1
|
Sagar R, David AL. Fetal therapies - (Stem cell transplantation; enzyme replacement therapy; in utero genetic therapies). Best Pract Res Clin Obstet Gynaecol 2024; 97:102542. [PMID: 39298891 DOI: 10.1016/j.bpobgyn.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Advances in ultrasound and prenatal diagnosis are leading an expansion in the options for parents whose fetus is identified with a congenital disease. Obstetric diseases such as pre-eclampsia and fetal growth restriction may also be amenable to intervention to improve maternal and neonatal outcomes. Advanced Medicinal Therapeutic Products such as stem cell, gene, enzyme and protein therapies are most commonly being investigated as the trajectory of treatment for severe genetic diseases moves toward earlier intervention. Theoretical benefits include prevention of in utero damage, smaller treatment doses compared to postnatal intervention, use of fetal circulatory shunts and induction of immune tolerance. New systematic terminology can capture adverse maternal and fetal adverse events to improve safe trial conduct. First-in-human clinical trials are now beginning to generate results with a focus on safety first and efficacy second. If successful, these trials will transform the care of fetuses with severe early-onset congenital disease.
Collapse
Affiliation(s)
- Rachel Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6AU, UK.
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6AU, UK; National Institute for Health and Care Research, University College London Hospitals NHS Foundation Trust Biomedical Research Centre, 149 Tottenham Court Road, London, W1T 7DN, UK.
| |
Collapse
|
2
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Waddington SN, Peranteau WH, Rahim AA, Boyle AK, Kurian MA, Gissen P, Chan JKY, David AL. Fetal gene therapy. J Inherit Metab Dis 2024; 47:192-210. [PMID: 37470194 PMCID: PMC10799196 DOI: 10.1002/jimd.12659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Fetal gene therapy was first proposed toward the end of the 1990s when the field of gene therapy was, to quote the Gartner hype cycle, at its "peak of inflated expectations." Gene therapy was still an immature field but over the ensuing decade, it matured and is now a clinical and market reality. The trajectory of treatment for several genetic diseases is toward earlier intervention. The ability, capacity, and the will to diagnose genetic disease early-in utero-improves day by day. A confluence of clinical trials now signposts a trajectory toward fetal gene therapy. In this review, we recount the history of fetal gene therapy in the context of the broader field, discuss advances in fetal surgery and diagnosis, and explore the full ambit of preclinical gene therapy for inherited metabolic disease.
Collapse
Affiliation(s)
- Simon N Waddington
- EGA Institute for Women's Health, University College London, London, UK
- Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - William H Peranteau
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Ashley K Boyle
- EGA Institute for Women's Health, University College London, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Experimental Fetal Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anna L David
- EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|
4
|
Pham QDM, Thomson SM, Schaible BN, Mills KD, Atala A, Porada CD, Almeida-Porada G. Acceptability of prenatal diagnosis and prenatal treatment of haemophilia using cell and gene therapies within US haemophilia community. Haemophilia 2023; 29:1024-1031. [PMID: 37228173 PMCID: PMC10524589 DOI: 10.1111/hae.14805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The overall burden of disease in persons with haemophilia continues to be high despite the latest advancements in therapeutics. Clinical trials testing prenatal treatments for several genetic disorders are underway or are recruiting subjects, attesting to the much-needed change in paradigm of how patients with monogenic disorders can be treated. Here we investigate the overall attitude towards prenatal diagnosis, preferences on types of prenatal therapies for haemophilia, the level of 'acceptable' risk tolerated, and which social and moral pressures or disease personal experiences may predict willingness of individuals to consider foetal therapy in a future pregnancy. RESULTS A multidisciplinary team designed the survey, and the study was carried out using REDCap, and publicized through the National Haemophilia Foundation. Subjects ≥18 years of age were eligible to participate in the study. We assessed participants' attitudes towards prenatal therapy and their level of 'acceptable' risk towards the procedure and therapy. The survey was completed by 67 adults, the majority females. Respondents were willing to undergo prenatal diagnosis, and their main concerns related to the well-being of the pregnant woman and the foetus regarding lasting therapeutic efficacy, side effects of the therapy, and procedural risks, but they were likely to accept a wide range of prenatal therapeutic options, particularly if the foetal therapy proved to be long-lasting and safe. CONCLUSIONS These data demonstrate the willingness of persons with haemophilia, and the haemophilia community, to explore new treatment options beyond the currently offered approaches.
Collapse
Affiliation(s)
- Quan D. M. Pham
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Sharon M. Thomson
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Burk N. Schaible
- Center for Research in Obstetrics and Gynecology, WFSOM, Winston Salem, NC, USA
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| |
Collapse
|
5
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
6
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Hartman HA, Rossidis AC, Peranteau WH. In Utero Gene Therapy and Genome Editing. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0117-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
|
9
|
Xia W, Ginsberg Y, West SJ, Nikitichev DI, Ourselin S, David AL, Desjardins AE. Coded excitation ultrasonic needle tracking: An in vivo study. Med Phys 2016; 43:4065. [PMID: 27370125 PMCID: PMC5207306 DOI: 10.1118/1.4953205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 04/25/2016] [Accepted: 05/21/2016] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. METHODS A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. RESULTS Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded excitation, and they were visually absent with Golay coded excitation. The spatial tracking accuracy was unaffected by coded excitation. CONCLUSIONS Coded excitation is a viable method for improving the SNR in ultrasonic tracking without compromising spatial accuracy. This method provided SNR increases that are consistent with theoretical expectations, even in the presence of physiological motion. With the ultrasonic tracking system in this study, the SNR increases will have direct clinical implications in a broad range of interventional procedures by improving visibility of medical devices at large depths.
Collapse
Affiliation(s)
- Wenfeng Xia
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Yuval Ginsberg
- Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Simeon J. West
- Department of Anaesthesia, University College Hospital, Main Theaters, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU, United Kingdom
| | - Daniil I. Nikitichev
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Sebastien Ourselin
- Center for Medical Imaging Computing, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Anna L. David
- Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Almeida-Porada G, Atala A, Porada CD. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16020. [PMID: 27069953 PMCID: PMC4813605 DOI: 10.1038/mtm.2016.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| |
Collapse
|
11
|
Xia W, Mari JM, West SJ. In-plane ultrasonic needle tracking using a fiber-optic hydrophone. Med Phys 2015; 42:5983-91. [PMID: 26429273 PMCID: PMC5207301 DOI: 10.1118/1.4931418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction with the imaging probe used to acquire B-mode ultrasound images. METHODS Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°-68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14-5 MHz probe for the first and second sets, and a 9-4 MHz probe for the third. RESULTS During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With the needle tip in water, the SNR of the needle tip varied with insertion angle, attaining values of 284 at 27° and 501 at 68°. In swine tissue ex vivo, the SNR decreased from 80 at 15° to 16 at 61°. In swine tissue in vivo, the SNR varied with depth, from 200 at 17.5 mm to 48 at 26 mm, with a constant insertion angle of 40°. In ovine tissue in vivo, within the uterine cavity, the SNR varied from 46.4 at 25 mm depth to 18.4 at 32 mm depth, with insertion angles in the range of 26°-65°. CONCLUSIONS A fiber-optic ultrasound receiver integrated into the needle cannula in combination with single-element transmissions from the imaging probe allows for direct visualization of the needle tip within the ultrasound imaging plane. Visualization of the needle tip was achieved at depths and insertion angles that are encountered during nerve blocks and fetal interventions. The method presented in this paper has strong potential to improve the safety and efficiency of ultrasound-guided needle insertions.
Collapse
Affiliation(s)
- Wenfeng Xia
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jean Martial Mari
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom and GePaSud, University of French Polynesia, Faa’a 98702, French Polynesia
| | - Simeon J. West
- Department of Anaesthesia, University College Hospital, Main Theatres, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU, United Kingdom
| |
Collapse
|
12
|
Shaw SWS, Blundell MP, Pipino C, Shangaris P, Maghsoudlou P, Ramachandra DL, Georgiades F, Boyd M, Thrasher AJ, Porada CD, Almeida-Porada G, Cheng PJ, David AL, de Coppi P. Sheep CD34+ amniotic fluid cells have hematopoietic potential and engraft after autologous in utero transplantation. Stem Cells 2015; 33:122-32. [PMID: 25186828 DOI: 10.1002/stem.1839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023]
Abstract
Unmatched allogeneic in utero stem cell transplantation (IUSCT) produces poor engraftment unless the fetus has congenital immunodeficiency, probably because of maternal and fetal immune responses to injected cells. We studied the functional hematopoietic potential of transduced green fluorescent protein (GFP+) sheep amniotic fluid (AF) stem cells, before and after autologous IUSCT. CD34+ cells were selected from first trimester sheep AF, transduced overnight, and injected intravenously into NOD-SCID-gamma (NSG) mice. At 3 months, primary recipient bone marrow (BM) was injected into secondary NSG recipients. GFP+ cells were detected in the hematopoietic organs and peripheral blood of primary and secondary recipients at 3 months. Autologous IUSCT (transduced GFP+CD34+AF) was performed in fetal sheep. Six months postnatally, lamb BM was injected into secondary NSG recipients. GFP+ cells were detected in the peripheral blood of primary and secondary recipients. This confirms the hematopoietic potential of AF stem cells supporting the concept of autologous IUSCT to treat congenital hematopoietic disease.
Collapse
Affiliation(s)
- S W Steven Shaw
- Stem Cells and Regenerative Medicine Section, Institute of Child Health, University College London, London, United Kingdom; Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, United Kingdom; Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
McClain LE, Flake AW. In utero stem cell transplantation and gene therapy: Recent progress and the potential for clinical application. Best Pract Res Clin Obstet Gynaecol 2015; 31:88-98. [PMID: 26483174 DOI: 10.1016/j.bpobgyn.2015.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Advances in prenatal diagnosis have led to the prenatal management and treatment of a variety of congenital diseases. Although surgical treatment has been successfully applied to specific anatomic defects that place the fetus at a risk of death or life-long disability, the indications for fetal surgical intervention have remained relatively limited. By contrast, prenatal stem cell and gene therapy await clinical application, but they have tremendous potential to treat a broad range of genetic disorders. If there are biological advantages unique to fetal development that favor fetal stem cell or gene therapy over postnatal treatment, prenatal therapy may become the preferred approach to the treatment of any disease that can be prenatally diagnosed and cured by stem cell or gene therapy. Here, we review the field including recent progress toward clinical application and imminent clinical trials for cellular and gene therapy.
Collapse
Affiliation(s)
- Lauren E McClain
- Children's Center for Fetal Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alan W Flake
- Children's Center for Fetal Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Intra-amniotic rAAV-mediated microdystrophin gene transfer improves canine X-linked muscular dystrophy and may induce immune tolerance. Mol Ther 2015; 23:627-37. [PMID: 25586688 DOI: 10.1038/mt.2015.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype.
Collapse
|
15
|
Porada CD, Rodman C, Ignacio G, Atala A, Almeida-Porada G. Hemophilia A: an ideal disease to correct in utero. Front Pharmacol 2014; 5:276. [PMID: 25566073 PMCID: PMC4263089 DOI: 10.3389/fphar.2014.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/27/2014] [Indexed: 01/13/2023] Open
Abstract
Hemophilia A (HA) is the most frequent inheritable defect of the coagulation proteins. The current standard of care for patients with HA is prophylactic factor infusion, which is comprised of regular (2-3 times per week) intravenous infusions of recombinant or plasma-derived FVIII to maintain hemostasis. While this treatment has greatly increased the quality of life and lengthened the life expectancy for many HA patients, its high cost, the need for lifelong infusions, and the fact that it is unavailable to roughly 75% of the world's HA patients make this type of treatment far from ideal. In addition, this lifesaving therapy suffers from a high risk of treatment failure due to immune response to the infused FVIII. There is thus a need for novel treatments, such as those using stem cells and/or gene therapy, which have the potential to mediate long-term correction or permanent cure following a single intervention. In the present review, we discuss the clinical feasibility and unique advantages that an in utero approach to treating HA could offer, placing special emphasis on a new sheep model of HA we have developed and on the use of mesenchymal stromal cells (MSC) as cellular vehicles for delivering the FVIII gene.
Collapse
Affiliation(s)
| | | | | | | | - Graça Almeida-Porada
- Regenerative Medicine, Wake Forest Institute for Regenerative MedicineWinston-Salem, NC, USA
| |
Collapse
|
16
|
Abi-Nader KN, Rodeck CH, David AL. Prenatal gene therapy for the early treatment of genetic disorders. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.4.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Porada CD, Almeida-Porada G. Treatment of Hemophilia A in Utero and Postnatally using Sheep as a Model for Cell and Gene Delivery. ACTA ACUST UNITED AC 2013; S1. [PMID: 23264887 DOI: 10.4172/2157-7412.s1-011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemophilia A represents the most common inheritable deficiency of the coagulation proteins. Current state-of- the-art treatment consists of frequent prophylactic infusions of plasma-derived or recombinant FVIII protein to maintain hemostasis, and has greatly increased life expectancy and quality of life for many hemophilia A patients. This treatment approach is, however, far from ideal, due to the need for lifelong intravenous infusions, the high treatment cost, and the fact that it is unavailable to a large percentage of the world's hemophiliacs. There is thus a need for novel treatments that can promise long-term or permanent correction. In contrast to existing protein based therapeutics, gene therapy offers to provide a permanent cure following few, or even a single, treatment. In the present paper, we review ongoing work towards this end, focusing on studies we have performed in a large animal model. Some of the key topics covered in this review include the unique opportunities sheep offer as a model system, the re-establishment and clinical and molecular characterization of a line of sheep with severe hemophilia A, the advantages and feasibility of treating a disease like hemophilia A in utero, and the use of Mesenchymal Stem Cells (MSC) as cellular delivery vehicles for the FVIII gene. The review finishes with a brief discussion of our recent success correcting ovine hemophilia A with a postnatal transplant with gene-modified MSC, and the limitations of this approach that remain to be overcome.
Collapse
|
18
|
Abstract
Prenatal gene therapy aims to deliver genes to cells and tissues early in prenatal life, allowing correction of a genetic defect, before irreparable tissue damage has occurred. In contrast to postnatal gene therapy, prenatal application may target genes to a large population of stem cells, and the smaller fetal size allows a higher vector to target cell ratio to be achieved. Early gestation delivery may allow the development of immune tolerance to the transgenic protein, which would facilitate postnatal repeat vector administration if needed. Moreover, early delivery would avoid anti-vector immune responses which are often acquired in postnatal life. The NIH Recombinant DNA Advisory Committee considered that a candidate disease for prenatal gene therapy should pose serious morbidity and mortality risks to the fetus or neonate, and not have any effective postnatal treatment. Prenatal gene therapy would therefore be appropriate for life-threatening disorders, in which prenatal gene delivery maintains a clear advantage over cell transplantation or postnatal gene therapy. If deemed safer and more efficacious, prenatal gene therapy may be applicable for nonlethal conditions if adult gene transfer is unlikely to be of benefit. Many candidate diseases will be inherited congenital disorders such as thalassaemia or lysosomal storage disorders. However, obstetric conditions such as fetal growth restriction may also be treated using a targeted gene therapy approach. In each disease, the condition must be diagnosed prenatally, either via antenatal screening and prenatal diagnosis, for example, in the case of hemophilias, or by ultrasound assessment of the fetus, for example, congenital diaphragmatic hernia. In this chapter, we describe some examples of the candidate diseases and discuss how a prenatal gene therapy approach might work.
Collapse
Affiliation(s)
- Anna L David
- Prenatal Cell and Gene Therapy Group, EGA Institute for Women's Health, University College London, London, UK.
| | | |
Collapse
|
19
|
Abstract
Over the first decade of this new millennium gene therapy has demonstrated clear clinical benefits in several diseases for which conventional medicine offers no treatment. Clinical trials of gene therapy for single gene disorders have recruited predominantly young patients since older subjects may have suffered irrevocablepathological changes or may not be available because the disease is lethal relatively early in life. The concept of fetal gene therapy is an extension of this principle in that diseases in which irreversible changes occur at or beforebirth can be prevented by gene supplementation or repair in the fetus or associated maternal tissues. This article ccnsiders the enthusiasm and skepticism held for fetal gene therapy and its potential for clinical application. It coversa spectrum of candidate diseases for fetal gene therapy including Pompe disease, Gaucher disease, thalassemia, congenital protein C deficiency and cystic fibrosis. It outlines successful and not-so-successful examples of fetal gene therapy in animal models. Finally the application and potential of fetal gene transfer as a fundamental research tool for developmental biology and generation of somatic transgenic animals is surveyed.
Collapse
|
20
|
Mattar CN, Waddington SN, Biswas A, Davidoff AM, Choolani M, Chan JKY, Nathwani AC. The case for intrauterine gene therapy. Best Pract Res Clin Obstet Gynaecol 2012; 26:697-709. [PMID: 22819290 DOI: 10.1016/j.bpobgyn.2012.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/12/2012] [Indexed: 01/21/2023]
Abstract
Single-gene disorders can cause perinatal mortality or severe permanent morbidity. Intrauterine gene therapy seeks to correct the genetic defect in the early stages of pathogenesis through delivery of a vector system expressing the therapeutic transgene to the fetus. Advantages of intrauterine gene therapy include prevention of irreversible organ damage, potentially inducing central tolerance and wider bio-distribution, including the brain after delivery of vector. Already, proof-of-cure has been demonstrated in knockout animal models for several diseases. Long-term outcomes pertaining to efficacy and durability of transgene expression and safety are under investigation in clinically relevant non-human primate models. Bystander effects in the mother from transplacental vector trafficking require further assessment. In this chapter, we discuss the candidate diseases amenable to intrauterine gene therapy, current state-of-the-art evidence, and potential clinical applications.
Collapse
Affiliation(s)
- Citra N Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
21
|
Abi-Nader KN, Boyd M, Flake AW, Mehta V, Peebles D, David AL. Animal models for prenatal gene therapy: the sheep model. Methods Mol Biol 2012; 891:219-48. [PMID: 22648775 DOI: 10.1007/978-1-61779-873-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Large animal experiments are vital in the field of prenatal gene therapy, to allow translation from small animals into man. Sheep provide many advantages for such experiments. They have been widely used in research into fetal physiology and pregnancy and the sheep fetus is a similar size to that in the human. Sheep are tolerant to in utero manipulations such as fetoscopy or even hysterotomy, and they are cheaper and easier to maintain than non-human primates. In this chapter, we describe the animal husbandry involved in generating time-mated sheep pregnancies, the large number of injection routes in the fetus that can be achieved using ultrasound or fetoscopic-guided injection, and laparotomy when these more minimally invasive routes of injection are not feasible.
Collapse
Affiliation(s)
- Khalil N Abi-Nader
- Prenatal Cell and Gene Therapy Group, EGA Institute for Women's Health, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol 2011; 23:109-16. [PMID: 21386681 DOI: 10.1097/gco.0b013e32834457b1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To review the potential of stem cells derived from amniotic fluid and applications in prenatal and postnatal therapy. RECENT FINDINGS We have recently described that pluripotent stem cells can be isolated from amniotic fluid defined as amniotic fluid stem (AFS) cells by selection for expression of the membrane stem cell factor receptor c-Kit. AFS cells maintained for over 250 population doublings retained long telomeres and normal karyotype. Clonal human lines verified by retroviral marking were induced to differentiate into cell types representing each embryonic germ layer, including adipogenic, osteogenic, myogenic, endothelial, neuronal, and hepatic lineages. Rat AFS cells have been able to improve the repair of damaged smooth muscle in cryoinjury bladders. Furthermore, AFS cells could be differentiated toward cardiomyogenic lineages, when co-cultured with neonatal cardiomyocytes and have potential to generate hematopoietic lineages both in vitro and in vivo. These cells have been applied into fetal therapy, and widely used for tissue repair in animal models. Finally, we demonstrated a feasible way to do in-utero autologous AFS transplantation in sheep. SUMMARY Stem cells derived from amniotic fluid are a relatively new source of cells that could have a therapeutic value in various diseases prenatally and/or postnatally.
Collapse
|
23
|
Mehta V, Abi Nader K, Waddington S, David AL. Organ targeted prenatal gene therapy--how far are we? Prenat Diagn 2011; 31:720-34. [PMID: 21618255 DOI: 10.1002/pd.2787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 12/14/2022]
Abstract
Prenatal gene therapy aims to deliver genes to cells and tissues early in prenatal life, allowing correction of a genetic defect, before long-term tissue damage has occurred. In contrast to postnatal gene therapy, prenatal application can target genes to a large population of dividing stem cells, and the smaller fetal size allows a higher vector-to-target cell ratio to be achieved. Early-gestation delivery may allow the development of immune tolerance to the transgenic protein which would facilitate postnatal repeat vector administration if needed. Targeting particular organs will depend on manipulating the vector to achieve selective tropism and on choosing the most appropriate gestational age and injection method for fetal delivery. Intra-amniotic injection reaches the skin, and other organs that are bathed in the fluid however since gene transfer to the lung and gut is usually poor more direct injection methods will be needed. Delivery to the liver and blood can be achieved by systemic delivery via the umbilical vein or peritoneal cavity. Gene transfer to the central nervous system in the fetus is difficult but newer vectors are available that transduce neuronal tissue even after systemic delivery.
Collapse
Affiliation(s)
- Vedanta Mehta
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| | | | | | | |
Collapse
|
24
|
David AL, McIntosh J, Peebles DM, Cook T, Waddington S, Weisz B, Wigley V, Abi-Nader K, Boyd M, Davidoff AM, Nathwani AC. Recombinant adeno-associated virus-mediated in utero gene transfer gives therapeutic transgene expression in the sheep. Hum Gene Ther 2011; 22:419-26. [PMID: 20919876 DOI: 10.1089/hum.2010.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic in utero gene therapy aims to treat congenital diseases where pathology develops in perinatal life, thereby preventing permanent damage. The aim of this study was to determine whether delivery of self-complementary (sc) adeno-associated virus (AAV) vector in utero would provide therapeutic long-term transgene expression in a large animal model. We performed ultrasound-guided intraperitoneal injection of scAAV2/8-LP1-human Factor IX (hFIX)co (1 × 10(12) vector genomes/kg) in early (n = 4) or late (n = 2) gestation fetal sheep. The highest mean hFIX levels were detected 3 weeks after injection in late gestation (2,055 and 1,687.5 ng/ml, n = 2) and 3 days after injection in early gestation (435 ng/ml, n = 1). Plasma hFIX levels then dropped as fetal liver and lamb weights increased, although low levels were detected 6 months after late gestation injection (75 and 52.5 ng/ml, n = 2). The highest vector levels were detected in the fetal liver and other peritoneal organs; no vector was present in fetal gonads. hFIX mRNA was detectable only in hepatic tissues after early and late gestation injection. Liver function tests and bile acid levels were normal up to a year postnatal; there was no evidence of liver pathology. No functional antibodies to hFIX protein or AAV vector were detectable, although lambs mounted an antibody response after injection of hFIX protein and Freund's adjuvant. In conclusion, hFIX expression is detectable up to 6 months after delivery of scAAV vector to the fetal sheep using a clinically applicable method. This is the first study to show therapeutic long-term hFIX transgene expression after in utero gene transfer in a large animal model.
Collapse
Affiliation(s)
- Anna L David
- Institute for Women's Health, University College London, London WC1E 6HX, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Gene delivery to the fetal muscles is a potential strategy for the early treatment of muscular dystrophies. In utero muscle gene therapy can also be used to treat other genetic disorders such as hemophilia, where the missing clotting proteins may be secreted from the treated muscle. In the past few years, studies in small animal models have raised the hopes that a phenotypic cure can be obtained after fetal application of gene therapy. Studies of efficacy and safety in large animals are, however, essential before clinical application can be considered in the human fetus. For this reason, the development of clinically applicable strategies for the delivery of gene therapy to the fetal muscles is of prime importance. In this chapter, we describe the protocols for in utero ultrasound-guided gene delivery to the ovine fetal muscle in early gestation. In particular, procedures to inject skeletal muscle groups such as the thigh and thoracic musculature and targeting the diaphragm in the fetus are described in detail.
Collapse
Affiliation(s)
- Khalil N Abi-Nader
- Fetal Medicine Unit and Prenatal Cell and Gene Therapy Group, EGA Institute for Women's Health, University College London Hospitals, London, UK
| | | |
Collapse
|
26
|
Shaw SWS, Bollini S, Nader KA, Gastaldello A, Gastadello A, Mehta V, Filppi E, Cananzi M, Gaspar HB, Qasim W, De Coppi P, David AL. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses. Cell Transplant 2010; 20:1015-31. [PMID: 21092404 DOI: 10.3727/096368910x543402] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Long-term engraftment and phenotype correction has been difficult to achieve in humans after in utero stem cell transplantation mainly because of allogeneic rejection. Autologous cells could be obtained during gestation from the amniotic fluid with minimal risk for the fetus and the mother. Using a sheep model, we explored the possibility of using amniotic fluid mesenchymal stem cells (AFMSCs) for autologous in utero stem cell/gene therapy. We collected amniotic fluid (AF) under ultrasound-guided amniocentesis in early gestation pregnant sheep (n = 9, 58 days of gestation, term = 145 days). AFMSCs were isolated and expanded in all sampled fetal sheep. Those cells were transduced using an HIV vector encoding enhanced green fluorescent protein (GFP) with 63.2% (range 38.3-96.2%) transduction efficiency rate. After expansion, transduced AFMSCs were injected into the peritoneal cavity of each donor fetal sheep at 76 days under ultrasound guidance. One ewe miscarried twin fetuses after amniocentesis. Intraperitoneal injection was successful in the remaining 7 fetal sheep giving a 78% survival for the full procedure. Tissues were sampled at postmortem examination 2 weeks later. PCR analysis detected GFP-positive cells in fetal tissues including liver, heart, placenta, membrane, umbilical cord, adrenal gland, and muscle. GFP protein was detected in these tissues by Western blotting and further confirmed by cytofluorimetric and immunofluorescence analyses. This is the first demonstration of autologous stem cell transplantation in the fetus using AFMSCs. Autologous cells derived from AF showed widespread organ migration and could offer an alternative way to ameliorate prenatal congenital disease.
Collapse
Affiliation(s)
- S W Steven Shaw
- Prenatal Cell and Gene Therapy Group, Institute for Women’s Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
David AL, Abi-Nader KN, Weisz B, Shaw SS, Themis M, Cook T, Coutelle C, Rodeck CH, Peebles DM. Ultrasonographic Development of the Fetal Sheep Stomach and Evaluation of Early Gestation Ultrasound-guided In Utero Intragastric Injection. Taiwan J Obstet Gynecol 2010; 49:23-9. [DOI: 10.1016/s1028-4559(10)60004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2009] [Indexed: 12/17/2022] Open
|
28
|
Roybal JL, Santore MT, Flake AW. Stem cell and genetic therapies for the fetus. Semin Fetal Neonatal Med 2010; 15:46-51. [PMID: 19540822 DOI: 10.1016/j.siny.2009.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in prenatal diagnosis have led to the prenatal management of a variety of congenital diseases. Although prenatal stem cell and gene therapy await clinical application, they offer tremendous potential for the treatment of many genetic disorders. Normal developmental events in the fetus offer unique biologic advantages for the engraftment of hematopoietic stem cells and efficient gene transfer that are not present after birth. Although barriers to hematopoietic stem cell engraftment exist, progress has been made and preclinical studies are now underway for strategies based on prenatal tolerance induction to facilitate postnatal cellular transplantation. Similarly, in-utero gene therapy shows experimental promise for a host of diseases and proof-in-principle has been demonstrated in murine models, but ethical and safety issues still need to be addressed. Here we review the current status and future potential of prenatal cellular and genetic therapy.
Collapse
Affiliation(s)
- Jessica L Roybal
- Children's Center for Fetal Research, Children's Hospital of Philadelphia, PA, USA
| | | | | |
Collapse
|
29
|
Abstract
At the present time, the most likely and eminent application of stem cell therapy to the fetus is in utero hematopoietic stem cell transplantation (IUHCT), and this stem cell type will be discussed as a paradigm for all prenatal stem cell therapy. The authors feel that the most likely initial application of IUHCT will use adult HSC derived from bone marrow (BM) or peripheral blood (PB), and will focus this article on this specific approach. The article also reviews the experimental data that support the capacity of IUHCT to induce donor-specific tolerance.
Collapse
|
30
|
Park PJ, Colletti E, Ozturk F, Wood JA, Tellez J, Almeida-Porada G, Porada C. Factors determining the risk of inadvertent retroviral transduction of male germ cells after in utero gene transfer in sheep. Hum Gene Ther 2009; 20:201-15. [PMID: 19301473 DOI: 10.1089/hum.2007.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The possibility of permanent genetic changes to the germline is central to the bioethics of in utero gene therapy (IUGT) because of the concern of inadvertent potentially deleterious alterations to the gene pool. Despite presumed protection of the male germline due to early germ cell (GC) compartmentalization, we reported that GCs within the developing ovine testes are transduced at low levels after retrovirus-mediated IUGT, thus underscoring the need for a thorough understanding of GC development in clinically predictive models to determine the optimal time to perform IUGT and avoid germline modification. In the present studies, we used the fetal sheep model to analyze GCs for phenotype, location, proliferation, and incidence of transduction after IUGT at various fetal ages to learn when during development the nascent germline is likely to be at greatest risk of retrovirus-mediated alteration. Our studies show that although GCs were transduced at all injection ages, the levels of transduction varied by nearly 700-fold as a function of the age at transfer. After remaining largely quiescent as they migrated to/settled within nascent sex cords, GCs began active cycling before cord closure was complete, suggesting this is likely the point at which they would be most susceptible to retroviral transduction.Furthermore, we observed that compartmentalization of GCs continued into early postnatal life, suggesting the male germline may be vulnerable to low-level inadvertent retroviral vector modification throughout fetal life, but that this risk can be minimized by performing IUGT later in gestation.
Collapse
Affiliation(s)
- Paul J Park
- Department of Animal Biotechnology, School of Veterinary Medicine, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Park PJ, Colletti E, Ozturk F, Wood JA, Tellez J, Almeida-Porada G, Porada C. Factors Determining the Risk of Inadvertent Retroviral Transduction of Male Germ Cells Following in Utero Gene Transfer in Sheep. Hum Gene Ther 2008. [DOI: 10.1089/hgt.2007.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
David AL, Torondel B, Zachary I, Wigley V, Abi-Nader K, Nader KA, Mehta V, Buckley SMK, Cook T, Boyd M, Rodeck CH, Martin J, Peebles DM. Local delivery of VEGF adenovirus to the uterine artery increases vasorelaxation and uterine blood flow in the pregnant sheep. Gene Ther 2008; 15:1344-50. [PMID: 18563186 DOI: 10.1038/gt.2008.102] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impaired materno-placental perfusion causes two important obstetric complications, fetal growth restriction and preeclampsia. This study investigated whether adenoviral vector-mediated overexpression of vascular endothelial growth factor (VEGF) in the uterine arteries (UtAs) increases uterine artery blood flow (UBF). First-generation adenovirus vectors (5 x 10(11) particles) containing the VEGF gene (Ad.VEGF-A or -D) or the beta-galactosidase reporter gene (Ad.lacZ) were injected into the UtAs of pregnant sheep (n=6) at 88-102 days of gestation (term=145 days). UBF was measured using Doppler sonography before, and 4-7 days after injection. Mean UBF increased significantly from 233+/-156 (s.d.) ml min(-1) to 753+/-415 ml min(-1) following Ad.VEGF-A injection (P=0.005, n=5); Ad.lacZ infection had no significant effect. Organ bath experiments on uterine arterial sections 4-7 days after injection showed that, compared with Ad.lacZ vessels, Ad.VEGF-A-transduced vessels had a reduced contractile response to phenylephrine (E max 148+/-10.9 vs E max 228.2+/-27.5, P<0.05) but increased relaxation with bradykinin (pD2 (-log EC50) values 9.11+/-0.01 vs 8.65+/-0.11, P<0.05). Injection of Ad.VEGF-A into the UtAs increases UBF by enhancing vasodilatation. This may provide the basis for therapy in pregnancies complicated by uteroplacental insufficiency.
Collapse
Affiliation(s)
- A L David
- Prenatal Gene Therapy Group, Institute for Women's Health, Royal Free and University College London Medical School, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Intra-amniotic Delivery of CFTR-expressing Adenovirus Does Not Reverse Cystic Fibrosis Phenotype in Inbred CFTR-knockout Mice. Mol Ther 2008; 16:819-24. [DOI: 10.1038/mt.2008.26] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
34
|
Abstract
Gene therapy uses the intracellular delivery of genetic material for the treatment of disease. A wide range of diseases - including cancer, vascular and neurodegenerative disorders and inherited genetic diseases - are being considered as targets for this therapy in adults. There are particular reasons why fetal application might prove better than application in the adult for treatment, or even prevention of early-onset genetic disorders such as cystic fibrosis and Duchenne muscular dystrophy. Research shows that gene transfer to the developing fetus targets rapidly expanding populations of stem cells, which are inaccessible after birth, and indicates that the use of integrating vector systems results in permanent gene transfer. In animal models of congenital disease such as haemophilia, studies show that the functionally immature fetal immune system does not respond to the product of the introduced gene, and therefore immune tolerance can be induced. This means that treatment could be repeated after birth, if that was necessary to continue to correct the disease. For clinicians and parents, fetal gene therapy would give a third choice following prenatal diagnosis of inherited disease, where termination of pregnancy or acceptance of an affected child are currently the only options. Application of this therapy in the fetus must be safe, reliable and cost-effective. Recent developments in the understanding of genetic disease, vector design, and minimally invasive delivery techniques have brought fetal gene therapy closer to clinical practice. However more research needs to be done in before it can be introduced as a therapy.
Collapse
Affiliation(s)
- Anna L David
- Department of Obstetrics & Gynaecology, Royal Free & University College London Medical School, 86-96 Chenies Mews, London, WC1E 6HX, UK.
| | | |
Collapse
|
35
|
Mühle C, Neuner A, Park J, Pacho F, Jiang Q, Waddington SN, Schneider H. Evaluation of prenatal intra-amniotic LAMB3 gene delivery in a mouse model of Herlitz disease. Gene Ther 2006; 13:1665-76. [PMID: 16871230 DOI: 10.1038/sj.gt.3302832] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 06/01/2006] [Accepted: 06/24/2006] [Indexed: 01/13/2023]
Abstract
Prenatal gene therapy has been considered for Herlitz junctional epidermolysis bullosa (H-JEB), a lethal genodermatosis caused by the absence of any of the three subunits of laminin-5, resulting from birth in widespread blistering and erosions of skin and mucosae. To investigate this strategy in an animal model, adenovirus type 5- and adeno-associated virus (AAV) type 2-derived vectors carrying a beta-galactosidase reporter gene or LAMB3 cDNA encoding the beta3 chain of laminin-5 were generated, tested for stability in amniotic fluid and evaluated in vitro on murine H-JEB keratinocytes, and in vivo by prenatal injection into the amniotic cavities of laminin-5 beta3-deficient mice. The different vectors were administered individually or combined at maximum doses on day 14 post coitum. Adenoviral vectors infected preferentially the foetal epidermis, whereas AAV delivered the transgene mainly to mucous membranes of the airways and the upper digestive tract. The LAMB3 transgene was expressed in target epithelia of newborn laminin-5 beta3-deficient mice, and the transgenic beta3 chain was shown to assemble with its endogenous partner chains, resulting in detectable amounts of laminin-5 in the basement membranes of skin and mucosae and in a lower extent of tissue separation in the skin. However, only combined delivery of the two vector types led to a minor increase of the life span of H-JEB mice. Failure to rescue diseased animals was, at least in part, due to abandonment of any conspicuous pup by the heterozygous mother. This is the first study of a prenatal gene therapy approach to a heritable blistering disorder. Although our findings indicate that prenatal combined administration of adenoviral and adeno-associated LAMB3 vectors provides therapeutic benefit to H-JEB mice, this animal model appears unsuitable for long-term investigations of the therapeutic concept.
Collapse
Affiliation(s)
- C Mühle
- University of Erlangen-Nuernberg, Children's Hospital, Erlangen 91054, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
David AL, Peebles DM, Gregory L, Waddington SN, Themis M, Weisz B, Ruthe A, Lawrence L, Cook T, Rodeck CH, Coutelle C. Clinically applicable procedure for gene delivery to fetal gut by ultrasound-guided gastric injection: toward prenatal prevention of early-onset intestinal diseases. Hum Gene Ther 2006; 17:767-79. [PMID: 16839275 DOI: 10.1089/hum.2006.17.767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Targeting gene therapy vectors to the fetal intestinal tract could provide a novel means toward prevention of the early postnatal intestinal pathology of cystic fibrosis and other conditions, such as congenital enteropathy, that cause intestinal failure. Among these conditions, cystic fibrosis is by far the most common lethal genetic disease. It is caused by a functional absence or deficiency of the cystic fibrosis transmembrane conductance regulator and manifests in the gut as meconium ileus. Prenatal treatment of genetic disease may avoid early-onset tissue damage and immune sensitization, and may target cells that are less accessible in the adult. We investigated gene transfer to the fetal gut, using a minimally invasive injection technique. First-generation replication-deficient adenoviral vectors encoding the beta-galactosidase gene and transduction-enhancing agents were injected into the stomach of early-gestation fetal sheep (n = 8, 60 days of gestation; term, 145 days) under ultrasound guidance. Reporter gene expression was observed 2 days after injection in the villi of the gastrointestinal epithelia after 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining and beta-galactosidase immunohistochemistry of fetal tissues. Expression of beta-galactosidase, as measured by enzyme-linked immunosorbent assay, was enhanced after pretreatment of the fetal gut with sodium caprate, which opens tight junctions, and after adenovirus complexation with DEAE-dextran, which confers a positive charge to the virus. Instillation of the fluorocarbon perflubron after virus delivery resulted in tissue transduction from the fetal stomach to the colon. Using a clinically relevant technique, we have demonstrated widespread gene transfer to the fetal gastrointestinal epithelia.
Collapse
Affiliation(s)
- A L David
- Department of Obstetrics and Gynaecology, Royal Free and University College Medical School, University College London, London, WC1E 6HX, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
David A, Peebles D, Gregory L, Waddington S, Themis M, Weisz B, Ruthe A, Lawrence L, Cook T, Rodeck C, Coutelle C. Clinically Applicable Procedure for Gene Delivery to Fetal Gut by Ultrasound-Guided Gastric Injection: Toward Prenatal Prevention of Early-Onset Intestinal Diseases. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Coutelle C, Themis M, Waddington SN, Buckley SMK, Gregory LG, Nivsarkar MS, David AL, Peebles D, Weisz B, Rodeck C. Gene therapy progress and prospects: fetal gene therapy--first proofs of concept--some adverse effects. Gene Ther 2006; 12:1601-7. [PMID: 16136161 DOI: 10.1038/sj.gt.3302632] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic gene delivery in utero is a novel approach to gene therapy for genetic disease based on the hypothesis that prenatal intervention may avoid the development of severe manifestations of early-onset disease, allow targeting of otherwise inaccessible tissues including expanding stem cell populations, induce tolerance against the therapeutic transgenic protein and thereby provide permanent somatic gene correction. This approach is particularly relevant in relation to prenatal screening programmes for severe genetic diseases as it could offer prevention as a third option to families faced with the prenatal diagnosis of a genetically affected child. Most investigations towards in utero gene therapy have been performed on mice and sheep fetuses as model animals for human disease and for the application of clinically relevant intervention techniques such as vector delivery by minimally invasive ultrasound guidance. Other animals such as dogs may serve as particular disease models and primates have to be considered in immediate preparation for clinical trials. Proof of principle for the hypothesis of fetal gene therapy has been provided during the last 2 years in mouse models for Crigler Najjar Disease, Leber's congenital amaurosis, Pompe's disease and haemophilia B showing long-term postnatal therapeutic effects and tolerance of the transgenic protein after in utero gene delivery. However, recently we have also observed a high incidence of liver tumours after in utero application of an early form of third-generation equine infectious anaemia virus vectors with SIN configuration. These findings highlight the need for more investigations into the safety and the ethical aspects of in utero gene therapy as well as for science-based public information on risks and benefits of this preventive gene therapy approach before application in humans can be contemplated.
Collapse
Affiliation(s)
- C Coutelle
- Gene Therapy Research Group, Division of Biomedical Sciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Barbara O'Brien
- Division of Genetics, Department of Pediatrics, Tufts-New England Medical Center, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
40
|
Shen JS, Meng XL, Maeda H, Ohashi T, Eto Y. Widespread gene transduction to the central nervous system by adenovirus in utero: implication for prenatal gene therapy to brain involvement of lysosomal storage disease. J Gene Med 2005; 6:1206-15. [PMID: 15459963 DOI: 10.1002/jgm.630] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In some lysosomal storage diseases, considerable alterations of the central nervous system (CNS) occur prior to birth and neurodegeneration progresses rapidly soon after birth causing early death in patients. No effective treatment is available after birth. Treatment may need to be initiated before birth to prevent the onset or progression of neurological changes and thereby irreversible brain damage. The aim of this study is to investigate the feasibility and effectiveness of brain-directed prenatal gene therapy for lysosomal storage diseases. METHODS Recombinant adenovirus encoding the lacZ gene was injected into the lateral ventricles of mouse embryos and the pattern of gene transduction to the CNS was investigated. In the therapeutic experiment, adenovirus expressing beta-glucuronidase was injected into the cerebral ventricles of the embryos of mucopolysaccharidosis VII mice and the therapeutic effects on the brain were evaluated. RESULTS Injection of adenoviral vectors to the cerebral ventricles of mouse embryos led to widespread gene transduction throughout the brain and the spinal cord and transgene expression persisted over 10 months in those surviving the procedure. The prenatal transduction of the therapeutic gene to the brain of the mucopolysaccharidosis VII mouse efficiently prevented lysosomal storage in most brain cells before birth until 4 months after birth. CONCLUSIONS Brain-directed in utero gene therapy through an intra-ventricular route would be an effective strategy to treat some lysosomal storage diseases with early and severe CNS alterations.
Collapse
Affiliation(s)
- Jin-Song Shen
- Department of Gene Therapy, Institute of DNA Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo 105-8461, Japan
| | | | | | | | | |
Collapse
|
41
|
Weisz B, David AL, Gregory LG, Perocheau D, Ruthe A, Waddington SN, Themis M, Cook T, Coutelle C, Rodeck CH, Peebles DM. Targeting the respiratory muscles of fetal sheep for prenatal gene therapy for Duchenne muscular dystrophy. Am J Obstet Gynecol 2005; 193:1105-9. [PMID: 16157120 DOI: 10.1016/j.ajog.2005.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/29/2005] [Accepted: 05/26/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a lethal degenerative muscular disease. Fetal gene therapy may correct the primary genetic defect. Our aim was to achieve expression of a reporter gene in the respiratory muscles of early gestation fetal sheep. STUDY DESIGN An adenovirus vector containing the beta-galactosidase reporter gene (AdRSVbetagal) was injected into the thoracic musculature (n = 3) and pleural cavity (n = 6) of fetal sheep (61-67 days' gestation) under ultrasound guidance. Tissues were harvested after 48 hours and site and intensity of beta-galactosidase expression were assessed. RESULTS Limited transgene expression observed after a single injection was improved by multiple injections, but remained localized. Ultrasound-guided creation of a hydrothorax led to an increase in the intensity of beta-galactosidase expression (ELISA). X-gal staining and immunohistochemistry showed that vector spread was confined to the innermost intercostal musculature. CONCLUSION Ultrasound-guided injection can deliver gene therapy vectors to the fetal pleural cavity and achieve transduction of the respiratory muscles.
Collapse
Affiliation(s)
- Boaz Weisz
- Department of Obstetrics and Gynaecology, University College London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee CCI, Jimenez DF, Kohn DB, Tarantal AF. Fetal gene transfer using lentiviral vectors and the potential for germ cell transduction in rhesus monkeys (Macaca mulatta). Hum Gene Ther 2005; 16:417-25. [PMID: 15871673 DOI: 10.1089/hum.2005.16.417] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic modification of germ cells in somatic gene therapy protocols is a concern, particularly with fetal approaches. This study focused on the potential for germ cell gene transfer post-fetal gene delivery using a human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vector pseudotyped with the vesicular stomatitis virus-glycoprotein (VSV-G). Rhesus monkey fetuses (n = 47) were administered vector supernatant (10(7) infectious particles per fetus) via the intraperitoneal (IP), intrapulmonary (Ipu), or intracardiac routes (Ica) under ultrasound guidance. Tissue harvests were performed near term or 3 months postnatal age, and genomic DNA obtained to analyze for vector sequences from collected sections of gonads and gonadal cells obtained by laser capture microdissection (germ cells, stroma, epithelium). Results indicated no evidence of germ cell gene transfer in fetuses or infants with Ipu or Ica routes of administration. However, evidence of the transgene (1.33 +/- 0.78 enhanced green fluorescent protein [EGFP] copies per copy epsilon-globin) was found in females, but not males, when using the IP administration approach (p < 0.05). The highest EGFP copies were detected on the surface epithelium (p < 0.05). The results of these studies suggest that the HIV-1-derived lentiviral vector pseudotyped with VSV-G may transduce a subpopulation of gonadal cells in female fetuses with IP administration, whereas no evidence of gene transfer was shown to occur in males or with organ-targeting approaches.
Collapse
Affiliation(s)
- C Chang I Lee
- California National Primate Research Center, University of California, Davis, CA 95616-8542, USA
| | | | | | | |
Collapse
|
43
|
Waddington SN, Kramer MG, Hernandez-Alcoceba R, Buckley SMK, Themis M, Coutelle C, Prieto J. In utero gene therapy: current challenges and perspectives. Mol Ther 2005; 11:661-76. [PMID: 15851005 DOI: 10.1016/j.ymthe.2005.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Over the past few years, considerable progress in prenatal diagnosis and surgery combined with improvements in vector design vindicate a reappraisal of the feasibility of in utero gene therapy for serious monogenetic diseases. As adult gene therapy gathers pace, several apparent obstacles to its application as a treatment may be overcome by pre- or early postnatal treatment. This review will examine the concepts and practice of prenatal vector administration. We aim to highlight the advantages of early therapeutic intervention focusing on diseases that could benefit greatly from a prenatal gene therapy approach. We will pay special attention to the strategies and vectors that are most likely to be used for this application and will speculate on their expected developments for the near future.
Collapse
Affiliation(s)
- Simon N Waddington
- Gene Therapy Research Group, Sir Alexander Fleming Building, Imperial College, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Jakob M, Mühle C, Park J, Weiss S, Waddington S, Schneider H. No evidence for germ-line transmission following prenatal and early postnatal AAV-mediated gene delivery. J Gene Med 2005; 7:630-7. [PMID: 15693035 DOI: 10.1002/jgm.718] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Recombinant adeno-associated viruses have been used successfully in a number of pre-clinical and clinical gene therapy studies. Since there is a broad consensus that gene therapy must not lead to germ-line transmission, the potential of such vectors for inadvertent gene transfer into germ cells deserves special attention. This applies in particular to pre- or perinatal vector application which has been considered for diseases presenting with morbidity already at birth. METHODS AAV serotype 2 derived vectors carrying a beta-galactosidase reporter gene or human clotting factor IX cDNA were injected intraperitoneally or via a yolk sac vein into mouse fetuses or administered intravascularly to newborn mice. Tissue samples of the treated animals including the gonads as well as sperm DNA, obtained by differential lysis of one testis of each male animal, and the offspring of all treated mice were investigated for the presence of vector DNA by nested PCR. In positive samples, the copy number of the vector was determined by quantitative real-time PCR. RESULTS AAV vectors administered intraperitoneally or intravascularly to fetal or newborn mice reached the gonads of these animals and persisted there for time periods greater than one year. Intravascular injection of the vector resulted more frequently in gene transfer to the gonads than intraperitoneal injection. Vector copy numbers in the gonads ranged from 0.3 to 74 per 10(4) cell equivalents. However, neither in isolated sperm DNA from the treated animals nor in their offspring were vector sequences detectable. CONCLUSIONS These data suggest the risk of inadvertent germ-line transmission following prenatal or early postnatal AAV type 2 mediated gene delivery to be very low.
Collapse
Affiliation(s)
- Marcus Jakob
- Department of Experimental Medicine I, Nikolaus Fiebiger Centre of Molecular Medicine, University of Erlangen-Nuernberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Dejneka NS, Surace EM, Aleman TS, Cideciyan AV, Lyubarsky A, Savchenko A, Redmond TM, Tang W, Wei Z, Rex TS, Glover E, Maguire AM, Pugh EN, Jacobson SG, Bennett J. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 2004; 9:182-8. [PMID: 14759802 DOI: 10.1016/j.ymthe.2003.11.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 11/20/2003] [Indexed: 10/26/2022] Open
Abstract
The congenital retinal blindness known as Leber congenital amaurosis (LCA) can be caused by mutations in the RPE65 gene. RPE65 plays a critical role in the visual cycle that produces the photosensitive pigment rhodopsin. Recent evidence from human studies of LCA indicates that earlier rather than later intervention may be more likely to restore vision. We determined the impact of in utero delivery of the human RPE65 cDNA to retinal pigment epithelium cells in a murine model of LCA, the Rpe65(-/-) mouse, using a serotype 2 adeno-associated virus packaged within an AAV1 capsid (AAV2/1). Delivery of AAV2/1-CMV-hRPE65 to fetuses (embryonic day 14) resulted in efficient transduction of retinal pigment epithelium, restoration of visual function, and measurable rhodopsin. The results demonstrate AAV-mediated correction of the deficit and suggest that in utero retinal gene delivery may be a useful approach for treating a variety of blinding congenital retinal diseases.
Collapse
Affiliation(s)
- Nadine S Dejneka
- F.M. Kirby Center and Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, 51 N. 39th Street, Philadelphia, PA 19104-2689, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR, Mariotti A, Vecchio FM, Nestola M, Monego G, Michetti F, Mancuso S, Pola P, Leone G, Gasbarrini G, Gasbarrini A. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 2004; 36:603-13. [PMID: 15460845 DOI: 10.1016/j.dld.2004.03.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several studies have demonstrated that bone marrow contains a subpopulation of stem cells capable of participating in the hepatic regenerative process, even if some reports indicate quite a low level of liver repopulation by human stem cells in the normal and transiently injured liver. AIMS In order to overcome the low engraftment levels seen in previous models, we tried the direct intraperitoneal administration of human cord blood stem cells, using a model of hepatic damage induced by allyl alcohol in NOD/SCID mice. METHODS We designed a protocol based on stem cell infusion following liver damage in the absence of irradiation. Flow cytometry, histology, immunohistochemistry and RT-PCR for human hepatic markers were performed to monitor human cell engraftment. RESULTS Human stem cells were able to transdifferentiate into hepatocytes, to improve liver regeneration after damage and to reduce the mortality rate both in both protocols, even if with qualitative and quantitative differences in the transdifferentiation process. CONCLUSIONS We demonstrated for the first time that the intraperitoneal administration of stem cells can guarantee a rapid liver engraftment. Moreover, the new protocol based on stem cell infusion following liver damage in the absence of irradiation may represent a step forward for the clinical application of stem cell transplantation.
Collapse
Affiliation(s)
- C Di Campli
- Department of Internal Medicine, Catholic University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fang TC, Poulsom R. Cell-based therapies for birth defects: a role for adult stem cell plasticity? ACTA ACUST UNITED AC 2004; 69:238-49. [PMID: 14671777 DOI: 10.1002/bdrc.10019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell therapy can offer a reasonable approach to the treatment of specific birth defects, particularly those for which hematopoietic stem cells (HSCs) can be used to restore (even partially) the number of cells, protein levels, or enzyme activity. Relatively few clinical experiences have been published on this subject, but when a natural selective advantage exists for the cell graft, a degree of "rescue" is possible. Strategies have been developed to confer a selective advantage through genetic engineering of donor cells, and this approach may prove valuable in the treatment of birth defects, as it is in hematological malignancy. Stem cell (SC) plasticity, or transdifferentiation, may offer another route for delivery of cells to established or developing organs. A wide variety of studies support the concept that adult tissue-specific SCs can, if displaced from their normal niche to another, be reprogrammed to produce cell types appropriate to their new environment. Clinical observations reveal that persistent tissue microchimerism develops not only in blood lineages after transfusion, but also in thyroid follicular epithelium via transplacental exchange. In addition, hepatic and renal parenchyma also become chimeric following allografts or bone marrow transplantation (BMT). Experimental models indicate that a renal glomerulosclerosis phenotype can be transferred by grafting whole BM, and that a severe liver disorder in fah-/- mice can be overcome by grafting HSCs and then exerting a selection pressure. It may be possible in the future to exploit the ability of adult SCs to contribute to diverse tissues; however, our understanding of the processes involved is at a very early stage.
Collapse
Affiliation(s)
- Te-Chao Fang
- Histopathology Unit, Cancer Resarch UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
48
|
Coutelle C, Themis M, Waddington S, Gregory L, Nivsarkar M, Buckley S, Cook T, Rodeck C, Peebles D, David A. The Hopes and Fears of In Utero Gene Therapy for Genetic Disease—A Review. Placenta 2003; 24 Suppl B:S114-21. [PMID: 14559040 DOI: 10.1016/s0143-4004(03)00140-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Somatic gene delivery in utero is a novel approach to gene therapy for genetic disease. It is based on the concept that application of gene therapy vectors to the fetus in utero may prevent the development of early disease related tissue damage, may allow targeting of otherwise inaccessible organs, tissues and still expanding stem cell populations and may also provide postnatal tolerance against the therapeutic transgenic protein. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently expressed concerns raised by this still experimental, potentially preventive gene therapy approach. We describe and discuss the choice of vectors, of animal models and routes of administration to the fetus. We address potential risk factors of prenatal gene therapy such as vector toxicity, inadvertent germ line modification, developmental aberration and oncogenesis as well as specific risks of this procedure for the fetus and mother and discuss their ethical implications.
Collapse
Affiliation(s)
- C Coutelle
- Gene Therapy Research Group, Division of Biomedical Science, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|