1
|
Nawaz T, Gu L, Gibbons J, Hu Z, Zhou R. Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications. Biomimetics (Basel) 2024; 9:373. [PMID: 38921253 PMCID: PMC11201842 DOI: 10.3390/biomimetics9060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of these materials causes environmental sustainability challenges. Fortunately, protein-based biopolymers can compete with and potentially surpass the performance of petro-based polymers because they can be biologically produced and degraded in an environmentally friendly fashion. This paper reviews four groups of protein-based polymers, including fibrous proteins (collagen, silk fibroin, fibrillin, and keratin), elastomeric proteins (elastin, resilin, and wheat glutenin), adhesive/matrix proteins (spongin and conchiolin), and cyanophycin. We discuss the connection between protein sequence, structure, function, and biomimetic applications. Protein engineering techniques, such as directed evolution and rational design, can be used to improve the functionality of natural protein-based materials. For example, the inclusion of specific protein domains, particularly those observed in structural proteins, such as silk and collagen, enables the creation of novel biomimetic materials with exceptional mechanical properties and adaptability. This review also discusses recent advancements in the production and application of new protein-based materials through the approach of synthetic biology combined biomimetics, providing insight for future research and development of cutting-edge bio-inspired products. Protein-based polymers that utilize nature's designs as a base, then modified by advancements at the intersection of biology and engineering, may provide mankind with more sustainable products.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | - Liping Gu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | | | - Zhong Hu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA;
| | - Ruanbao Zhou
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
2
|
Surgical cotton microfibers loaded with proteins and apatite: A potential platform for bone tissue engineering. Int J Biol Macromol 2023; 236:123812. [PMID: 36854368 DOI: 10.1016/j.ijbiomac.2023.123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Tissue engineering has emerged as the best alternative to replacing damaged tissue/organs. However, the cost of scaffold materials continues to be a significant obstacle; thus, developing inexpensive scaffolds is strongly encouraged. In this study, cellulose microfibers (C), gelatin (G), egg white (EW), and nanohydroxyapatite (nHA) were assembled into a quaternary scaffold using EDC-NHS crosslinking, followed by freeze-drying method. Cellulose microfibers as a scaffold have only received a limited amount of research due to the absence of an intrinsic three-dimensional structure. Gelatin, more likely to interact chemically with collagen, was used to provide a stable structure to the cellulose microfibers. EW was supposed to provide the scaffold with numerous cell attachment sites. nHA was chosen to enhance the scaffold's bone-bonding properties. Physico-chemical, mechanical, and biological characterization of scaffolds were studied. In-vitro using MG-63 cells and in-ovo studies revealed that all scaffolds were biocompatible. The results of the DPPH assay demonstrate the ability of CGEWnHA to reduce free radicals. The CGEWnHA scaffold exhibits the best properties with 56.84 ± 28.45 μm average pore size, 75 ± 1.4 % porosity, 39.23 % weight loss, 109.19 ± 0.98 kPa compressive modulus, and 1.72 Ca/P ratio. As a result, the constructed CGEWnHA scaffold appears to be a viable choice for BTE applications.
Collapse
|
3
|
Chalard A, Joseph P, Souleille S, Lonetti B, Saffon-Merceron N, Loubinoux I, Vaysse L, Malaquin L, Fitremann J. Wet spinning and radial self-assembly of a carbohydrate low molecular weight gelator into well organized hydrogel filaments. NANOSCALE 2019; 11:15043-15056. [PMID: 31179473 DOI: 10.1039/c9nr02727k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we describe how a simple single low molecular weight gelator (LMWG) molecule - N-heptyl-d-galactonamide, which is easy to produce at the gram scale - is spun into gel filaments by a wet spinning process based on solvent exchange. A solution of the gelator in DMSO is injected into water and the solvent diffusion triggers the supramolecular self-assembly of the N-heptyl-d-galactonamide molecules into nanometric fibers. These fibers entrap around 97% of water, thus forming a highly hydrated hydrogel filament, deposited in a well organized coil and locally aligned. This self-assembly mechanism also leads to a very narrow distribution of the supramolecular fiber width, around 150 nm. In addition, the self-assembled fibers are oriented radially inside the wet-spun filaments and at a high flow rate, fibers are organized in spirals. As a result, this process gives rise to a high control of the gelator self-assembly compared with the usual thermal sol-gel transition. This method also opens the way to the controlled extrusion at room temperature of these very simple, soft, biocompatible but delicate hydrogels. The gelator concentration and the flow rates leading to the formation of the gel filaments have been screened. The filament diameter, its internal morphology, the solvent exchange and the velocity of the jet have been investigated by video image analysis and electron microscopy. The stability of these delicate hydrogel ropes has been studied, revealing a polymorphic transformation into macroscopic crystals with time under some storage conditions. The cell viability of a neuronal cell line on the filaments has also been estimated.
Collapse
Affiliation(s)
- Anaïs Chalard
- IMRCP, Université de Toulouse, CNRS, Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abay Akar N, Gürel Peközer G, Torun Köse G. Fibrous bone tissue engineering scaffolds prepared by wet spinning of PLGA. ACTA ACUST UNITED AC 2019; 43:235-245. [PMID: 31496880 PMCID: PMC6710002 DOI: 10.3906/biy-1904-63] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Having a self-healing capacity, bone is very well known to regenerate itself without leaving a scar. However, critical size defects due to trauma, tumor, disease, or infection involve bone graft surgeries in which complication rate is relatively at high levels. Bone tissue engineering appears as an alternative for grafting. Fibrous scaffolds are useful in tissue engineering applications since they have a high surface-to-volume ratio, and adjustable, highly interconnected porosity to enhance cell adhesion, survival, migration, and proliferation. They can be produced in a wide variety of fiber sizes and organizations. Wet spinning is a convenient way to produce fibrous scaffolds with consistent fiber size and good mechanical properties. In this study, a fibrous bone tissue engineering scaffold was produced using poly(lactic-co-glycolic acid) (PLGA). Different concentrations (20%, 25%, and 30%) of PLGA (PLA:PGA 75:25) (Mw = 66,000-107,000) were wet spun using coagulation baths composed of different ratios (75:25, 60:40, 50:50) of isopropanol and distilled water. Scanning electron microscopy (SEM) and in vitro degradation studies were performed to characterize the fibrous PLGA scaffolds. Mesenchymal stem cells were isolated from rat bone marrow, characterized by flow cytometry and seeded onto scaffolds to determine the most appropriate fibrous structure for cell proliferation. According to the results of SEM, degradation studies and cell proliferation assay, 20% PLGA wet spun in 60:40 coagulation bath was selected as the most successful condition for the preparation of wet-spun scaffolds. Wet spinning of different concentrations of PLGA (20%, 25%, 30%) dissolved in dichloromethane using different isopropanol:distilled water ratios of coagulation baths (75:25, 60:40, 50:50) were shown in this study.
Collapse
Affiliation(s)
- Nergis Abay Akar
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul Turkey
| | - Görke Gürel Peközer
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Molecular Biology-Genetics and Biotechnology Department, İstanbul Technical University, İstanbul Turkey
| | - Gamze Torun Köse
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul Turkey
| |
Collapse
|
5
|
Li W, Yang X, Feng S, Yang S, Zeng R, Tu M. The fabrication of biomineralized fiber-aligned PLGA scaffolds and their effect on enhancing osteogenic differentiation of UCMSC cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:117. [PMID: 30027312 DOI: 10.1007/s10856-018-6114-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The key factor of scaffold design for bone tissue engineering is to mimic the microenvironment of natural bone extracellular matrix (ECM) and guide cell osteogenic differentiation. The biomineralized fiber-aligned PLGA scaffolds (a-PLGA/CaPs) was developed in this study by mimicking the structure and composition of native bone ECM. The aligned PLGA fibers was prepared by wet spinning and then biomineralized via an alternate immersion method. Introduction of a bioceramic component CaP onto the PLGA fibers led to changes in surface roughness and hydrophilicity, which showed to modulate cell adhesion and cell morphology of umbilical cord mesenchymal stem cells (UCMSCs). It was found that organized actin filaments of UCMSCs cultured on both a-PLGA and a-PLGA/CaP scaffolds appeared to follow contact guidance along the aligned fibers, and those cells grown on a-PLGA/CaP scaffolds exhibited a more polarized cellular morphology. The a-PLGA/CaP scaffold with multicycles of mineralization facilitated the cell attachment on the fiber surfaces and then supported better cell adhesion and contact guidance, leading to enhancement in following proliferation and osteogenic differentiation of UCMSCs. Our results give some insights into the regulation of cell behaviors through design of ECM-mimicking structure and composition and provide an alternative wet-spun fiber-aligned scaffold with HA-mineralized layer for bone tissue engineering application.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiaohui Yang
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shanbao Feng
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shenyu Yang
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Rong Zeng
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Mei Tu
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China.
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
6
|
Wu H, Liu J, Fang Q, Xiao B, Wan Y. Establishment of nerve growth factor gradients on aligned chitosan-polylactide /alginate fibers for neural tissue engineering applications. Colloids Surf B Biointerfaces 2017; 160:598-609. [PMID: 29028608 DOI: 10.1016/j.colsurfb.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Nerve conduits containing aligned fibrous fillers with gradiently distributed signal molecules are essential for long-gap nerve repair. This study was to develop an approach for establishing nerve growth factor (NGF) gradients onto the aligned chitosan-polylactide (CH-PLA) fibers. CH-PLA containing 37wt% of PLA was spun into fibers using a wet-spinning technique. CH-PLA fibers showed much higher wet-state tensile strength, enhanced degradation tolerance and significantly lower swelling degree in comparison to chitosan fibers. The CH-PLA fibers with diameters from 40 to 60μm were selected and segmentally coated in bundles using NGF-contained alginate solutions to establish NGF gradients lengthwise along fibers. The diameter of resulting NGF-loaded CH-PLA/alginate fibers was well controlled within a range between 60 and 120μm. Calcium ion crosslinked alginate coating layers on fibers showed abilities to administer the sustainable NGF release in a gradient distribution manner for at least 5 weeks. NGF-induced neurite outgrowth of PC12 cells confirmed that bioactivity of NGF released from fibers was well retained.
Collapse
Affiliation(s)
- Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 316003, PR China
| | - Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qing Fang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Feng J, Zhang D, Zhu M, Gao C. Poly(l-lactide) melt spun fiber-aligned scaffolds coated with collagen or chitosan for guiding the directional migration of osteoblasts in vitro. J Mater Chem B 2017; 5:5176-5188. [DOI: 10.1039/c7tb00601b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PLLA melt spun fiber-aligned scaffolds coated with collagen or chitosan enhance the viability, spreading, alignment and mobility of osteoblasts.
Collapse
Affiliation(s)
- Jianyong Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Meifang Zhu
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
8
|
Schirmer KSU, Gorkin R, Beirne S, Stewart E, Thompson BC, Quigley AF, Kapsa RMI, Wallace GG. Cell compatible encapsulation of filaments into 3D hydrogels. Biofabrication 2016; 8:025013. [DOI: 10.1088/1758-5090/8/2/025013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Yaari A, Schilt Y, Tamburu C, Raviv U, Shoseyov O. Wet Spinning and Drawing of Human Recombinant Collagen. ACS Biomater Sci Eng 2016; 2:349-360. [DOI: 10.1021/acsbiomaterials.5b00461] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Amit Yaari
- The
Robert H. Smith Faculty of Agriculture, Food and Environment, and
the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
P.O. Box 12, Jerusalem, Israel
| | - Yaelle Schilt
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Carmen Tamburu
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Uri Raviv
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Shoseyov
- The
Robert H. Smith Faculty of Agriculture, Food and Environment, and
the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
P.O. Box 12, Jerusalem, Israel
- CollPlant Ltd. 3 Sapir Street, P.O. Box 4132, Ness-Ziona, Israel
| |
Collapse
|
10
|
Wanawananon K, Moulton SE, Wallace GG, Liawruangrath S. Fabrication of novel core-shell PLGA and alginate fiber for dual-drug delivery system. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kwanchanok Wanawananon
- Alpha Flow Analysis Group, Department of Chemistry and center of Excellent for Innovation in Chemistry (PERCH-CIC) Together with Materials Science Research Center, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute; University of Wollongong; Wollongong NSW 2522 Australia
| | - Simon E. Moulton
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute; University of Wollongong; Wollongong NSW 2522 Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute; University of Wollongong; Wollongong NSW 2522 Australia
| | - Saisunee Liawruangrath
- Alpha Flow Analysis Group, Department of Chemistry and center of Excellent for Innovation in Chemistry (PERCH-CIC) Together with Materials Science Research Center, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| |
Collapse
|
11
|
Alsmadi NZ, Patil LS, Hor EM, Lofti P, Razal JM, Chuong CJ, Wallace GG, Romero-Ortega MI. Coiled polymeric growth factor gradients for multi-luminal neural chemotaxis. Brain Res 2015; 1619:72-83. [PMID: 25801117 DOI: 10.1016/j.brainres.2015.01.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/14/2015] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
Abstract
In the injured adult nervous system, re-establishment of growth-promoting molecular gradients is known to entice and guide nerve repair. However, incorporation of three-dimensional chemotactic gradients in nerve repair scaffolds, particularly in those with multi-luminal architectures, remains extremely challenging. We developed a method that establishes highly tunable three-dimensional molecular gradients in multi-luminal nerve guides by anchoring growth-factor releasing coiled polymeric fibers onto the walls of collagen-filled hydrogel microchannels. Differential pitch in the coiling of neurotrophin-eluting fibers generated sustained chemotactic gradients that appropriately induced the differentiation of Pheochromocytoma (PC12) cells into neural-like cells along an increasing concentration of nerve growth factor (NGF). Computer modeling estimated the stability of the molecular gradient within the luminal collagen, which we confirmed by observing the significant effects of neurotrophin gradients on axonal growth from dorsal root ganglia (DRG). Neurons growing in microchannels exposed to a NGF gradient showed a 60% increase in axonal length compared to those treated with a linear growth factor concentration. In addition, a two-fold increment in the linearity of axonal growth within the microchannels was observed and confirmed by a significant reduction in the turning angle ratios of individual axons. These data demonstrate the ability of growth factor-loaded polymeric coiled fibers to establish three-dimensional chemotactic gradients to promote and direct nerve regeneration in the nervous system and provides a unique platform for molecularly guided tissue repair.
Collapse
Affiliation(s)
- Nesreen Zoghoul Alsmadi
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd., EC39, Richardson, 75080 TX, USA
| | - Lokesh S Patil
- Department of Bioengineering, University of Texas Arlington, Arlington, TX, USA
| | - Elijah M Hor
- Department of Bioengineering, University of Texas Arlington, Arlington, TX, USA
| | - Parisa Lofti
- Department of Bioengineering, University of Texas Arlington, Arlington, TX, USA
| | - Joselito M Razal
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cheng-Jen Chuong
- Department of Bioengineering, University of Texas Arlington, Arlington, TX, USA
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mario I Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd., EC39, Richardson, 75080 TX, USA.
| |
Collapse
|
12
|
Yu Y, Wen H, Ma J, Lykkemark S, Xu H, Qin J. Flexible fabrication of biomimetic bamboo-like hybrid microfibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2494-2499. [PMID: 24453009 DOI: 10.1002/adma.201304974] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/13/2013] [Indexed: 05/28/2023]
Abstract
Biomimetic and flexible bamboo-like hybrid fibers are produced using a novel one-step strategy. By combining a droplet microfluidic technique with a wet-spinning process, biocompatible microfibers are incorporated with polymer spheres or multicellular spheroids. As a result of the controllability of this approach, it has potential applications in materials science and tissue engineering.
Collapse
Affiliation(s)
- Yue Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | | | | | | | | | | |
Collapse
|
13
|
Siriwardane ML, DeRosa K, Collins G, Pfister BJ. Controlled formation of cross-linked collagen fibers for neural tissue engineering applications. Biofabrication 2014; 6:015012. [PMID: 24589999 DOI: 10.1088/1758-5082/6/1/015012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fibrous scaffolds engineered to direct the growth of tissues can be important in forming architecturally functional tissue such as aligning regenerating nerves with their target. Collagen is a commonly used substrate used for neuronal growth applications in the form of surface coatings and hydrogels. The wet spinning technique can create collagen fibers without the use of organic solvents and is typically accomplished by extruding a collagen dispersion into a coagulation bath. To create well-controlled and uniform collagen fibers, we developed an automatic wet spinning device with precise control over the spinning and fiber collection parameters. A fiber collection belt allowed the continuous formation of very soft and delicate fibers up to half a meter in length. Wet-spun collagen fibers were characterized by tensile and thermal behavior, diameter uniformity, the swelling response in phosphate buffered saline and their biocompatibility with dorsal root ganglion (DRG) neurons and Schwann cells. Fibers formed from 0.75% weight by volume (w/v) collagen dispersions formed the best fibers in terms of tensile behavior and fiber uniformity. Fibers post-treated with the cross-linkers glutaraldehyde and genipin exhibited increased mechanical stability and reduced swelling. Importantly, genipin-treated fibers were conducive to DRG neurons and Schwann cell survival and growth, which validated the use of this cross-linker for neural tissue engineering applications.
Collapse
Affiliation(s)
- Mevan L Siriwardane
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA. Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | |
Collapse
|
14
|
Wet spun microfibers: potential in the design of controlled-release scaffolds? Ther Deliv 2013; 4:1075-7. [DOI: 10.4155/tde.13.73] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems. Acta Biomater 2013; 9:4569-78. [PMID: 22902813 DOI: 10.1016/j.actbio.2012.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
Wet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights. A cryogenic emulsion technique developed in our laboratory was used to encapsulate insulin (5.8 kDa), lysozyme (14.3 kDa) and bovine serum albumin (BSA, 66.0 kDa) within wet spun microfibers (~100 μm). Protein loading was found to significantly influence mechanical strength and drug release kinetics of PLGA and PLLA microfibers in a molecular-weight-dependent manner. BSA encapsulation resulted in the most significant decrease in strength and ductility for both PLGA and PLLA microfibers. Interestingly, BSA-loaded PLGA microfibers had a twofold increase (8±2 MPa to 16±1 MPa) in tensile strength and a fourfold increase (3±1% to 12±6%) in elongation until failure in comparison to PLLA microfibers. PLGA and PLLA microfibers exhibited prolonged protein release up to 63 days in vitro. Further analysis with the Korsmeyer-Peppas kinetic model determined that the mechanism of protein release was dependent on Fickian diffusion. These results emphasize the critical role protein molecular weight has on the properties of wet spun filaments, highlighting the importance of designing small molecular analogues to replace growth factors with large molecular weights.
Collapse
|
16
|
Lavin DM, Harrison MW, Tee LY, Wei KA, Mathiowitz E. A novel wet extrusion technique to fabricate self-assembled microfiber scaffolds for controlled drug delivery. J Biomed Mater Res A 2012; 100:2793-802. [DOI: 10.1002/jbm.a.34217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/03/2012] [Accepted: 04/02/2012] [Indexed: 11/09/2022]
|
17
|
Lavin DM, Stefani RM, Zhang L, Furtado S, Hopkins RA, Mathiowitz E. Multifunctional polymeric microfibers with prolonged drug delivery and structural support capabilities. Acta Biomater 2012; 8:1891-900. [PMID: 22326788 DOI: 10.1016/j.actbio.2012.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022]
Abstract
The strength and stability of hybrid fiber delivery systems, ones that perform a mechanical function and simultaneously deliver drug, are critical in the design of surgically implantable constructs. We report the fabrication of drug-eluting microfibers where drug loading and processing conditions alone increase microfiber strength and stability partially due to solvent-induced crystallization. Poly(L-lactic acid) microfibers of 64±7 μm diameter were wet spun by phase inversion. Encapsulation of a model hydrophobic anti-inflammatory drug, dexamethasone, at high loading provided stability to microfibers which maintained linear cumulative release kinetics up to 8 weeks in vitro. In our wet spinning process, all microfibers had increased crystallinity (13-17%) in comparison to unprocessed polymer without any mechanical stretching. Moreover, microfibers with the highest drug loading retained 97% of initial tensile strength and were statistically stronger than all other microfiber formulations, including control fibers without drug. Results indicate that the encapsulation of small hydrophobic molecules (<400 Da) may increase the mechanical integrity of microfilaments whose crystallinity is also increased as a result of the process. Multifunctional drug-eluting microfibers can provide an exciting new opportunity to design novel biomaterials with mechanical stability and controlled release of a variety of therapeutics with micron-scale accuracy.
Collapse
|
18
|
Soares JS, Moore JE, Rajagopal KR. Modeling of Deformation-Accelerated Breakdown of Polylactic Acid Biodegradable Stents. J Med Device 2010. [DOI: 10.1115/1.4002759] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The use of biodegradable polymers in biomedical applications has been successful in nonload bearing applications, such as biodegradable implants for local drug delivery, and in simple load bearing situations such as surgical sutures and orthopedic fixation screws. The desire to incorporate these materials in more complex load bearing situations, such as tissue engineering scaffolds and endovascular or urethral stents, is strong, but the lack of constitutive models describing the evolution of biodegradable polymers over the course of degradation has severely hampered the rational design process for these more complex biodegradable medical applications. With the objective of predicting biodegradable stent behavior, we incorporated constitutive models of biodegradable polymeric materials in a computational setting and the mechanical response of three different stent designs were analyzed as degradation progressed. A thermodynamically consistent constitutive model for materials undergoing deformation-induced degradation was applied to a commonly employed biodegradable polymer system, poly(L-lactic acid), and its specific form was determined by corroboration against experimental data. Depreciation of mechanical properties due to degradation confers time-dependent characteristics to the response of the biodegradable material: the deformation imparted by a constant load increases over time, i.e. the body creeps, and the stress necessary to keep a fixed deformation decreases, i.e. the body relaxes. Biodegradable stents, when subjected to constant pressure in its exterior, deflect inwards and ultimately fail as the structure loses its mechanical integrity. The complex geometry of endovascular stents and their physiological loading conditions lead to inhomogeneous deformations, and consequently, inhomogeneous degradation ensues. Degradation is mostly confined to the bends of the stent rings and junction points, which are the locations that carry most of the deformation, whereas mostly undeformed connector bars remain less degraded. If failure occurs, it will occur most likely at those sensitive locations and large, nondegraded pieces can provoke severe embolic problems. Highly nonuniform degradation indicates that some stent designs are at higher risk for complications. Deformation patterns of stents made of a material that loses its integrity are different than those of permanent stents. Blind adaptation of permanent stent design concepts is ill-suited for biodegradable stent design. The time-dependent aspect of the implant not only must be taken into account but should also be used to interact with the body’s reaction and to enhance healing.
Collapse
Affiliation(s)
- João S. Soares
- Department of Mathematics, Center for Mathematics and Its Applications (CEMAT), Instituto Superior Tecnico, Avenida Rovisto Pais 1, Lisboa 1049-001, Portugal
| | - James E. Moore
- Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, TX 77843
| | - Kumbakonam R. Rajagopal
- Department of Biomedical Engineering, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
19
|
Shim IK, Jung MR, Kim KH, Seol YJ, Park YJ, Park WH, Lee SJ. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. J Biomed Mater Res B Appl Biomater 2010; 95:150-60. [DOI: 10.1002/jbm.b.31695] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Rissanen M, Puolakka A, Hukka T, Ellä V, Kellomäki M, Nousiainen P. Effect of hot drawing on properties of wet-spun poly(L,D-lactide) copolymer multifilament fibers. J Appl Polym Sci 2010. [DOI: 10.1002/app.31015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Rissanen M, Puolakka A, Ahola N, Tonry A, Rochev Y, Kellomäki M, Nousiainen P. Effect of protein-loading on properties of wet-spun poly(L,D-lactide) multifilament fibers. J Appl Polym Sci 2010. [DOI: 10.1002/app.31820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Tuzlakoglu K, Pashkuleva I, Rodrigues MT, Gomes ME, van Lenthe GH, Müller R, Reis RL. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. J Biomed Mater Res A 2010; 92:369-77. [DOI: 10.1002/jbm.a.32358] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Quigley AF, Razal JM, Thompson BC, Moulton SE, Kita M, Kennedy EL, Clark GM, Wallace GG, Kapsa RMI. A conducting-polymer platform with biodegradable fibers for stimulation and guidance of axonal growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:4393-4397. [PMID: 26042951 DOI: 10.1002/adma.200901165] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Indexed: 06/04/2023]
Abstract
A biosynthetic platform composed of a conducting polypyrrole sheet embedded with unidirectional biodegradable polymer fibers is described (see image; scale bar = 50 µm). Such hybrid systems can promote rapid directional nerve growth for neuro-regenerative scaffolds and act as interfaces between the electronic circuitry of medical bionic devices and the nervous system.
Collapse
Affiliation(s)
- Anita F Quigley
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong Northfields Avenue Wollongong, NSW 2522 (Australia)
- Centre for Clinical Neuroscience and Neurology Research Department of Medicine, St. Vincent's Hospital 41 Victoria Pde Fitzroy, VIC 3065 (Australia)
- Bionic Ear Institute 384-388 Albert St East Melbourne, VIC 3002 (Australia)
| | - Joselito M Razal
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong Northfields Avenue Wollongong, NSW 2522 (Australia)
| | - Brianna C Thompson
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong Northfields Avenue Wollongong, NSW 2522 (Australia)
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong Northfields Avenue Wollongong, NSW 2522 (Australia)
| | - Magdalena Kita
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong Northfields Avenue Wollongong, NSW 2522 (Australia)
- Centre for Clinical Neuroscience and Neurology Research Department of Medicine, St. Vincent's Hospital 41 Victoria Pde Fitzroy, VIC 3065 (Australia)
- Bionic Ear Institute 384-388 Albert St East Melbourne, VIC 3002 (Australia)
| | | | - Graeme M Clark
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong Northfields Avenue Wollongong, NSW 2522 (Australia)
- Bionic Ear Institute 384-388 Albert St East Melbourne, VIC 3002 (Australia)
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong Northfields Avenue Wollongong, NSW 2522 (Australia).
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong Northfields Avenue Wollongong, NSW 2522 (Australia)
- Centre for Clinical Neuroscience and Neurology Research Department of Medicine, St. Vincent's Hospital 41 Victoria Pde Fitzroy, VIC 3065 (Australia)
- Bionic Ear Institute 384-388 Albert St East Melbourne, VIC 3002 (Australia)
| |
Collapse
|
24
|
Mack BC, Wright KW, Davis ME. A biodegradable filament for controlled drug delivery. J Control Release 2009; 139:205-11. [DOI: 10.1016/j.jconrel.2009.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/26/2009] [Accepted: 06/22/2009] [Indexed: 11/29/2022]
|
25
|
Rissanen M, Puolakka A, Hukka T, Ellä V, Nousiainen P, Kellomäki M. Effect of process parameters on properties of wet-spun poly(L,D-lactide) copolymer multifilament fibers. J Appl Polym Sci 2009. [DOI: 10.1002/app.30387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Rissanen M, Puolakka A, Nousiainen P, Kellomäki M, Ellä V. Solubility and phase separation of poly(L,D-lactide) copolymers. J Appl Polym Sci 2008. [DOI: 10.1002/app.28769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Troken A, Marion N, Hollister S, Mao J. Tissue engineering of the synovial joint: the role of cell density. Proc Inst Mech Eng H 2007; 221:429-40. [PMID: 17822145 DOI: 10.1243/09544119jeim288] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ultimate goal in the tissue engineering of the synovial joint is to fabricate biologically derived analogues that can replace severely degenerated or traumatized synovial joint components. A number of challenges must be addressed before reaching this ultimate goal. In this report, the relevance of cell seeding density in the synthesis of chondrogenic and osteogenic matrices from human mesenchymal stem cells is explored. Human mesenchymal stem cells (hMSCs) were differentiated into chondrogenic cells and osteogenic cells ex vivo and encapsulated in poly(ethylene glycol) diacrylate (PEGDA) hydrogel at densities of 5 x 106 cells/ml, 40 x 10(6) cells/ml, and 80 x 10(6) cells/ml, in addition to a cell-free poly(ethylene glycol) (PEG) control group (0 x 10(6) cells/ml). Cell-seeded or cell-free PEG constructs were separately incubated in vitro for 4 weeks or implanted in vivo in the dorsum of immunodeficient rats for 4 weeks. In-vitro data demonstrated that hMSC-derived chondrocytes or hMSC-derived osteoblasts maintained their lineages per Safranin O and von Kossa staining after incubation for 4 weeks. The general pattern of initial cell seeding densities of 5 x 10(6) cells/ml, 40 x 10(6) cells/ml, and 80 x 10(6) cells/ml were preserved following in-vitro cultivation. Similarly, in-vivo data revealed that hMSC-derived chondrocytes and hMSC-derived osteoblasts maintained their respective lineages and the pattern of cell-seeding densities. An attempt was made to fabricate a composite construct with PEGDA hydrogel and polycaprolactone (PCL) with designed internal porosity for an osteochondral graft. Various cell-seeding densities as delineated in this report can be realized in the composite PEG-PCL graft. The findings demonstrate that cell-seeding density is likely a key parameter to consider in tissue-engineering design. The source of cells can either be transplanted cells or internally recruited cells.
Collapse
Affiliation(s)
- A Troken
- College of Dental Medicine, Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
28
|
Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59:187-206. [PMID: 17540473 DOI: 10.1016/j.addr.2007.04.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 04/19/2007] [Indexed: 01/18/2023]
Abstract
Growing demand for tissues and organs for transplantation and the inability to meet this need using by autogeneic (from the host) or allogeneic (from the same species) sources has led to the rapid development of tissue engineering as an alternative. Tissue engineering aims to replace or facilitate the regrowth of damaged or diseased tissue by applying a combination of biomaterials, cells and bioactive molecules. This review focuses on synthetic polymers that have been used for tissue growth scaffold fabrication and their applications in both cell and extracellular matrix support and controlling the release of cell growth and differentiation supporting drugs.
Collapse
Affiliation(s)
- Marina Sokolsky-Papkov
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Gao H, Gu Y, Ping Q. The implantable 5-fluorouracil-loaded poly(l-lactic acid) fibers prepared by wet-spinning from suspension. J Control Release 2007; 118:325-32. [PMID: 17321624 DOI: 10.1016/j.jconrel.2006.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/06/2006] [Accepted: 12/31/2006] [Indexed: 11/25/2022]
Abstract
The paper introduced an improved fabrication technique, by which the hydrophobic polymer monofilament fiber loading hydrophilic drug was obtained. The micronized 5-Fu (5-fluorouracil) powders were homogeneously dispersed in PLLA (poly(l-lactic acid))-chloroform solution to form the suspension, and then the suspension was solidified in the nonsolvent to prepare the fibers by wet-spinning method under mild condition. The diameter of drug-loaded fiber was in the range of 50-250 microm. The hydrophilic drug powders were successfully encapsulated into the monofilament fiber with good stability, high drug loading content and efficacy. The MTT cytotoxicity assay in vitro revealed the satisfactory anticancer activity of the drug-loaded fibers. The long-term release characteristics of these fibers were also achieved. Furthermore, the drug release rate of the fibers could be regulated by the formulation and fabricating parameters, such as drug loading content, polymer concentration in suspension, nonsolvent composition and flow rate in wet-spinning. The release mechanism of the fibers was investigated and described by Fickian diffusion equation.
Collapse
Affiliation(s)
- Hao Gao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | | | | |
Collapse
|
31
|
Crow BB, Nelson KD. Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber. Biopolymers 2006; 81:419-27. [PMID: 16419061 DOI: 10.1002/bip.20442] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have developed a novel biodegradable, polymeric fiber construct that is coextruded using a wet-spinning process into a core-sheath format with a polysaccharide pre-hydrogel solution as the core fluid and poly(L-lactic acid) (PLLA) as the sheath. The biodegradable, biocompatible fibers were extruded from polymeric emulsions comprised of solutions of various molecular weights of PLLA dissolved in chloroform and containing dispersed, protein-free aqueous phases comprising up to 10% of the emulsion volume. Biologically sensitive agents can be loaded via a dispersed aqueous phase in the polymer, and/or directly into the polysaccharide. We show that this core-sheath fiber format will load a model protein that can be delivered for extended periods in vitro. Bovine serum albumin (BSA) was loaded into the fiber core as a model protein. We have shown that the greater the volume of the protein-free aqueous phase dispersed into the polymeric continuous-phase emulsion, the greater the total release of BSA encapsulated by a core gel comprised of 1% sodium alginate solution. We conclude this fiber format provides a promising vehicle for in vivo delivery of biological molecules. Its biocompatibility and biodegradability also allow for its use as a possible substrate for tissue engineering applications.
Collapse
Affiliation(s)
- B B Crow
- Joint Program in Biomedical Engineering, The University of Texas Southwestern Medical Center at Dallas, TX, USA.
| | | |
Collapse
|
32
|
Gupta B, Revagade N, Anjum N, Atthoff B, Hilborn J. Preparation of poly(lactic acid) fiber by dry–jet–wet spinning. II. Effect of process parameters on fiber properties. J Appl Polym Sci 2006. [DOI: 10.1002/app.23543] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Hong JT, Cho NS, Yoon HS, Kim TH, Koh MS, Kim WG. Biodegradable studies of poly(trimethylenecarbonate-ɛ-caprolactone)-block-poly(p-dioxanone), poly(dioxanone), and poly(glycolide-ɛ-caprolactone) (Monocryl®) monofilaments. J Appl Polym Sci 2006. [DOI: 10.1002/app.24440] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Crow BB, Borneman AF, Hawkins DL, Smith GM, Nelson KD. Evaluation of in Vitro Drug Release, pH Change, and Molecular Weight Degradation of Poly(L-lactic acid) and Poly(D,L-lactide-co-glycolide) Fibers. ACTA ACUST UNITED AC 2005; 11:1077-84. [PMID: 16144443 DOI: 10.1089/ten.2005.11.1077] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biodegradable fibers of poly(L-lactic acid) (PLLA) and poly(D,L-lactide-co-glycolide) (PLGA) that encapsulated a water-soluble drug were created by a patented technique consisting of wet-spinning a water-in-oil emulsion. These fibers are 2.4% by mass drug, which is slowly released, making these fibers potential candidates for implantation as drug delivery devices and/or tissue-engineering substrates. Drug release kinetics and changes in molecular weight were investigated over time. This study demonstrated that drug release rates and molecular weight degradation are a function of the amount of aqueous phase added as an emulsion during fabrication. The type of polymer used (PLLA or PLGA) determines the molecular weight degradation rates, but has little effect on drug release kinetics.
Collapse
Affiliation(s)
- B B Crow
- Joint Program in Biomedical Engineering, University of Texas Southwestern Medical Center at Dallas, USA
| | | | | | | | | |
Collapse
|
35
|
Cronin EM, Thurmond FA, Bassel-Duby R, Williams RS, Wright WE, Nelson KD, Garner HR. Protein-coated poly(L-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells. J Biomed Mater Res A 2005; 69:373-81. [PMID: 15127383 DOI: 10.1002/jbm.a.30009] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tissue engineering represents a potential method for repairing damaged skeletal muscle tissue. Extracellular matrix (ECM) proteins were evaluated for their ability to aid in cell attachment, whereas a poly(L-lactic acid) (PLLA) fiber scaffold was tested as a substrate for the differentiation of human skeletal muscle cells. In comparison to uncoated or gelatin-coated PLLA films, cell attachment increased significantly (p < 0.001) on PLLA films coated with ECM gel, fibronectin, or laminin. Myoblasts differentiated into multinucleated myofibers on ECM gel-coated PLLA fibers, and expressed muscle markers such as myosin and alpha-actinin. Oligonucleotide microarray analysis showed similar gene expression profiles for human skeletal muscle cells on ECM gel-coated PLLA fibers as to that observed for myofibers on tissue culture plates. Therefore, PLLA fibers coated with ECM proteins provide a scaffold for the development of skeletal muscle tissue for tissue engineering and cell transplantation applications.
Collapse
Affiliation(s)
- Elizabeth M Cronin
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, and University of Texas at Arlington, Arlington, USA
| | | | | | | | | | | | | |
Collapse
|