yang [Genetics 148:929-936;1998]. Based on genetic distance and phylogenetic parameters, the epidemiologically linked NEF sequences from mother-infant pairs were closer to each other compared with epidemiologically unlinked sequences from individuals. The functional domains essential for Nef activity, including membrane binding, CD4 and MHC-I downmodulation, T cell activation and interaction with factors of the cellular protein trafficking machinery, were conserved in most of the sequences from mother-infant pairs. The maintenance of intact NEF open reading frames with conserved functional domains and a low degree of genetic variability following vertical transmission supports the notion that NEF plays an important role in HIV-1 infection and replication in mothers and their perinatally infected infants.
Collapse
Affiliation(s)
- Tobias Hahn
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | |
Collapse
|