1
|
Yu L, Pan J, Cao G, Jiang M, Zhang Y, Zhu M, Liang Z, Zhang X, Hu X, Xue R, Gong C. AIV polyantigen epitope expressed by recombinant baculovirus induces a systemic immune response in chicken and mouse models. Virol J 2020; 17:121. [PMID: 32758272 PMCID: PMC7403573 DOI: 10.1186/s12985-020-01388-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The protective efficacy of avian influenza virus (AIV) vaccines is unsatisfactory due to the presence of various serotypes generated by genetic reassortment. Thus, immunization with a polyantigen chimeric epitope vaccine may be an effective strategy for protecting poultry from infection with different AIV subtypes. METHODS Baculovirus has recently emerged as a novel and attractive gene delivery vehicle for animal cells. In the present study, a recombinant baculovirus BmNPV-CMV/THB-P10/CTLT containing a fused codon-optimized sequence (CTLT) of T lymphocyte epitopes from H1HA, H9HA, and H7HA AIV subtypes, and another fused codon-optimized sequence (THB) of Th and B cell epitopes from H1HA, H9HA, and H7HA AIV subtypes, driven by a baculovirus P10 promoter and cytomegalovirus CMV promoter, respectively, was constructed. RESULTS Western blotting and cellular immunofluorescence demonstrated that the CTLT (THB) can be expressed in rBac-CMV/THB-P10/CTLT-infected silkworm cells (mammalian HEK293T cells). Furthermore, the recombinant virus, rBac-CMV-THB-CTLT, was used to immunize both chickens and mice. CONCLUSIONS The results of an indirect ELISA, immunohistochemistry, and T lymphocyte proliferation assay indicated that specific humoral and cellular responses were detected in both chicken and mice. These results suggest that rBac-CMV/THB-P10/CTLT can be developed as a potential vaccine against different AIV subtypes.
Collapse
Affiliation(s)
- Lei Yu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Mengsheng Jiang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Yunshan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Zi Liang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Xing Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China.
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Khademi F, Mostafaie A, Parvaneh S, Gholami Rad F, Mohammadi P, Bahrami G. Construction and characterization of monoclonal antibodies against the extracellular domain of B-lymphocyte antigen CD20 using DNA immunization method. Int Immunopharmacol 2016; 43:23-32. [PMID: 27939822 DOI: 10.1016/j.intimp.2016.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/28/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022]
Abstract
To date, several new anti-CD20 monoclonal antibodies (mAbs) have been developed for potential efficacies compared with familiar mAb rituximab. Despite the recent advances in development of anti-CD20 mAbs for the treatment of B cell malignancies, the efforts should be continued to develop novel antibodies with improved properties. However, the development of mAbs against CD20 as a multi-transmembrane protein is challenging due to the difficulty of providing a lipid environment that can maintain native epitopes. To overcome this limitation, we describe a simple and efficient DNA immunization strategy for the construction of a novel anti-CD20 mAb with improved anti-tumour properties. Using a DNA immunization strategy that includes intradermal (i.d.) immunization with naked plasmid DNA encoding the CD20 gene, we generated the hybridoma cell line D4, which secretes functional mAbs against an extracellular epitope of CD20. Immunocytochemistry analysis and a cell-based enzyme-linked immunosorbent assay using a Burkitt's lymphoma cell line showed that D4 mAbs are capable of binding to native extracellular epitopes of CD20. Moreover, the binding specificity of D4 mAbs was determined by western blot analysis. Cell proliferation was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by the annexin V/propidium iodide staining and dye exclusion assay. The results showed that D4 anti-CD20 mAbs produced by DNA immunization exhibit potent growth inhibitory activity and have superior direct B-cell cytotoxicity compared to rituximab. We propose that antibody-induced apoptosis is one of the mechanisms of cell growth inhibition. Taken together, the data reported here open the path to DNA-based immunization for generating pharmacologically active monoclonal antibodies against CD20. In addition, the data support future in vivo animal testing and subsequent procedures to produce a potential therapeutic mAb.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Parvaneh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farah Gholami Rad
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Yousefi M, Khosravi-Eghbal R, Reza Mahmoudi A, Jeddi-Tehrani M, Rabbani H, Shokri F. Comparative in vitro and in vivo assessment of toxin neutralization by anti-tetanus toxin monoclonal antibodies. Hum Vaccin Immunother 2013; 10:344-51. [PMID: 24126015 DOI: 10.4161/hv.26769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tetanus is caused by the tetanus neurotoxin (TeNT), a 150 kDa single polypeptide molecule which is cleaved into an active two-chain molecule composed of a 50 kDa N-terminal light (L) and a 100 kDa C-terminal heavy (H) chains. Recently, extensive effort has focused on characterization of TeNT binding receptors and toxin neutralization by monoclonal antibodies (mAbs). Toxin binding inhibition and neutralization is routinely assessed either in vitro by the ganglioside GT1b binding inhibition assay or in vivo using an animal model. These two assay systems have never been compared. In the present study, we report characterization of eleven mAbs against different parts of TeNT. The toxin inhibitory and neutralization activity of the mAbs was assessed in vitro and in vivo respectively. Our data demonstrated that seven mAbs bind to fragment C of the heavy chain, two mAbs react with the light chain, one mAb recognizes both chains and one mAb reacts with neither light chain nor fragment C. Six fragment C specific mAbs were able to inhibit TeNT binding to GT1b ganglioside in vitro but three failed to neutralize the toxin in vivo. One in vitro inhibitory mAb (1F3E3) was found to synergize with the in vivo neutralizing mAbs to reduce toxin lethal activity in vivo. Sequencing of the immunoglobulin heavy and light chain variable region genes revealed that the three in vivo neutralizing mAbs were derived from a common origin. Altogether, our data suggests that fragment C specific mAbs contribute to toxin neutralization in both systems, though some of the GT1b binding inhibitory mAbs may not be able to neutralize TeNT in vivo.
Collapse
Affiliation(s)
- Mehdi Yousefi
- Department of Immunology; School of Public Health; Tehran University of Medical Sciences; Tehran, Iran; Immunology Research Center; Tabriz University of Medical Sciences; Tabriz, Iran; Department of Immunology; School of Medicine; Tabriz University of Medical Sciences; Tabriz, Iran
| | - Roya Khosravi-Eghbal
- Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran, Iran
| | - Ahmad Reza Mahmoudi
- Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran, Iran
| | - Hodjatallah Rabbani
- Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran, Iran
| | - Fazel Shokri
- Department of Immunology; School of Public Health; Tehran University of Medical Sciences; Tehran, Iran; Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran, Iran
| |
Collapse
|
4
|
Iurescia S, Fioretti D, Fazio VM, Rinaldi M. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: A biotech's challenge. Biotechnol Adv 2012; 30:372-83. [DOI: 10.1016/j.biotechadv.2011.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 12/16/2022]
|
5
|
Allard B, Priam F, Deshayes F, Ducancel F, Boquet D, Wijkhuisen A, Couraud JY. Electroporation-aided DNA immunization generates polyclonal antibodies against the native conformation of human endothelin B receptor. DNA Cell Biol 2011; 30:727-37. [PMID: 21688998 DOI: 10.1089/dna.2011.1239] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Endothelin B receptor (ET(B)R) is a G protein-coupled receptor (GPCR) specific for endothelin peptides (including endothelin-1, ET1), which mediates a variety of key physiological functions in normal tissues, such as modulation of vasomotor tone, tissue differentiation, or cell proliferation. Moreover, ET(B)R, overexpressed in various cancer cells including melanoma, has been implicated in the growth and progression of tumors, as well as in controlling T cell homing to tumors. To gather information on receptor structure and function, antibodies are generally considered choice molecular probes, but generation of such reagents against the native conformation of GPCRs is a real technical challenge. Here, we show that electroporation-aided genetic immunization, coupled to cardiotoxin pretreatment, is a simple and very efficient method to raise large amounts of polyclonal antibodies highly specific for native human ET(B)R (hET(B)R), as assessed by both flow cytometry analysis of different stably transfected cell lines and a new and rapid cell-based enzyme-linked immunosorbent assay that we also describe. The antibodies recognized two major epitopes on hET(B)R, mapped within the N-terminal extracellular domain. They were used to reveal hET(B)R on membranes of three different human melanoma cell lines, by flow cytometry and confocal microscopy, a method that we show is more relevant than mRNA polymerase chain reaction in assessing receptor expression. In addition, ET-1 partially competed with antibodies for receptor binding. The strategy described here, thus, efficiently generated new immunological tools to further analyze the role of ET(B)R under both normal and pathological conditions, including cancers. Above all, it can now be used to raise monoclonal antibodies against hET(B)R and, more generally, against GPCRs that constitute, by far, the largest reservoir of potential pharmacological targets.
Collapse
Affiliation(s)
- Bertrand Allard
- CEA, iBiTecS, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS), Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Genetic immunization with CDR3-based fusion vaccine confers protection and long-term tumor-free survival in a mouse model of lymphoma. J Biomed Biotechnol 2010; 2010:316069. [PMID: 20445751 PMCID: PMC2860581 DOI: 10.1155/2010/316069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/04/2010] [Indexed: 12/26/2022] Open
Abstract
Therapeutic vaccination against idiotype is a promising strategy for immunotherapy of B-cell malignancies. We have previously shown that CDR3-based DNA immunization can induce immune response against lymphoma and explored this strategy to provide protection in a murine B-cell lymphoma model. Here we performed vaccination employing as immunogen a naked DNA fusion product. The DNA vaccine was generated following fusion of a sequence derived from tetanus toxin fragment C to the VHCDR3109−116 epitope. Induction of tumor-specific immunity as well as ability to inhibit growth of the aggressive 38C13 lymphoma and to prolong survival of vaccinated mice has been tested. We determined that DNA fusion vaccine induced immune response, elicited a strong protective antitumor immunity, and ensured almost complete long-term tumor-free survival of vaccinated mice.
Our results show that CDR3-based DNA fusion vaccines hold promise for vaccination against lymphoma.
Collapse
|
7
|
Alexandrenne C, Wijkhuisen A, Dkhissi F, Hanoux V, Priam F, Allard B, Boquet D, Couraud JY. Electrotransfer of cDNA Coding for a Heterologous Prion Protein Generates Autoantibodies Against Native Murine Prion Protein in Wild-Type Mice. DNA Cell Biol 2010; 29:121-31. [DOI: 10.1089/dna.2009.0940] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Coralie Alexandrenne
- CEA, iBiTecS, SPI, Laboratory of Antibody Engineering for Health, Gif sur Yvette, France
| | - Anne Wijkhuisen
- CEA, iBiTecS, SPI, Laboratory of Antibody Engineering for Health, Gif sur Yvette, France
- UFR SdV, Paris Diderot University, Paris, France
| | - Fatima Dkhissi
- CEA, iBiTecS, SPI, Laboratory of Antibody Engineering for Health, Gif sur Yvette, France
- UFR SdV, Paris Diderot University, Paris, France
| | - Vincent Hanoux
- CEA, iBiTecS, SPI, Laboratory of Antibody Engineering for Health, Gif sur Yvette, France
- UFR SdV, Paris Diderot University, Paris, France
| | - Fabienne Priam
- CEA, iBiTecS, SPI, Laboratory of Antibody Engineering for Health, Gif sur Yvette, France
- UFR SdV, Paris Diderot University, Paris, France
| | - Bertrand Allard
- CEA, iBiTecS, SPI, Laboratory of Antibody Engineering for Health, Gif sur Yvette, France
| | - Didier Boquet
- CEA, iBiTecS, SPI, Laboratory of Antibody Engineering for Health, Gif sur Yvette, France
| | - Jean-Yves Couraud
- CEA, iBiTecS, SPI, Laboratory of Antibody Engineering for Health, Gif sur Yvette, France
- UFR SdV, Paris Diderot University, Paris, France
| |
Collapse
|
8
|
Alexandrenne C, Wijkhuisen A, Dkhissi F, Hanoux V, Créminon C, Boquet D, Couraud JY. Generating antibodies against the native form of the human prion protein (hPrP) in wild-type animals: A comparison between DNA and protein immunizations. J Immunol Methods 2009; 341:41-9. [DOI: 10.1016/j.jim.2008.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/01/2008] [Accepted: 10/23/2008] [Indexed: 11/30/2022]
|
9
|
Enhancement of DNA tumor vaccine efficacy by gene gun-mediated codelivery of threshold amounts of plasmid-encoded helper antigen. Blood 2008; 113:37-45. [PMID: 18832136 DOI: 10.1182/blood-2008-01-136267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleic acid-based vaccines are effective in infectious disease models but have yielded disappointing results in tumor models when tumor-associated self-antigens are used. Incorporation of helper epitopes from foreign antigens into tumor vaccines might enhance the immunogenicity of DNA vaccines without increasing toxicity. However, generation of fusion constructs encoding both tumor and helper antigens may be difficult, and resulting proteins have unpredictable physical and immunologic properties. Furthermore, simultaneous production of equal amounts of highly immunogenic helper and weakly immunogenic tumor antigens in situ could favor development of responses against the helper antigen rather than the antigen of interest. We assessed the ability of 2 helper antigens (beta-galactosidase or fragment C of tetanus toxin) encoded by one plasmid to augment responses to a self-antigen (lymphoma-associated T-cell receptor) encoded by a separate plasmid after codelivery into skin by gene gun. This approach allowed adjustment of the relative ratios of helper and tumor antigen plasmids to optimize helper effects. Incorporation of threshold (minimally immunogenic) amounts of helper antigen plasmid into a DNA vaccine regimen dramatically increased T cell-dependent protective immunity initiated by plasmid-encoded tumor-associated T-cell receptor antigen. This simple strategy can easily be incorporated into future vaccine trials in experimental animals and possibly in humans.
Collapse
|
10
|
Chiarella P, Massi E, De Robertis M, Signori E, Fazio VM. Adjuvants in vaccines and for immunisation: current trends. Expert Opin Biol Ther 2007; 7:1551-62. [DOI: 10.1517/14712598.7.10.1551] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Lo Passo C, Romeo A, Pernice I, Donato P, Midiri A, Mancuso G, Arigò M, Biondo C, Galbo R, Papasergi S, Felici F, Teti G, Beninati C. Peptide Mimics of the Group B Meningococcal Capsule Induce Bactericidal and Protective Antibodies after Immunization. THE JOURNAL OF IMMUNOLOGY 2007; 178:4417-23. [PMID: 17371999 DOI: 10.4049/jimmunol.178.7.4417] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neisseria meningitidis serogroup B (MenB) is a leading cause of sepsis and meningitis in children. No vaccine is available for the prevention of these infections because the group B capsular polysaccharide (CP) (MenB CP) is unable to stimulate an immune response, due to its similarity with human polysialic acid. Because the MenB CP bears both human cross-reactive and non-cross-reactive determinants, we developed immunogenic peptide mimics of the latter epitopes. Peptides were selected from phage display libraries for their ability to bind to a protective anti-MenB CP mAb. One of these peptides (designated 9M) induced marked elevations in serum bactericidal activity, but not polysialic acid cross-reacting Abs, after gene priming followed by carrier-conjugate boosting. Moreover, the occurrence of bacteremia was prevented in infant rats by administration of immune sera before MenB challenge. 9M is a promising lead candidate for the development of an effective and affordable anti-MenB vaccine.
Collapse
Affiliation(s)
- Carla Lo Passo
- Dipartimento di Scienze Microbiologiche, Genetiche e Molecolari, Università degli Studi di Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Beninati C, Midiri A, Mancuso G, Biondo C, Arigò M, Gerace E, Papasergi S, Gambuzza M, Boretti M, Magliani W, Conti S, Polonelli L, Teti G. Antiidiotypic DNA vaccination induces serum bactericidal activity and protection against group B meningococci. ACTA ACUST UNITED AC 2006; 203:111-8. [PMID: 16390937 PMCID: PMC2118089 DOI: 10.1084/jem.20051540] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
No vaccine is available for preventing infections by serogroup B Neisseria meningitidis (MenB), which accounts for a major portion of meningococcal cases in developed countries, because of the poor immunogenicity of the capsular polysaccharide (CP) even after protein conjugation. We have previously induced anticapsular antibodies by immunization with a single chain variable fragment (scFv), which mimics a protective CP epitope. This surrogate antigen, however, was ineffective at inducing serum bactericidal activity, an accepted marker of protection in humans. Serum bactericidal activity was consistently achieved by immunizing mice with the scFv-encoding gene. Immunization with vectors without a secretory signal sequence before the scFv resulted in markedly higher bactericidal activity relative to those with such a sequence. The induced antibodies were capsule specific, as shown by complete inhibition of bactericidal activity by purified MenB CP and by resistance to killing of MenA or MenC. Moreover, these antibodies were predominantly of the IgG2a isotype, reflecting a T helper type 1 response. Administration of sera from scFv gene–vaccinated animals protected infant rats against MenB bacteremia. These data illustrate the potential of vaccination with genes encoding capsular mimics in providing protection against MenB and other encapsulated bacteria.
Collapse
Affiliation(s)
- Concetta Beninati
- Dipartimento di Patologia e Microbiologia Sperimentale, Università degli Studi di Messina, I-98125 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|