1
|
Adland E, Carlson JM, Paioni P, Kløverpris H, Shapiro R, Ogwu A, Riddell L, Luzzi G, Chen F, Balachandran T, Heckerman D, Stryhn A, Edwards A, Ndung’u T, Walker BD, Buus S, Goulder P, Matthews PC. Nef-specific CD8+ T cell responses contribute to HIV-1 immune control. PLoS One 2013; 8:e73117. [PMID: 24023819 PMCID: PMC3759414 DOI: 10.1371/journal.pone.0073117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/24/2013] [Indexed: 12/29/2022] Open
Abstract
Recent studies in the SIV-macaque model of HIV infection suggest that Nef-specific CD8+ T-cell responses may mediate highly effective immune control of viraemia. In HIV infection Nef recognition dominates in acute infection, but in large cohort studies of chronically infected subjects, breadth of T cell responses to Nef has not been correlated with significant viraemic control. Improved disease outcomes have instead been associated with targeting Gag and, in some cases, Pol. However analyses of the breadth of Nef-specific T cell responses have been confounded by the extreme immunogenicity and multiple epitope overlap within the central regions of Nef, making discrimination of distinct responses impossible via IFN-gamma ELISPOT assays. Thus an alternative approach to assess Nef as an immune target is needed. Here, we show in a cohort of >700 individuals with chronic C-clade infection that >50% of HLA-B-selected polymorphisms within Nef are associated with a predicted fitness cost to the virus, and that HLA-B alleles that successfully drive selection within Nef are those linked with lower viral loads. Furthermore, the specific CD8+ T cell epitopes that are restricted by protective HLA Class I alleles correspond substantially to effective SIV-specific epitopes in Nef. Distinguishing such individual HIV-specific responses within Nef requires specific peptide-MHC I tetramers. Overall, these data suggest that CD8+ T cell targeting of certain specific Nef epitopes contributes to HIV suppression. These data suggest that a re-evaluation of the potential use of Nef in HIV T-cell vaccine candidates would be justified.
Collapse
Affiliation(s)
- Emily Adland
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Jonathan M. Carlson
- Microsoft Research, eScience Group, Los Angeles, California, United States of America
| | - Paolo Paioni
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Henrik Kløverpris
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- KwaZulu-Natal Research Institute for Tuberculosis & HIV, K-RITH, Nelson R Mandela School of Medicine, University of KwaZuluNatal, Durban, South Africa
| | - Roger Shapiro
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Anthony Ogwu
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare NHS Trust,Northampton General Hospital, Northampton, United Kingdom
| | - Graz Luzzi
- Department of Genitourinary Medicine, Wycombe Hospital, High Wycombe, Bucks, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Thambiah Balachandran
- Department of Genitourinary Medicine, Luton and Dunstable Hospital, Luton, United Kingdom
| | - David Heckerman
- Microsoft Research, eScience Group, Los Angeles, California, United States of America
| | - Anette Stryhn
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Edwards
- The Oxford Department of Genitourinary Medicine, the Churchill Hospital, Oxford, United Kingdom
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Bruce D. Walker
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Philippa C. Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Pleguezuelos O, Stoloff GA, Caparrós-Wanderley W. Synthetic immunotherapy induces HIV virus specific Th1 cytotoxic response and death of an HIV-1 infected human cell line through classic complement activation. Virol J 2013; 10:107. [PMID: 23557359 PMCID: PMC3626621 DOI: 10.1186/1743-422x-10-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background This manuscript describes the development of a novel synthetic immunotherapy (HIV-v) composed of four multi-epitope polypeptides targeting conserved regions in the Nef, Rev, Vif and Vpr viral proteins. Immunogenicity and cytotoxicity of HIV-v are discussed. Methods Short conserved T-cell multi-epitope regions were identified in silico in the HIV proteome. The immunogenicity of the identified HIV-v polypeptides was assessed in vivo by immunisation of C57BLK6 mice transgenic for HLA-A*0201. Splenocytes from immunised animals were exposed in vitro to soluble HIV-v polypeptides or to syngeneic (T1) or allogeneic (Jurkat) cells transfected with these polypeptides. Specific T-cell reactivity was assessed by cell-based IFN-γ ELISA. Virus specific CD3 + CD8+ IFN-γ+ recall responses were also determined by flow cytometry following in vitro exposure of splenocytes from immunised mice to syngeneic (T1) and allogeneic (H9) cells infected with HIV-1 strain IIIB. HIV-v specific antibodies were quantified by ELISA whilst antibody mediated anti-viral immunotherapeutic effect on T1 cells infected with a laboratory adapted and a primary isolate of the HIV-1 virus was assessed in a LDH-based complement mediated lysis assay. Results HIV-v elicited antigen-specific IgG and IFN−γ responses against the synthetic polypeptides in the formulation. HIV-v specific T cells recognised polypeptides presented either as soluble antigen or complexed to HLA-A*0201 following natural processing and presentation by syngeneic human T1 cells. Moreover, the CD3 + CD8+ component of the response recognised syngeneic T1 cells naturally infected with HIV-1 in a virus-specific and MHC restricted-manner. The HIV-v specific IgG response was also able to recognise human T1 cells naturally infected with HIV-1 and induce cell death through classic activation of complement. Conclusions HIV-v induces a vaccine-specific type I immune response characterised by activation of effector CD8+ T cell and antibody responses that recognise and kill human cell lines naturally infected with a laboratory adapted and a primary isolate of the HIV-1 virus. The data supports the hypothesis that alternative HIV protein targets can be effectively used to prime both cellular and antibody immune responses of clinical value in the prevention and treatment of HIV infection.
Collapse
Affiliation(s)
- Olga Pleguezuelos
- Research and Development, SEEK, 45 Beech Street, London, EC2Y 8AD, UK.
| | | | | |
Collapse
|
3
|
Fluidity of HIV-1-specific T-cell responses during acute and early subtype C HIV-1 infection and associations with early disease progression. J Virol 2010; 84:12018-29. [PMID: 20826686 DOI: 10.1128/jvi.01472-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deciphering immune events during early stages of human immunodeficiency virus type 1 (HIV-1) infection is critical for understanding the course of disease. We characterized the hierarchy of HIV-1-specific T-cell gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses during acute subtype C infection in 53 individuals and associated temporal patterns of responses with disease progression in the first 12 months. There was a diverse pattern of T-cell recognition across the proteome, with the recognition of Nef being immunodominant as early as 3 weeks postinfection. Over the first 6 months, we found that there was a 23% chance of an increased response to Nef for every week postinfection (P = 0.0024), followed by a nonsignificant increase to Pol (4.6%) and Gag (3.2%). Responses to Env and regulatory proteins appeared to remain stable. Three temporal patterns of HIV-specific T-cell responses could be distinguished: persistent, lost, or new. The proportion of persistent T-cell responses was significantly lower (P = 0.0037) in individuals defined as rapid progressors than in those progressing slowly and who controlled viremia. Almost 90% of lost T-cell responses were coincidental with autologous viral epitope escape. Regression analysis between the time to fixed viral escape and lost T-cell responses (r = 0.61; P = 0.019) showed a mean delay of 14 weeks after viral escape. Collectively, T-cell epitope recognition is not a static event, and temporal patterns of IFN-γ-based responses exist. This is due partly to viral sequence variation but also to the recognition of invariant viral epitopes that leads to waves of persistent T-cell immunity, which appears to associate with slower disease progression in the first year of infection.
Collapse
|
4
|
Wang Z, Liu HW, Hong KX, Yu ZJ, Chen JP, Ruan YH, Kan QC, Shao YM. Complete human immunodeficiency virus-1 specific T lymphocyte response to Chinese human immunodeficiency virus-1 B/C chronic infectors. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:522-528. [PMID: 20337227 DOI: 10.1016/s0895-3988(10)60011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To characterize the human immunodeficiency virus (HIV) -specific T lymphocyte responses and identify the immunodominant regions in Chinese HIV-1 recombinant subtype B/C chronic infectors at complete genome level. METHODS Twenty-five HIV-1B/C recombinant chronic infectors were screened for their specific T lymphocyte responses to a panel of peptides corresponding to the complete HIV-1 subtype B genome by gamma interferon ELISPOT assay. Kruskal-Wallis nonparametric analysis of variance was used to test significant differences across gene regions, and Tukey pairwise analysis was used to identify differences between gene regions. Spearman rank correlation was used to assess the relation between responses. Results The order of recognized frequencies of specific T lymphocyte responses to HIV proteins was Nef>Vpr>Gag>Pol>Vpu>Env>Rev>Vif>Tat. When adjusted for protein length, Nef, Vpr, Gag, and Pol were the most intensely targeted proteins and the central region of Nef, Gag p24, Pol RT, and Vpr was most frequently recognized. No significant correlation was observed between the magnitude of IFN-gamma production of HIV-l-specific T lymphocyte responses and plasma viremia, breadth of response and CD4 counts. Conclusion The central region of Nef, Gag p24, Pol RT, and Vpr is most frequently targeted in HIV-1 B/C recombinants chronic infectors. HIV-l-specific T lymphocyte responses and plasma viremia or CD4 counts play no protective role at complete genome level in these infectors.
Collapse
Affiliation(s)
- Zhe Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052Z Henan, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Characterization of Gag and Nef-specific ELISpot-based CTL responses in HIV-1 infected Indian individuals. Med Microbiol Immunol 2008; 198:47-56. [DOI: 10.1007/s00430-008-0104-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Indexed: 11/26/2022]
|
6
|
Zhang L, Jin N, Song Y, Wang H, Ma H, Li Z, Jiang W. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice. ACTA ACUST UNITED AC 2007; 50:212-20. [PMID: 17447028 DOI: 10.1007/s11427-007-0017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A recombinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the downstream of the promoter (ATI-P7.5x20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous recombination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by genome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowlpox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation. Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were assayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4(+) T, CD8(+) T) were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cytokines (IFN-gamma and IL-2) of spleen lymphocytes stimulated by H-2(d)-restricted CTL peptide were observed in immunized mice. We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.
Collapse
Affiliation(s)
- LiShu Zhang
- The 11th Institute, Academy of Military Medical Sciences, Changchun 130062, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Ngandu NG, Bredell H, Gray CM, Williamson C, Seoighe C. CTL response to HIV type 1 subtype C is poorly predicted by known epitope motifs. AIDS Res Hum Retroviruses 2007; 23:1033-41. [PMID: 17725421 DOI: 10.1089/aid.2007.0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) responses are thought to be essential for the control of HIV-1 replication in vivo and immunogens that elicit CTL responses are currently a major focus of HIV vaccine research. Here we investigated two aspects of the CTL response to HIV-1 subtype C that are important for vaccine design and efficacy monitoring. First, we assessed the relationship between the CTL response and sequence diversity, using a robust statistical method. While peptides that were most frequently recognized by the CTL response in Nef and p24 tended to be conserved, this was not the case for p17 where epitope recognition coincided with highly variable regions. Second, we investigated the relationship between observed and predicted CTL responses, given the HLA genotype of infected individuals. Only 52% of the Nef peptides and 64% of the Gag peptides that elicited a CTL response contained sequence motifs thought to be required for binding by the HLA-A or -B alleles found in the corresponding patient. In a comparable subtype B dataset a much higher proportion of the peptides that elicited a CTL response were consistent with the patient HLA genotype (96% and 83% for Nef and Gag, respectively). We demonstrate that this difference between subtypes C and B is likely to result from a combination of a tendency for HLA alleles common in Southern African populations to be poorly characterized, as well as a tendency for sequence motifs associated with HLA recognition to be overspecified for sequence variation found in the B clade. Our results suggest that knowledge of HLA binding motifs is likely to be biased toward certain populations and subtypes. This can have important implications for understanding immune escape and predicting vaccine efficacy in the context of populations primarily infected with non-B subtype HIV-1.
Collapse
Affiliation(s)
- Nobubelo G Ngandu
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Medical School, Observatory, South Africa 7925
| | | | | | | | | |
Collapse
|
8
|
Bredell H, Martin DP, Van Harmelen J, Varsani A, Sheppard HW, Donovan R, Gray CM, Williamson C. HIV type 1 subtype C gag and nef diversity in Southern Africa. AIDS Res Hum Retroviruses 2007; 23:477-81. [PMID: 17411382 DOI: 10.1089/aid.2006.0232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several HIV-1 subtype C-specific gag- and/or nef-based vaccines are currently intended for clinical trial in southern Africa. Here we provide sequences of 64 gag and 45 nef genes sampled in Malawi, Zambia, Zimbabwe, and South Africa and assess the degree of southern African HIV-1 diversity that will confront these vaccines. Whereas reasonable phylogenetic evidence exists for geographical clustering of subtype C gag and nef sequences from various other parts of the world, there is little evidence of similar population founder effects in the southern African epidemic. The entire breadth of subtype C diversity is represented in the southern African genes suggesting there may be no advantage in producing region- or country-specific subtype C vaccines. We do not, however, find much evidence of intersubtype recombination in the Southern African genes, implying that the likelihood of vaccine failure due to the emergence of intersubtype recombinants is probably low.
Collapse
Affiliation(s)
- Helba Bredell
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Walker PR, Ketunuti M, Choge IA, Meyers T, Gray G, Holmes EC, Morris L. Polymorphisms in Nef associated with different clinical outcomes in HIV type 1 subtype C-infected children. AIDS Res Hum Retroviruses 2007; 23:204-15. [PMID: 17331028 DOI: 10.1089/aid.2006.0080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) negative factor, or Nef, has a variety of functions that are important in viral pathogenesis. Sequence analysis has identified nef mutations that are linked to the rate of disease progression in adults and children infected with HIV-1 subtype B. Here we have sequenced and analyzed HIV-1 subtype C nef sequences from 34 children with rapid (RP) or slow progressing (SP) disease and identified polymorphisms associated with disease stage including motifs involved in specific pathogenic functions. Unlike subtype B, insertions and deletions in the N-terminal variable region were observed exclusively in SP children (8 out of 25). Strong positive selection pressures were found in sites of known functional importance among SP sequences, whereas RP had strong negative selection across the gene. A lineage analysis of selection pressures indicated weaker pressure across the nef gene in SP sequences bearing a deletion in region 8-12, suggesting this deletion has functional importance in vivo. Together these results suggest a differential adaptation of certain Nef functions related to disease progression, some of which may be attributable to immune-imposed pressures. These data broadly reflect previous studies on subtype B, corroborate the decreased cytopathicity of SP viruses, but also highlight potential subtype differences that require further investigation.
Collapse
Affiliation(s)
- Polly R Walker
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Kantakamalakul W, de Souza M, Bejrachandra S, Ampol S, Cox J, Sutthent R. Identification of a novel HIV type 1 CRF01_AE cytotoxic T lymphocyte (CTL) epitope restricted by an HLA-Cw0602 allele and a novel HLA-A0206/peptide restriction. AIDS Res Hum Retroviruses 2006; 22:1271-82. [PMID: 17209771 DOI: 10.1089/aid.2006.22.1271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report describes specific T cell responses to HIV-1 CRF01_AE Env and A Gag peptides in 20 HIV-1 CRF01_AE-infected Thai individuals using an interferon-gamma (IFN-gamma) enzyme-linked immunospot (ELISpot) assay. Twenty-six potentially novel HLA class I-restricted CD8+ T cell epitopes were identified in 14/20 subjects. Fine mapping analysis using the chromium release cytotoxic T lymphocyte (CTL) assay revealed a novel HLA-Cw0602 restricted epitope of HIV-1 CRF01_AE Env (NAKTIIVHL) and a previously identified HIV-1 A Gag epitope (ATLEEMMTA) with a novel HLA-A0206 restriction.
Collapse
Affiliation(s)
- Wannee Kantakamalakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | | | | | | | | |
Collapse
|
11
|
Zhang L, Ningyi J, Yingjin S, Yansong S, Hong W, Dawei Z, Ma H, Shang Y, Jin H, Hong B, Li C. Immune responses of a designed HIV-1 DNA vaccine on rhesus monkeys. ACTA ACUST UNITED AC 2006; 51:1571-1577. [PMID: 32214722 PMCID: PMC7089360 DOI: 10.1007/s11434-006-1571-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An effective HIV-1 vaccine will be the ultimate solution for the prevention of HIV/AIDS, though HAART plays important roles in treating the disease. In this study, a large-scale recombinant DNA plasmid containing a designed HIV-1 multi-epitope-p24 chimeric gene was prepared and purified. Rhesus monkeys were then inoculated muscularly with the plasmid for four times in week 0, 4, 8 and 18. Whole blood was collected two weeks after the third and fourth inoculation, followed by serum and peripheral blood mononuclear cell (PBMC) separation. The CTL activity and proliferation of PBMCs stimulated by macaque MHC-I-restricted HIV-1 CTL epitope peptide were analyzed by MTT and LDH release assay, respectively. Th1 cytokines in supernatant of cultured PBMC stimulated by HIV-1 CTL epitope peptide and anti-HIV-1 antibody in serum were assayed by ELISA. The results showed that increased CTL target-killing activity, higher secretion of Th1 cytokines (IFN-γ and IL-2) and promoted proliferative reaction of monkey PBMCs stimulated by HIV-1 CTL epitope peptide were detected in the immunization group inoculated by the recombinant DNA vaccine for three times, which were further enhanced by the fourth inoculation. At the same time, HIV-1 specific antibody in serum of immunized monkeys was higher than that in controls. We concluded that the designed HIV-1 DNA vaccine may induce HIV-1 specific cellular and humoral immunity on monkeys.
Collapse
Affiliation(s)
- Lishu Zhang
- 1The 11th Institute, Academy of Military Medical Sciences, Changchun, 130062 China
| | - Jin Ningyi
- 1The 11th Institute, Academy of Military Medical Sciences, Changchun, 130062 China
| | - Song Yingjin
- 2College of Agricultural and Biological Engineer, Tianjin University, Tianjin, 30072 China
| | - Sun Yansong
- 3Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, 100071 China
| | - Wang Hong
- 4College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Zhan Dawei
- 3Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, 100071 China
| | - Hewen Ma
- 5Agricultural Sciences Center, Jilin University, Changchun, 130062 China
| | - Yupu Shang
- 3Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, 100071 China
| | - Hongtao Jin
- 1The 11th Institute, Academy of Military Medical Sciences, Changchun, 130062 China
| | - Baoqing Hong
- 3Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, 100071 China
| | - Chang Li
- 1The 11th Institute, Academy of Military Medical Sciences, Changchun, 130062 China
| |
Collapse
|
12
|
Novitsky VA, Gilbert PB, Shea K, McLane MF, Rybak N, Klein I, Thior I, Ndung'u T, Lee TH, Essex ME. Interactive association of proviral load and IFN-gamma-secreting T cell responses in HIV-1C infection. Virology 2006; 349:142-55. [PMID: 16519915 DOI: 10.1016/j.virol.2006.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/22/2005] [Accepted: 02/06/2006] [Indexed: 12/01/2022]
Abstract
We investigated the interactive relationship between proviral DNA load and virus-specific IFN-gamma-secreting T cell responses in HIV-1C infection. The presence or absence of correlation, and inverse or direct type of correlation, if any, were dependent on targeted viral gene product. Responses to Gag p24 or to Pol were associated with lower proviral DNA load. Associations between proviral DNA load and T cell responses did not necessarily mirror relationships between plasma RNA load and T cell responses. An interaction analysis showed a synergy in that lower proviral DNA and lower plasma RNA load were associated with high Gag p24-specific IFN-gamma-secreting T cell response (interaction test P = 0.0003). Our findings support the idea that HIV proteins have differential value for vaccine design, and suggest that, for HIV-1C, Gag p24 may be one of the most attractive regions to include in vaccine designs to control both plasma RNA load and cell-associated proviral DNA load.
Collapse
Affiliation(s)
- Vladimir A Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB-402, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gilbert PB, Novitsky V, Essex M. Covariability of selected amino acid positions for HIV type 1 subtypes C and B. AIDS Res Hum Retroviruses 2005; 21:1016-30. [PMID: 16379605 DOI: 10.1089/aid.2005.21.1016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied covariability of selected amino acid positions in globally dominant HIV-1 subtype C viruses. The analyzed sequences spanned the V3 loop, Gag p17, Gag p24, and five CTL epitope-rich regions in Gag, Nef, and Tat. The corresponding regions in HIV-1 subtype B were also evaluated. The analyses identified a great number of covarying pairs and triples of sites in the HIV-1B V3 loop (173 site pairs, 242 site triples). Several of these interactions were found in the earlier studies [e.g., the V3 loop covariability analyses by Korber et al. (Proc Natl Acad Sci USA 1993;90:7176-7180) and Bickel et al. (AIDS Res Hum Retroviruses 1996;12:1401-1411)] and have known biological significance. However, generally these key covarying sites did not covary in the HIV-1C V3 loop (total 17 covarying site pairs), suggesting that the V3 loop may have subtype differences in functional or structural operating characteristics. Covariability of positions 309 and 312 was observed in the immunodominant region HIV-1C Gag 291-320 but no covariability was found in the corresponding region of HIV-1B, and vice versa for Nef 122-141; these findings may reflect subtype-specific covariability within immunologically relevant regions. Gag p17 exhibited greater covariability and less diversity for HIV-1B than HIV-1C, raising the hypothesis that Gag p17 is highly immunodominant in HIV-1B and is especially important for HIV-1B vaccines. Information on covariability should be better exploited in assessments of HIV-1 diversity and how to surmount it with vaccine design.
Collapse
Affiliation(s)
- Peter B Gilbert
- Department of Biostatistics, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
14
|
Milicic A, Price DA, Zimbwa P, Booth BL, Brown HL, Easterbrook PJ, Olsen K, Robinson N, Gileadi U, Sewell AK, Cerundolo V, Phillips RE. CD8+ T cell epitope-flanking mutations disrupt proteasomal processing of HIV-1 Nef. THE JOURNAL OF IMMUNOLOGY 2005; 175:4618-26. [PMID: 16177107 DOI: 10.4049/jimmunol.175.7.4618] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL play a critical role in the control of HIV and SIV. However, intrinsic genetic instability enables these immunodeficiency viruses to evade detection by CTL through mutation of targeted antigenic sites. These mutations can impair binding of viral epitopes to the presenting MHC class I molecule or disrupt TCR-mediated recognition. In certain regions of the virus, functional constraints are likely to limit the capacity for variation within epitopes. Mutations elsewhere in the protein, however, might still enable immune escape through effects on Ag processing. In this study, we describe the coincident emergence of three mutations in a highly conserved region of Nef during primary HIV-1 infection. These mutations (R69K, A81G, and H87R) flank the HLA B*35-restricted VY8 epitope and persisted to fixation as the early CTL response to this Ag waned. The variant form of Nef showed a reduced capacity to activate VY8-specific CTL, although protein stability and expression levels were unchanged. This effect was associated with altered processing by the proteasome that caused partial destruction of the VY8 epitope. Our data demonstrate that a variant HIV genotype can significantly impair proteasomal epitope processing and substantiate the concept of immune evasion through diminished Ag generation. These observations also indicate that the scale of viral escape may be significantly underestimated if only intraepitope variation is evaluated.
Collapse
Affiliation(s)
- Anita Milicic
- James Martin 21st Century School and Nuffield Department of Clinical Medicine, The Peter Medawar Building, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Masemola A, Mashishi T, Khoury G, Mohube P, Mokgotho P, Vardas E, Colvin M, Zijenah L, Katzenstein D, Musonda R, Allen S, Kumwenda N, Taha T, Gray G, McIntyre J, Karim SA, Sheppard HW, Gray CM. Hierarchical targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T cells: correlation with viral load. J Virol 2004; 78:3233-43. [PMID: 15016844 PMCID: PMC371059 DOI: 10.1128/jvi.78.7.3233-3243.2004] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An understanding of the relationship between the breadth and magnitude of T-cell epitope responses and viral loads is important for the design of effective vaccines. For this study, we screened a cohort of 46 subtype C human immunodeficiency virus type 1 (HIV-1)-infected individuals for T-cell responses against a panel of peptides corresponding to the complete subtype C genome. We used a gamma interferon ELISPOT assay to explore the hypothesis that patterns of T-cell responses across the expressed HIV-1 genome correlate with viral control. The estimated median time from seroconversion to response for the cohort was 13 months, and the order of cumulative T-cell responses against HIV proteins was as follows: Nef > Gag > Pol > Env > Vif > Rev > Vpr > Tat > Vpu. Nef was the most intensely targeted protein, with 97.5% of the epitopes being clustered within 119 amino acids, constituting almost one-third of the responses across the expressed genome. The second most targeted region was p24, comprising 17% of the responses. There was no correlation between viral load and the breadth of responses, but there was a weak positive correlation (r = 0.297; P = 0.034) between viral load and the total magnitude of responses, implying that the magnitude of T-cell recognition did not contribute to viral control. When hierarchical patterns of recognition were correlated with the viral load, preferential targeting of Gag was significantly (r = 0.445; P = 0.0025) associated with viral control. These data suggest that preferential targeting of Gag epitopes, rather than the breadth or magnitude of the response across the genome, may be an important marker of immune efficacy. These data have significance for the design of vaccines and for interpretation of vaccine-induced responses.
Collapse
Affiliation(s)
- Agatha Masemola
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wilson CC, McKinney D, Anders M, MaWhinney S, Forster J, Crimi C, Southwood S, Sette A, Chesnut R, Newman MJ, Livingston BD. Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1. THE JOURNAL OF IMMUNOLOGY 2004; 171:5611-23. [PMID: 14607970 DOI: 10.4049/jimmunol.171.10.5611] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epitope-based vaccines designed to induce CTL responses specific for HIV-1 are being developed as a means for addressing vaccine potency and viral heterogeneity. We identified a set of 21 HLA-A2, HLA-A3, and HLA-B7 restricted supertype epitopes from conserved regions of HIV-1 to develop such a vaccine. Based on peptide-binding studies and phenotypic frequencies of HLA-A2, HLA-A3, and HLA-B7 allelic variants, these epitopes are predicted to be immunogenic in greater than 85% of individuals. Immunological recognition of all but one of the vaccine candidate epitopes was demonstrated by IFN-gamma ELISPOT assays in PBMC from HIV-1-infected subjects. The HLA supertypes of the subjects was a very strong predictor of epitope-specific responses, but some subjects responded to epitopes outside of the predicted HLA type. A DNA plasmid vaccine, EP HIV-1090, was designed to express the 21 CTL epitopes as a single Ag and tested for immunogenicity using HLA transgenic mice. Immunization of HLA transgenic mice with this vaccine was sufficient to induce CTL responses to multiple HIV-1 epitopes, comparable in magnitude to those induced by immunization with peptides. The CTL induced by the vaccine recognized target cells pulsed with peptide or cells transfected with HIV-1 env or gag genes. There was no indication of immunodominance, as the vaccine induced CTL responses specific for multiple epitopes in individual mice. These data indicate that the EP HIV-1090 DNA vaccine may be suitable for inducing relevant HIV-1-specific CTL responses in humans.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/chemical synthesis
- AIDS Vaccines/immunology
- Adult
- Amino Acid Motifs/immunology
- Animals
- Cell Line, Transformed
- Conserved Sequence/immunology
- Cytotoxicity Tests, Immunologic/methods
- Drug Evaluation, Preclinical
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/isolation & purification
- HIV Infections/immunology
- HIV-1/immunology
- HIV-1/isolation & purification
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- HLA-A3 Antigen/genetics
- HLA-A3 Antigen/immunology
- HLA-B7 Antigen/genetics
- HLA-B7 Antigen/immunology
- Histocompatibility Testing
- Humans
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Mice
- Mice, Transgenic
- Predictive Value of Tests
- Superantigens/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/chemical synthesis
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Cara C Wilson
- University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Novitsky V, Cao H, Rybak N, Gilbert P, McLane MF, Gaolekwe S, Peter T, Thior I, Ndung'u T, Marlink R, Lee TH, Essex M. Magnitude and frequency of cytotoxic T-lymphocyte responses: identification of immunodominant regions of human immunodeficiency virus type 1 subtype C. J Virol 2002; 76:10155-68. [PMID: 12239290 PMCID: PMC136554 DOI: 10.1128/jvi.76.20.10155-10168.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Accepted: 06/27/2002] [Indexed: 11/20/2022] Open
Abstract
A systematic analysis of immune responses on a population level is critical for a human immunodeficiency virus type 1 (HIV-1) vaccine design. Our studies in Botswana on (i) molecular analysis of the HIV-1 subtype C (HIV-1C) epidemic, (ii) frequencies of major histocompatibility complex class I HLA types, and (iii) cytotoxic T-lymphocyte (CTL) responses in the course of natural infection allowed us to address HIV-1C-specific immune responses on a population level. We analyzed the magnitude and frequency of the gamma interferon ELISPOT-based CTL responses and translated them into normalized cumulative CTL responses. The introduction of population-based cumulative CTL responses reflected both (i) essentials of the predominant virus circulating locally in Botswana and (ii) specificities of the genetic background of the Botswana population, and it allowed the identification of immunodominant regions across the entire HIV-1C. The most robust and vigorous immune responses were found within the HIV-1C proteins Gag p24, Vpr, Tat, and Nef. In addition, moderately strong responses were scattered across Gag p24, Pol reverse transcriptase and integrase, Vif, Tat, Env gp120 and gp41, and Nef. Assuming that at least some of the immune responses are protective, these identified immunodominant regions could be utilized in designing an HIV vaccine candidate for the population of southern Africa. Targeting multiple immunodominant regions should improve the overall vaccine immunogenicity in the local population and minimize viral escape from immune recognition. Furthermore, the analysis of HIV-1C-specific immune responses on a population level represents a comprehensive systematic approach in HIV vaccine design and should be considered for other HIV-1 subtypes and/or different geographic areas.
Collapse
Affiliation(s)
- V Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB-402, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mashishi T, Gray CM. The ELISPOT assay: an easily transferable method for measuring cellular responses and identifying T cell epitopes. Clin Chem Lab Med 2002; 40:903-10. [PMID: 12435107 DOI: 10.1515/cclm.2002.159] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Characterization of human leukocyte antigen (HLA) class I restricted epitopes derived from viral pathogens is imperative for formulating therapeutic interventions, as well as for vaccine design and monitoring. Sensitive, easy and cost-effective assays that measure the frequency of antigen-specific T lymphocytes are crucial for evaluating and improving vaccines and therapies. This paper reviews the ELISPOT technique that allows for quantifying HIV-specific T lymphocytes at the single cell level from peripheral blood by detection of antigen-induced cytokine secretion. The assay can be used successfully to quantify T cell immune responses in humans infected with different pathogens and to assess T cell immunogenicity of vaccines in phase I/II and III clinical trials. This review focuses on the ELISPOT methodology and discusses how it can be standardized and potentially used by multiple international laboratories attached to clinical trial sites.
Collapse
Affiliation(s)
- Tumelo Mashishi
- AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | |
Collapse
|