1
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
2
|
Munis AM. Gene Therapy Applications of Non-Human Lentiviral Vectors. Viruses 2020; 12:v12101106. [PMID: 33003635 PMCID: PMC7599719 DOI: 10.3390/v12101106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Abstract
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.
Collapse
|
4
|
Gammaretroviral vectors: biology, technology and application. Viruses 2011; 3:677-713. [PMID: 21994751 PMCID: PMC3185771 DOI: 10.3390/v3060677] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are evolutionary optimized gene carriers that have naturally adapted to their hosts to efficiently deliver their nucleic acids into the target cell chromatin, thereby overcoming natural cellular barriers. Here we will review—starting with a deeper look into retroviral biology—how Murine Leukemia Virus (MLV), a simple gammaretrovirus, can be converted into an efficient vehicle of genetic therapeutics. Furthermore, we will describe how more rational vector backbones can be designed and how these so-called self-inactivating vectors can be pseudotyped and produced. Finally, we will provide an overview on existing clinical trials and how biosafety can be improved.
Collapse
|
5
|
The inside out of lentiviral vectors. Viruses 2011; 3:132-159. [PMID: 22049307 PMCID: PMC3206600 DOI: 10.3390/v3020132] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022] Open
Abstract
Lentiviruses induce a wide variety of pathologies in different animal species. A common feature of the replicative cycle of these viruses is their ability to target non-dividing cells, a property that constitutes an extremely attractive asset in gene therapy. In this review, we shall describe the main basic aspects of the virology of lentiviruses that were exploited to obtain efficient gene transfer vectors. In addition, we shall discuss some of the hurdles that oppose the efficient genetic modification mediated by lentiviral vectors and the strategies that are being developed to circumvent them.
Collapse
|
6
|
Delenda C, Chillon M, Douar AM, Merten OW. Cells for Gene Therapy and Vector Production. ANIMAL CELL BIOTECHNOLOGY 2007. [DOI: 10.1007/978-1-59745-399-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Coskun AK, Sutton RE. Expression of glucose transporter 1 confers susceptibility to human T-cell leukemia virus envelope-mediated fusion. J Virol 2005; 79:4150-8. [PMID: 15767416 PMCID: PMC1061550 DOI: 10.1128/jvi.79.7.4150-4158.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus identified and causes both adult T-cell leukemia/lymphoma and tropical spastic paraparesis/HTLV-1-associated myelopathy, among other disorders. In vitro, HTLV-1 has an extremely broad host cell tropism in that it is capable of infecting most mammalian cell types, although at the same time viral titers remain relatively low. Despite years of study, only recently has a bona fide candidate cellular receptor, glucose transporter 1 (glut-1), been identified. Although glut-1 was shown to bind specifically to the ectodomain of HTLV-1 and HTLV-2 envelope glycoproteins, which was reversible with small interfering RNA directed against glut-1, cellular susceptibility to HTLV upon expression of glut-1 was not established. Here we show that expression of glut-1 in relatively resistant MDBK cells conferred increased susceptibility to both HTLV-1- and HTLV-2-pseudotyped particles. glut-1 also markedly increased syncytium formation in MDBK cells after exposure to HTLV-1. Another assay also demonstrated HTLV-1 envelope-cell fusion in the presence of glut-1. Taken together, these results provide additional evidence that glut-1 is a receptor for HTLV.
Collapse
Affiliation(s)
- Ayse Kubra Coskun
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
8
|
Molina RP, Ye HQ, Brady J, Zhang J, Zimmerman H, Kaleko M, Luo T. A synthetic Rev-independent bovine immunodeficiency virus-based packaging construct. Hum Gene Ther 2004; 15:865-77. [PMID: 15353041 DOI: 10.1089/hum.2004.15.865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication competent lentivirus (RCL) has been the major safety concern associated with applications of lentivirus-based gene transfer systems for human gene therapy. Minimization and elimination of overlaps between the packaging and the transfer vector constructs are expected to reduce the potential to generate RCL. We previously developed second- and third-generation bovine immunodeficiency virus (BIV)-based gene transfer systems. However, some sequence homologies between the vector and gag/pol packaging constructs remained. In order to minimize the sequence homologies, we recoded gag/pol with codon usage optimized for expression in human cells in this report. Expression of the recoded gag/pol was Rev/RRE independent. Thus, RRE was eliminated from the packaging construct, thereby removing a 312 bp block of homology. In addition, recoding gag/pol minimized overall homologies between the packaging and transfer vector constructs. Vectors generated by the recoded packaging construct with a four plasmid system had titers greater than 1 x 10(6) transducing units per milliliter, equivalent to those of the earlier generation systems. The vectors were functional in vitro and efficiently transduced rat pigment epithelial cells in vivo. Generation of the synthetic packaging construct provides further advances to the safety of lentiviral vectors for clinical applications.
Collapse
Affiliation(s)
- Rene P Molina
- Advanced Vision Therapies, Inc., Rockville, MD 20850, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Takahashi K, Saishin Y, Saishin Y, Silva RL, Oshima Y, Oshima S, Melia M, Paszkiet B, Zerby D, Kadan MJ, Liau G, Kaleko M, Connelly S, Luo T, Campochiaro PA. Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB J 2003; 17:896-8. [PMID: 12670875 DOI: 10.1096/fj.02-0824fje] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endostatin, a proteolytic fragment of collagen XVIII, is an endogenous inhibitor of tumor angiogenesis that also inhibits choroidal neovascularization. In this study, we assessed the effects of increased intraocular expression of endostatin on vascular endothelial growth factor (VEGF)-induced changes in the retina. After subretinal injection of a pair of gutless adenoviral vectors (AGV) designed to provide tamoxifen-inducible expression of endostatin, diffuse endostatin immunoreactivity was induced thoroughout the retina by administration of tamoxifen. Induction of endostatin in double transgenic mice with doxycycline-induced expression of VEGF in the retina resulted in significant suppression of leakage of intravascular [3H]mannitol into the retina. The ability of endostatin to reduce VEGF-induced retinal vascular permeability was confirmed by using [3H]mannitol leakage and two other parameters, fluorescein leakage and retinal thickness, after subretinal injection of a bovine immunodeficiency lentiviral vector coding for endostatin (BIV-vectored endostatin, or BIVendostatin). Subretinal injection of BIVendostatin resulted in more discrete, less intense staining for endostatin in the retina than that seen with the inducible AGV system, which suggested lower levels and allowed visualization of sites where endostatin was concentrated. Endostatin staining outlined retinal blood vessels, which suggested endostatin binding to a component of vessel walls. More prolonged or higher level expression of VEGF in the retina resulted in neovascularization and retinal detachment, both of which were also significantly reduced by BIVendostatin. These data suggest that endostatin may be an endogenous inhibitor of vasopermeability as well as neovascularization. In patients with diabetic retinopathy, endostatin gene transfer may provide a way to decrease the risk of three causes of visual loss: macular edema, neovascularization, and retinal detachment.
Collapse
Affiliation(s)
- Kyoichi Takahashi
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, Maryland 21287-9277, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Gene therapy has been applied in a variety of experimental models of autoimmunity with some success. In this article, we outline recent developments in gene therapy vectors, discuss advantages and disadvantages of each, and highlight their recent applications in autoimmune models. We also consider progress in vector targeting and components for regulating transgene expression, which will both improve gene therapy safety and empower gene therapy to fullfil its potential as a therapeutic modality. In conclusion, we consider candidate vectors that satisfy requirements for application in the principal therapeutic strategies in which gene therapy will be applied to autoimmune conditions.
Collapse
Affiliation(s)
- D J Gould
- 1Bone & Joint Research Unit, Barts & The London, Queen Mary's Medical School, University of London, London, UK
| | | |
Collapse
|