1
|
Tan W, Dai M, Ye S, Tang X, Jiang D, Chen D, Du H. ENsiRNA: A Multimodality Method for siRNA-mRNA and Modified siRNA Efficacy Prediction Based on Geometric Graph Neural Network. J Mol Biol 2025; 437:169131. [PMID: 40194620 DOI: 10.1016/j.jmb.2025.169131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
With the rise of small interfering RNA (siRNA) as a therapeutic tool, effective siRNA design is crucial. Current methods often emphasize sequence-related features, overlooking structural information. To address this, we introduce ENsiRNA, a multimodal approach utilizing a geometric graph neural network to predict the efficacy of both standard and modified siRNA. ENsiRNA integrates sequence features from a pretrained RNA language model, structural characteristics, and thermodynamic data or chemical modifications to enhance prediction accuracy. Our results indicate that ENsiRNA outperforms existing methods, achieving over a 13% improvement in Pearson Correlation Coefficient (PCC) for standard siRNA across various tests. For modified siRNA, despite challenges associated with RNA folding methods, ENsiRNA still demonstrates competitive performance in different datasets. This novel method highlights the significance of structural information and multimodal strategies in siRNA prediction, advancing the field of therapeutic design.
Collapse
Affiliation(s)
- Wenchong Tan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510000, China
| | - Mingshu Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510000, China
| | - Shimin Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510000, China
| | - Xin Tang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510000, China
| | - Dawei Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510000, China
| | - Dong Chen
- Fangrui Institute of Innovative Drugs, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510000, China.
| |
Collapse
|
2
|
Andersson P, Burel SA, Estrella H, Foy J, Hagedorn PH, Harper TA, Henry SP, Hoflack JC, Holgersen EM, Levin AA, Morrison E, Pavlicek A, Penso-Dolfin L, Saxena U. Assessing Hybridization-Dependent Off-Target Risk for Therapeutic Oligonucleotides: Updated Industry Recommendations. Nucleic Acid Ther 2025; 35:16-33. [PMID: 39912803 DOI: 10.1089/nat.2024.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Hybridization-dependent off-target (OffT) effects, occurring when oligonucleotides bind via Watson-Crick-Franklin hybridization to unintended RNA transcripts, remain a critical safety concern for oligonucleotide therapeutics (ONTs). Despite the importance of OffT assessment of clinical trial ONT candidates, formal guidelines are lacking, with only brief mentions in Japanese regulatory documents (2020) and US Food and Drug Administration (FDA) recommendations for hepatitis B virus treatments (2022). This article presents updated industry recommendations for assessing OffTs of ONTs, building upon the 2012 Oligonucleotide Safety Working Group (OSWG) recommendations and accounting for recent technological advancements. A new OSWG subcommittee, comprising industry experts in RNase H-dependent and steric blocking antisense oligonucleotides and small interfering RNAs, has developed a comprehensive framework for OffT assessment. The proposed workflow encompasses five key steps: (1) OffT identification through in silico complementarity prediction and transcriptomics analysis, (2) focus on cell types with relevant ONT activity, (3) in vitro verification and margin assessment, (4) risk assessment based on the OffT biological role, and (5) management of unavoidable OffTs. The authors provide detailed considerations for various ONT classes, emphasizing the importance of ONT-specific factors such as chemistry, delivery systems, and tissue distribution in OffT evaluation. The article also explores the potential of machine learning models to enhance OffT prediction and discusses strategies for experimental verification and risk assessment. These updated recommendations aim to improve the safety profile of ONTs entering clinical trials and to manage unavoidable OffTs. The authors hope that these recommendations will serve as a valuable resource for ONT development and for the forthcoming finalization of the FDA draft guidance and the International Council for Harmonization S13 guidance on Nonclinical Safety Assessment of Oligonucleotide-Based Therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Christophe Hoflack
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | | | | | | | - Utsav Saxena
- Dicerna Pharmaceuticals, a Novo Nordisk Company, Lexington, Massachusetts, USA
| |
Collapse
|
3
|
Nunes S, Bastos R, Marinho AI, Vieira R, Benício I, de Noronha MA, Lírio S, Brodskyn C, Tavares NM. Recent advances in the development and clinical application of miRNAs in infectious diseases. Noncoding RNA Res 2025; 10:41-54. [PMID: 39296638 PMCID: PMC11406675 DOI: 10.1016/j.ncrna.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prognostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular approach and propose their potential clinical applications and contributions to public health.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Rana Bastos
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ananda Isis Marinho
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Raissa Vieira
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ingra Benício
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Sofia Lírio
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Cláudia Brodskyn
- Federal University of Bahia (UFBA), Salvador, Brazil
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Natalia Machado Tavares
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| |
Collapse
|
4
|
Miller R, Paquette J, Barker A, Sapp E, McHugh N, Bramato B, Yamada N, Alterman J, Echeveria D, Yamada K, Watts J, Anaclet C, DiFiglia M, Khvorova A, Aronin N. Preventing acute neurotoxicity of CNS therapeutic oligonucleotides with the addition of Ca 2+ and Mg 2+ in the formulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102359. [PMID: 39554992 PMCID: PMC11567125 DOI: 10.1016/j.omtn.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Oligonucleotide therapeutics (ASOs and siRNAs) have been explored for modulation of gene expression in the central nervous system (CNS), with several drugs approved and many in clinical evaluation. Administration of highly concentrated oligonucleotides to the CNS can induce acute neurotoxicity. We demonstrate that delivery of concentrated oligonucleotides to the CSF in awake mice induces acute toxicity, observable within seconds of injection. Electroencephalography and electromyography in awake mice demonstrated seizures. Using ion chromatography, we show that siRNAs can tightly bind Ca2+ and Mg2+ up to molar equivalents of the phosphodiester/phosphorothioate bonds independently of the structure or phosphorothioate content. Optimization of the formulation by adding high concentrations (above biological levels) of divalent cations (Ca2+ alone, Mg2+ alone, or Ca2+ and Mg2+) prevents seizures with no impact on the distribution or efficacy of the oligonucleotide. The data here establish the importance of adding Ca2+ and Mg2+ to the formulation for the safety of CNS administration of therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Rachael Miller
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Joseph Paquette
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Alexandra Barker
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ellen Sapp
- MassGeneral Institute for Neurodegenerative Disease, 114 16 Street, Charlestown, MA 02129, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Nozomi Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dimas Echeveria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Jonathan Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA 95618, USA
| | - Marian DiFiglia
- MassGeneral Institute for Neurodegenerative Disease, 114 16 Street, Charlestown, MA 02129, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Zhang Y, Yang T, Yang Y, Xu D, Hu Y, Zhang S, Luo N, Ning L, Ren L. siRNAEfficacyDB: An experimentally supported small interfering RNA efficacy database. IET Syst Biol 2024; 18:199-207. [PMID: 39541343 DOI: 10.1049/syb2.12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small interfering RNA (siRNA) has revolutionised biomedical research and drug development through precise post-transcriptional gene silencing technology. Despite its immense potential, siRNA therapy still faces technical challenges, such as delivery efficiency, targeting specificity, and molecular stability. To address these challenges and facilitate siRNA drug development, we have developed siRNAEfficacyDB, a comprehensive database that integrates experimentally validated siRNA efficacy data. This database contains 3544 siRNA records, covering 42 target genes and 5 cell lines. It provides detailed information on siRNA sequences, target genes, inhibition efficiencies, experimental techniques, cell lines, siRNA concentrations, and incubation times. siRNAEfficacyDB offers a user-friendly web interface that makes it easy to query, browse and analyse data, enabling efficient access to siRNA-related information. In summary, siRNAEfficacyDB provides a useful data foundation for siRNA drug design and optimisation, serving as a valuable resource for advancing computer-aided siRNA design research and nucleic acid drug development. siRNAEfficacyDB is freely available at https://cellknowledge.com.cn/siRNAEfficacy for non-commercial use.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Yang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Yu Yang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Dongsheng Xu
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Yucheng Hu
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Shuo Zhang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Nanchao Luo
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan, China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
6
|
Ban J, Seo BK, Yu Y, Kim M, Choe J, Park JH, Park SY, Lee DK, Kim SH. Nonclinical Pharmacokinetics Study of OLX702A-075-16, N-Acetylgalactosamine Conjugated Asymmetric Small Interfering RNA (GalNAc-asiRNA). Drug Metab Dispos 2024; 52:1262-1270. [PMID: 39168524 DOI: 10.1124/dmd.124.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection was used. The results showed rapid clearance from plasma (0.5 to 1.5 hours of half-life) and predominant distribution to the liver and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 hours was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration. SIGNIFICANCE STATEMENT: This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.
Collapse
Affiliation(s)
- Jihye Ban
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Bong Kyo Seo
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Yunmi Yu
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Minkyeong Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Jeongyong Choe
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - June Hyun Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Shin-Young Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Dong-Ki Lee
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - So Hee Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| |
Collapse
|
7
|
Bai Y, Zhong H, Wang T, Lu ZJ. OligoFormer: an accurate and robust prediction method for siRNA design. Bioinformatics 2024; 40:btae577. [PMID: 39321261 PMCID: PMC11494384 DOI: 10.1093/bioinformatics/btae577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
MOTIVATION RNA interference (RNAi) has become a widely used experimental approach for post-transcriptional regulation and is increasingly showing its potential as future targeted drugs. However, the prediction of highly efficient siRNAs (small interfering RNAs) is still hindered by dataset biases, the inadequacy of prediction methods, and the presence of off-target effects. To overcome these limitations, we propose an accurate and robust prediction method, OligoFormer, for siRNA design. RESULTS OligoFormer comprises three different modules including thermodynamic calculation, RNA-FM module, and Oligo encoder. Oligo encoder is the core module based on the transformer encoder. Taking siRNA and mRNA sequences as input, OligoFormer can obtain thermodynamic parameters, RNA-FM embedding, and Oligo embedding through these three modules, respectively. We carefully benchmarked OligoFormer against six comparable methods on siRNA efficacy datasets. OligoFormer outperforms all the other methods, with an average improvement of 9% in AUC, 6.6% in PRC, 9.8% in F1 score, and 5.1% in PCC compared to the best method among them in our inter-dataset validation. We also provide a comprehensive pipeline with prediction of siRNA efficacy and off-target effects using PITA score and TargetScan score. The ablation study shows RNA-FM module and thermodynamic parameters improved the performance and accelerated convergence of OligoFormer. The saliency maps by gradient backpropagation and base preference maps show certain base preferences in initial and terminal region of siRNAs. AVAILABILITY AND IMPLEMENTATION The source code of OligoFormer is freely available on GitHub at: https://github.com/lulab/OligoFormer. Docker image of OligoFormer is freely available on the docker hub at https://hub.docker.com/r/yilanbai/oligoformer.
Collapse
Affiliation(s)
- Yilan Bai
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Haochen Zhong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Taiwei Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Long R, Guo Z, Han D, Liu B, Yuan X, Chen G, Heng PA, Zhang L. siRNADiscovery: a graph neural network for siRNA efficacy prediction via deep RNA sequence analysis. Brief Bioinform 2024; 25:bbae563. [PMID: 39503523 PMCID: PMC11539000 DOI: 10.1093/bib/bbae563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The clinical adoption of small interfering RNAs (siRNAs) has prompted the development of various computational strategies for siRNA design, from traditional data analysis to advanced machine learning techniques. However, previous studies have inadequately considered the full complexity of the siRNA silencing mechanism, neglecting critical elements such as siRNA positioning on mRNA, RNA base-pairing probabilities, and RNA-AGO2 interactions, thereby limiting the insight and accuracy of existing models. Here, we introduce siRNADiscovery, a Graph Neural Network (GNN) framework that leverages both non-empirical and empirical rule-based features of siRNA and mRNA to effectively capture the complex dynamics of gene silencing. On multiple internal datasets, siRNADiscovery achieves state-of-the-art performance. Significantly, siRNADiscovery also outperforms existing methodologies in in vitro studies and on an externally validated dataset. Additionally, we develop a new data-splitting methodology that addresses the data leakage issue, a frequently overlooked problem in previous studies, ensuring the robustness and stability of our model under various experimental settings. Through rigorous testing, siRNADiscovery has demonstrated remarkable predictive accuracy and robustness, making significant contributions to the field of gene silencing. Furthermore, our approach to redefining data-splitting standards aims to set new benchmarks for future research in the domain of predictive biological modeling for siRNA.
Collapse
Affiliation(s)
- Rongzhuo Long
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Ziyu Guo
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Central Ave, Hong Kong SAR, China
| | - Da Han
- Institute of Molecular Medicine (IMM) and Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Boxiang Liu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Xudong Yuan
- ACON Pharmaceuticals, 2557 Route 130 S, Ste 3, Cranbury, NJ 08512, USA
| | | | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Central Ave, Hong Kong SAR, China
| | - Liang Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Barnes M, Price DC. Endogenous Viral Elements in Ixodid Tick Genomes. Viruses 2023; 15:2201. [PMID: 38005880 PMCID: PMC10675110 DOI: 10.3390/v15112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The documentation of endogenous viral elements (EVEs; virus-derived genetic material integrated into the genome of a nonviral host) has offered insights into how arthropods respond to viral infection via RNA interference pathways. Small non-coding RNAs derived from EVE loci serve to direct RNAi pathways in limiting replication and infection from cognate viruses, thus benefiting the host's fitness and, potentially, vectorial capacity. Here we use informatic approaches to analyze nine available genome sequences of hard ticks (Acari: Ixodidae; Rhipicephalus sanguineus, R. microplus, R. annulatus, Ixodes ricinus, I. persulcatus, I. scapularis, Hyalomma asiaticum, Haemaphysalis longicornis, and Dermacentor silvarum) to identify endogenous viral elements and to illustrate the shared ancestry of all elements identified. Our results highlight a broad diversity of viral taxa as having given rise to 1234 identified EVEs in ticks, with Mononegavirales (specifically Rhabdoviridae) well-represented in this subset of hard ticks. Further investigation revealed extensive adintovirus integrations in several Ixodes species, the prevalence of Bunyavirales EVEs (notably not observed in mosquitoes), and the presence of several elements similar to known emerging human and veterinary pathogens. These results will inform subsequent work on current and past associations with tick species with regard to the viruses from which their "viral fossils" are derived and may serve as a reference for quality control of various tick-omics data that may suffer from misidentification of EVEs as viral genetic material.
Collapse
Affiliation(s)
| | - Dana C. Price
- Center for Vector Biology, Department of Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
10
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Skelly JD, Chen F, Chang SY, Ujjwal RR, Ghimire A, Ayers DC, Song J. Modulating On-Demand Release of Vancomycin from Implant Coatings via Chemical Modification of a Micrococcal Nuclease-Sensitive Oligonucleotide Linker. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37174-37183. [PMID: 37525332 PMCID: PMC10421633 DOI: 10.1021/acsami.3c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Periprosthetic infections are one of the most serious complications in orthopedic surgeries, and those caused by Staphylococcus aureus (S. aureus) are particularly hard to treat due to their tendency to form biofilms on implants and their notorious ability to invade the surrounding bones. The existing prophylactic local antibiotic deliveries involve excessive drug loading doses that could risk the development of drug resistance strains. Utilizing an oligonucleotide linker sensitive to micrococcal nuclease (MN) cleavage, we previously developed an implant coating capable of releasing covalently tethered vancomycin, triggered by S. aureus-secreted MN, to prevent periprosthetic infections in the mouse intramedullary (IM) canal. To further engineer this exciting platform to meet broader clinical needs, here, we chemically modified the oligonucleotide linker by a combination of 2'-O-methylation and phosphorothioate modification to achieve additional modulation of its stability/sensitivity to MN and the kinetics of MN-triggered on-demand release. We found that when all phosphodiester bonds within the oligonucleotide linker 5'-carboxy-mCmGTTmCmG-3-acrydite, except for the one between TT, were replaced by phosphorothioate, the oligonucleotide (6PS) stability significantly increased and enabled the most sustained release of tethered vancomycin from the coating. By contrast, when only the peripheral phosphodiester bonds at the 5'- and 3'-ends were replaced by phosphorothioate, the resulting oligonucleotide (2PS) linker was cleaved by MN more rapidly than that without any PS modifications (0PS). Using a rat femoral canal periprosthetic infection model where 1000 CFU S. aureus was inoculated at the time of IM pin insertion, we showed that the prophylactic implant coating containing either 0PS- or 2PS-modified oligonucleotide linker effectively eradicated the bacteria by enabling the rapid on-demand release of vancomycin. No bacteria were detected from the explanted pins, and no signs of cortical bone changes were detected in these treatment groups throughout the 3 month follow-ups. With an antibiotic tethering dose significantly lower than conventional antibiotic-bearing bone cements, these coatings also exhibited excellent biocompatibility. These chemically modified oligonucleotides could help tailor prophylactic anti-infective coating strategies to meet a range of clinical challenges where the risks for S. aureus prosthetic infections range from transient to long-lasting.
Collapse
Affiliation(s)
- Jordan D Skelly
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Feiyang Chen
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Shing-Yun Chang
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Rewati R Ujjwal
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - David C Ayers
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
12
|
La Rosa M, Fiannaca A, La Paglia L, Urso A. A Graph Neural Network Approach for the Analysis of siRNA-Target Biological Networks. Int J Mol Sci 2022; 23:ijms232214211. [PMID: 36430688 PMCID: PMC9696923 DOI: 10.3390/ijms232214211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Many biological systems are characterised by biological entities, as well as their relationships. These interaction networks can be modelled as graphs, with nodes representing bio-entities, such as molecules, and edges representing relations among them, such as interactions. Due to the current availability of a huge amount of biological data, it is very important to consider in silico analysis methods based on, for example, machine learning, that could take advantage of the inner graph structure of the data in order to improve the quality of the results. In this scenario, graph neural networks (GNNs) are recent computational approaches that directly deal with graph-structured data. In this paper, we present a GNN network for the analysis of siRNA-mRNA interaction networks. siRNAs, in fact, are small RNA molecules that are able to bind to target genes and silence them. These events make siRNAs key molecules as RNA interference agents in many biological interaction networks related to severe diseases such as cancer. In particular, our GNN approach allows for the prediction of the siRNA efficacy, which measures the siRNA's ability to bind and silence a gene target. Tested on benchmark datasets, our proposed method overcomes other machine learning algorithms, including the state-of-the-art predictor based on the convolutional neural network, reaching a Pearson correlation coefficient of approximately 73.6%. Finally, we proposed a case study where the efficacy of a set of siRNAs is predicted for a gene of interest. To the best of our knowledge, GNNs were used for the first time in this scenario.
Collapse
|
13
|
Yang F, Li S, Yuan R, Xiang Y. A bivalent aptamer and terminus-free siRNA junction nanostructure for targeted gene silencing in cancer cells. J Mater Chem B 2022; 10:8315-8321. [PMID: 36165395 DOI: 10.1039/d2tb01414a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small interfering RNA (siRNA) has increasingly evolved as a potent therapeutic solution for several pathological conditions including cancers via post-transcriptional oncogene suppression in cellular pathways. And, the key for siRNA-based therapy highly relies on the successful siRNAs delivery into the target cells, which is significantly challenged by their instability, poor cellular uptake and targeting capability. To overcome these issues, herein, a new type of RNA nanostructure, the bivalent aptamer and terminus-free siRNA junction, is synthesized and employed for effective gene silencing in cancer cells. Such a siRNA junction can be readily prepared by the self-assembly of three RNA sequences and subsequent ligation of the nicks. The as-synthesized siRNA junction shows highly improved enzymatic stability and targeting capability and can be efficiently delivered into the target cells to induce cell apoptosis. With these integrated advantages, the siRNA junction can therefore offer new potentials for the design of different siRNA therapeutics for various diseases.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
14
|
Ray P, Sahu D, Aminedi R, Chandran D. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:977502. [PMID: 37746174 PMCID: PMC10512274 DOI: 10.3389/ffunb.2022.977502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 09/26/2023]
Abstract
Existing, emerging, and reemerging strains of phytopathogenic fungi pose a significant threat to agricultural productivity globally. This risk is further exacerbated by the lack of resistance source(s) in plants or a breakdown of resistance by pathogens through co-evolution. In recent years, attenuation of essential pathogen gene(s) via double-stranded (ds) RNA-mediated RNA interference (RNAi) in host plants, a phenomenon known as host-induced gene silencing, has gained significant attention as a way to combat pathogen attack. Yet, due to biosafety concerns regarding transgenics, country-specific GMO legislation has limited the practical application of desirable attributes in plants. The topical application of dsRNA/siRNA targeting essential fungal gene(s) through spray-induced gene silencing (SIGS) on host plants has opened up a transgene-free avenue for crop protection. However, several factors influence the outcome of RNAi, including but not limited to RNAi mechanism in plant/fungi, dsRNA/siRNA uptake efficiency, dsRNA/siRNA design parameters, dsRNA stability and delivery strategy, off-target effects, etc. This review emphasizes the significance of these factors and suggests appropriate measures to consider while designing in silico and in vitro experiments for successful RNAi in open-field conditions. We also highlight prospective nanoparticles as smart delivery vehicles for deploying RNAi molecules in plant systems for long-term crop protection and ecosystem compatibility. Lastly, we provide specific directions for future investigations that focus on blending nanotechnology and RNAi-based fungal control for practical applications.
Collapse
Affiliation(s)
- Poonam Ray
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Debashish Sahu
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raghavendra Aminedi
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
15
|
Holm A, Hansen SN, Klitgaard H, Kauppinen S. Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases. RNA Biol 2021; 19:594-608. [PMID: 35482908 PMCID: PMC9067473 DOI: 10.1080/15476286.2022.2066334] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
RNA therapeutics comprise a diverse group of oligonucleotide-based drugs such as antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and short hairpin RNAs (shRNAs) that can be designed to selectively interact with drug targets currently undruggable with small molecule-based drugs or monoclonal antibodies. Furthermore, RNA-based therapeutics have the potential to modulate entire disease pathways, and thereby represent a new modality with unprecedented potential for generating disease-modifying drugs for a wide variety of human diseases, including central nervous system (CNS) disorders. Here, we describe different strategies for delivering RNA drugs to the CNS and review recent advances in clinical development of ASO drugs and siRNA-based therapeutics for the treatment of neurological diseases and neuromuscular disorders.Abbreviations 2'-MOE: 2'-O-(2-methoxyethyl); 2'-O-Me: 2'-O-methyl; 2'-F: 2'-fluoro; AD: Alzheimer's disease; ALS: Amyotrophic lateral sclerosis; ALSFRS-R: Revised Amyotrophic Lateral Sclerosis Functional Rating Scale; ARC: Antibody siRNA Conjugate; AS: Angelman Syndrome; ASGRP: Asialoglycoprotein receptor; ASO: Antisense oligonucleotide; AxD: Alexander Disease; BBB: Blood brain barrier; Bp: Basepair; CNM: Centronuclear myopathies; CNS: Central Nervous System; CPP: Cell-penetrating Peptide; CSF: Cerebrospinal fluid; DMD: Duchenne muscular dystrophy; DNA: Deoxyribonucleic acid; FAP: Familial amyloid polyneuropathy; FALS: Familial amyotrophic lateral sclerosis; FDA: The United States Food and Drug Administration; GalNAc: N-acetylgalactosamine; GoF: Gain of function; hATTR: Hereditary transthyretin amyloidosis; HD: Huntington's disease; HRQOL: health-related quality of life; ICV: Intracerebroventricular; IT: Intrathecal; LNA: Locked nucleic acid; LoF: Loss of function; mRNA: Messenger RNA; MS: Multiple Sclerosis; MSA: Multiple System Atrophy; NBE: New Biological Entity; NCE: New Chemical Entity; NHP: Nonhuman primate; nt: Nucleotide; PD: Parkinson's disease; PNP: Polyneuropathy; PNS: Peripheral nervous system; PS: Phosphorothioate; RISC: RNA-Induced Silencing Complex; RNA: Ribonucleic acid; RNAi: RNA interference; s.c.: Subcutaneous; siRNA: Small interfering RNA; SMA: Spinal muscular atrophy; SMN: Survival motor neuron; TTR: Transthyretin.
Collapse
Affiliation(s)
- Anja Holm
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, A.C. Meyers Vænge 15, 2450Copenhagen, Denmark
| | - Stine N. Hansen
- Neumirna Therapeutics, A.C. Meyers Vænge 15, 2450Copenhagen, Denmark
| | - Henrik Klitgaard
- Neumirna Therapeutics, A.C. Meyers Vænge 15, 2450Copenhagen, Denmark
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, A.C. Meyers Vænge 15, 2450Copenhagen, Denmark
| |
Collapse
|
16
|
Host miRNA and immune cell interactions: relevance in nano-therapeutics for human health. Immunol Res 2021; 70:1-18. [PMID: 34716546 DOI: 10.1007/s12026-021-09247-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Around 2200 miRNA (microRNA) genes were found in the human genome. miRNAs are arranged in clusters within the genome and share the same transcriptional regulatory units. It has been revealed that approximately 50% of miRNAs elucidated in the genome are transcribed from non-protein-coding genes, and the leftover miRNAs are present in the introns of coding sequences. We are now approaching a stage in which miRNA diagnostics and therapies can be established confidently, and several commercial efforts are underway to carry these innovations from the bench to the clinic. MiRNAs control many of the significant cellular activities such as production, differentiation, growth, and metabolism. Particularly in the immune system, miRNAs have emerged as a crucial biological component during diseased state and homeostasis. miRNAs have been found to regulate inflammatory responses and autoimmune disorders. Moreover, each miRNA targets multiple genes simultaneously, making miRNAs promising tools as diagnostic biomarkers and as remedial targets. Still, one of the major obstacles in miRNA-based approaches is the achievement of specific and efficient systemic delivery of miRNAs. To overcome these challenges, nanoformulations have been synthesized to protect miRNAs from degradation and enhance cellular uptake. The current review deals with the miRNA-mediated regulation of the recruitment and activation of immune cells, especially in the tumor microenvironment, viral infection, inflammation, and autoimmunity. The nano-based miRNA delivery modes are also discussed here, especially in the context of immune modulation.
Collapse
|
17
|
Soofiyani SR, Hosseini K, Soleimanian A, Abkhooei L, Hoseini AM, Tarhriz V, Ghasemnejad T. An Overview on the Role of miR-451 in Lung Cancer: Diagnosis, Therapy, and Prognosis. Microrna 2021; 10:181-190. [PMID: 34514995 DOI: 10.2174/2211536610666210910130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved non-coding RNAs involved in many physiological processes such as cell proliferation, inhibition, development of apoptosis, differentiation, suppresses tumorigenicity, and regulating cell growth. The description of the alterations of miRNA expression patterns in cancers will be helpful to recognize biomarkers for early detection and possible therapeutic intervention in the treatment of cancers. Recent studies have shown that miR-451 is broadly dysregulated in lung cancer and is a crucial agent in lung tumor progression. This review summarizes recent advances of the potential role of miR-451 in lung cancer diagnosis, prognosis, and treatment and provides an insight into the potential use of miR-451 for the development of advanced therapeutic methods in lung cancer.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kamram Hosseini
- Student research committee, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Liela Abkhooei
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad. Iran
| | - Akbar Mohammad Hoseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine and Tabriz Blood Transfusion Center, Tabriz. Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
18
|
Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:524-535. [PMID: 34589275 PMCID: PMC8463318 DOI: 10.1016/j.omtn.2021.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Small interfering RNA (siRNA) for silencing genes and treating disease has been a dream since ranking as a top Breakthrough of the Year in 2002 by Science. With the recent FDA approval of four siRNA-based drugs, the potential of RNA therapeutics to become the third milestone in pharmaceutical drug development has become a reality. However, the field of RNA interference (RNAi) therapeutics still faces challenges such as specificity in targeting, intracellular processing, and endosome trapping after targeted delivery. Dicer-substrate siRNAs included onto RNA nanoparticles may be able to overcome these challenges. Here, we show that pRNA-based nanoparticles can be designed to efficiently harbor the Dicer-substrate siRNAs in vitro and in vivo to the cytosol of tumor cells and release the siRNA. The structure optimization and chemical modification for controlled release of Dicer-substrate siRNAs in tumor cells were also evaluated through molecular beacon analysis. Studies on the length requirement of the overhanging siRNA revealed that at least 23 nucleotides at the dweller's arm were needed for dicer processing. The above sequence parameters and structure optimization were confirmed in recent studies demonstrating the release of functional Survivin siRNA from the pRNA-based nanoparticles for cancer inhibition in non-small-cell lung, breast, and prostate cancer animal models.
Collapse
|
19
|
Forouhari S, Mahmoudi E, Safdarian E, Beygi Z, Gheibihayat SM. MicroRNA: A Potential Diagnosis for Male Infertility. Mini Rev Med Chem 2021; 21:1226-1236. [PMID: 33302836 DOI: 10.2174/1389557520999201209213319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Male infertility is one of the major global health problems, in particular, in more than half of the affected men. Genetic factors are important for identifying men with idiopathic infertility along with semen analysis. Valid and useful information can be obtained through non-invasive molecular research. Among these, small single-stranded non-coding RNA molecules of microRNAs (abbreviated miRNAs) are non-invasive biomarkers with a diagnostic value by regulating the post-transcriptional gene silence through repression and prevention of the translation process. The association between various types of male infertility and miRNA regulation changes has been evaluated to understand the biological function of miRNA and gene targets. Accordingly, further study of the function of miRNAs associated with reproductive disorders could lead researchers to further understand the molecular mechanisms of male infertility in order to find effective biomarkers and therapeutic strategies. Therefore, the present review article aimed at scrutinizing those researches investigating the altered miRNA expression in testicles, epididymis, and spermatozoa.
Collapse
Affiliation(s)
- Sedighe Forouhari
- Infertility Research Center, Research center of Quran, Hadith and medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Mahmoudi
- Vali Asr Educational Hospital Arsanjan, University of Medical science's Shiraz, Iran
| | - Esmat Safdarian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Beygi
- Department of Midwifery, School of Nursing and Midwifery, Islamic Azad University Meybod Branch, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
20
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Lacroix A, Sleiman HF. DNA Nanostructures: Current Challenges and Opportunities for Cellular Delivery. ACS NANO 2021; 15:3631-3645. [PMID: 33635620 DOI: 10.1021/acsnano.0c06136] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA nanotechnology has produced a wide range of self-assembled structures, offering unmatched possibilities in terms of structural design. Because of their programmable assembly and precise control of size, shape, and function, DNA particles can be used for numerous biological applications, including imaging, sensing, and drug delivery. While the biocompatibility, programmability, and ease of synthesis of nucleic acids have rapidly made them attractive building blocks, many challenges remain to be addressed before using them in biological conditions. Enzymatic hydrolysis, low cellular uptake, immune cell recognition and degradation, and unclear biodistribution profiles are yet to be solved. Rigorous methodologies are needed to study, understand, and control the fate of self-assembled DNA structures in physiological conditions. In this review, we describe the current challenges faced by the field as well as recent successes, highlighting the potential to solve biology problems or develop smart drug delivery tools. We then propose an outlook to drive the translation of DNA constructs toward preclinical design. We particularly believe that a detailed understanding of the fate of DNA nanostructures within living organisms, achieved through thorough characterization, is the next required step to reach clinical maturity.
Collapse
Affiliation(s)
- Aurélie Lacroix
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
22
|
Koizumi M, Hirota Y, Nakayama M, Tamura M, Obuchi W. RNA interference activity of single-stranded oligonucleotides linked between the passenger strand and the guide strand with an aryl phosphate linker. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:647-664. [PMID: 34047248 DOI: 10.1080/15257770.2021.1927077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Recently, we demonstrated that asymmetrical 18 base-paired double-strand oligonucleotides comprised of alternately combined 2'-O-methyl RNA and DNA, termed MED-siRNAs, show high RNase resistance, efficient cleavage of target mRNA, and the subsequent reduction of target protein expression. The 5'-terminal phosphate group and the 3'-overhang of the guide strand were required to fully activate the RNAi activity of MED-siRNAs. Here, we evaluated MED-siRNAs modified with aryl phosphate groups at the 5'-end of the guide strand. The 5'-aryl phosphorylated MED-siRNAs showed highly efficient reduction of target protein expression comparable to 5'-phosphorylated MED-siRNAs. Moreover, 5'-aryl phosphorylated MED-siRNAs linked between the aryl phosphate group at the 5'-end of the guide strand and the hydroxyl group at the 3'-end of the passenger strand with alkyl amide linkers or peptides (e.g., DL-Ser-L-Ala-L-Tyr), resulted in single-stranded MED-siRNAs with a highly efficient cleavage activity of target mRNA with binding to Argonaute 2 via an RNA interference mechanism. These linker techniques could also be used to create siRNAs composed of naturally-occurring molecules such as amino acids. These findings suggest the possibility of using these single-stranded MED-siRNAs as siRNA reagents.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1927077 .
Collapse
Affiliation(s)
- Makoto Koizumi
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Yasuhide Hirota
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Makiko Nakayama
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Masakazu Tamura
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Wataru Obuchi
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| |
Collapse
|
23
|
Mehta P. MicroRNA research: The new dawn of Tuberculosis. Indian J Tuberc 2020; 68:321-329. [PMID: 34099196 DOI: 10.1016/j.ijtb.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB) is global, one of the most fatal communicable diseases and leading cause of worldwide mortality. One-third of the global population is latently affected by Mtb (Mycobacterium tuberculosis) due to its ability to circumvent the host's immune response for its own survival. MicroRNAs (miRNAs) are small, non-coding RNAs which function at the post-transcriptional level and are critical in fine-tuning immune responses regulating the repertoire of genes expressed in immune cells. Recent studies have established their crucial role against TB. Furthermore, the differential expression pattern of miRNAs has revealed the potential role of miRNAs as biomarkers which could be utilized to differentiate between healthy controls and active TB patients or between active and latent TB. The recent advancements made in the field of miRNA regulation of the host responses against TB, as well as the potential of miRNAs as biomarkers for TB diagnosis are discussed here in this review.
Collapse
Affiliation(s)
- Priyanka Mehta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
24
|
Hagiwara K, Honma M, Harumoto T, Harada K, Sawada T, Yamamoto J, Shinohara F. Development of Prodrug Type Circular siRNA for In Vivo Knockdown by Systemic Administration. Nucleic Acid Ther 2020; 30:346-364. [PMID: 33016851 DOI: 10.1089/nat.2020.0894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
siRNAs are being developed as a novel therapeutic modality; however, problems impeding their application in extrahepatic tissues persist, including inadequate stability in biological environments and inefficient drug delivery system to target tissues. Thus, technological improvements that enable robust silencing of target messenger RNA (mRNA) in extrahepatic tissues are necessary. We developed prodrug type covalently closed siRNA (circular siRNA) as a novel nucleic acid agent to knockdown target genes in extrahepatic tissues by systemic administration without drug delivery components. Circular siRNA, which is chemically synthesizable, can assume optimal structures for efficient knockdown using its cleavable linker; namely, circular and linear structure in extracellular and intracellular environment, respectively. In this study, we investigated circular siRNA physicochemical properties, knockdown mechanism, and characteristics in vitro, as well as pharmacokinetics, accumulation, knockdown activity, and safety in vivo. Our circular siRNA exhibited higher stability against serum and exonucleases, increased cellular uptake, and stronger knockdown activity without transfection reagent in vitro than linear siRNA. Furthermore, after systemic administration to mice, circular siRNA showed prolonged circulation and improved knockdown activity in the liver, kidney, and muscle, without causing adverse effects. Circular siRNA may represent an additional platform for RNAi therapeutics, providing alternate solutions for disease treatment.
Collapse
Affiliation(s)
- Kenji Hagiwara
- Nucleic Acid Medicine Research Laboratories and Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Masakazu Honma
- Nucleic Acid Medicine Research Laboratories and Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Toshimasa Harumoto
- Nucleic Acid Medicine Research Laboratories and Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Kenji Harada
- Management Office, Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Takashi Sawada
- Nucleic Acid Medicine Research Laboratories and Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Junichiro Yamamoto
- Nucleic Acid Medicine Research Laboratories and Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Fumikazu Shinohara
- Management Office, Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| |
Collapse
|
25
|
An artificial cationic oligosaccharide combined with phosphorothioate linkages strongly improves siRNA stability. Sci Rep 2020; 10:14845. [PMID: 32908235 PMCID: PMC7481297 DOI: 10.1038/s41598-020-71896-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/21/2020] [Indexed: 11/08/2022] Open
Abstract
Small interfering RNAs (siRNAs) are potential tools for gene-silencing therapy, but their instability is one of the obstacles in the development of siRNA-based drugs. To improve siRNA stability, we synthesised a double-stranded RNA-binding cationic oligodiaminogalactose 4mer (ODAGal4) and investigated here its characteristics for siRNA stabilisation in vitro. ODAGal4 improved the resistance of various siRNAs against serum degradation. The effect of ODAGal4 on siRNA stabilisation was further amplified by introduction of modified nucleotides into the siRNA. In particular, a combination of ODAGal4 and incorporation of phosphorothioate linkages into the siRNA prominently prevented degradation by serum. The half-lives of fully phosphorothioate-modified RNA duplexes with ODAGal4 were more than 15 times longer than those of unmodified siRNAs without ODAGal4; this improvement in serum stability was superior to that observed for other chemical modifications. Serum degradation assays of RNAs with multiple chemical modifications showed that ODAGal4 preferentially improves the stability of RNAs with phosphorothioate modification among chemical modifications. Furthermore, melting temperature analysis showed that ODAGal4 greatly increases the thermal stability of phosphorothioate RNAs. Importantly, ODAGal4 did not interrupt gene-silencing activity of all the RNAs tested. Collectively, these findings demonstrate that ODAGal4 is a potent stabiliser of siRNAs, particularly nucleotides with phosphorothioate linkages, representing a promising tool in the development of gene-silencing therapies.
Collapse
|
26
|
Biscans A, Caiazzi J, Davis S, McHugh N, Sousa J, Khvorova A. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res 2020; 48:7665-7680. [PMID: 32672813 PMCID: PMC7430635 DOI: 10.1093/nar/gkaa595] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Small interfering RNAs (siRNAs) have revolutionized the treatment of liver diseases. However, robust siRNA delivery to other tissues represents a major technological need. Conjugating lipids (e.g. docosanoic acid, DCA) to siRNA supports extrahepatic delivery, but tissue accumulation and gene silencing efficacy are lower than that achieved in liver by clinical-stage compounds. The chemical structure of conjugated siRNA may significantly impact invivo efficacy, particularly in tissues with lower compound accumulation. Here, we report the first systematic evaluation of the impact of siRNA scaffold-i.e. structure, phosphorothioate (PS) content, linker composition-on DCA-conjugated siRNA delivery and efficacy in vivo. We found that structural asymmetry (e.g. 5- or 2-nt overhang) has no impact on accumulation, but is a principal factor for enhancing activity in extrahepatic tissues. Similarly, linker chemistry (cleavable versus stable) altered activity, but not accumulation. In contrast, increasing PS content enhanced accumulation of asymmetric compounds, but negatively impacted efficacy. Our findings suggest that siRNA tissue accumulation does not fully define efficacy, and that the impact of siRNA chemical structure on activity is driven by intracellular re-distribution and endosomal escape. Fine-tuning siRNA chemical structure for optimal extrahepatic efficacy is a critical next step for the progression of therapeutic RNAi applications beyond liver.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Sarah Davis
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| |
Collapse
|
27
|
Wu Y, Song T, Chen P, Jiang X, Wang Q, Chen Q. Prolonged siRNA expression in mammalian cells using an Epstein-Barr virus-based plasmid expression system. Biochem Biophys Res Commun 2020; 529:51-56. [PMID: 32560818 DOI: 10.1016/j.bbrc.2020.05.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/31/2020] [Indexed: 11/19/2022]
Abstract
RNA interference (RNAi) is a powerful tool in gene function analysis and disease treatment, especially diseases that are 'undruggable' by classical small molecules. However, the RNAi applications are limited due to some defects, such as short duration and toxic side effects. New strategies are still needed to improve RNAi applications. Previous studies have illustrated that Epstein-Barr virus nuclear antigen 1 (EBNA-1) and the origin of plasmid replication (oriP) are critical factors for EBV latent gene expression, which can keep the replication of the EBV genome as an extrachromosomal element for a relatively long time. Here we report a plasmid expression system on the base of oriP and EBNA-1, which could produce protein as well as short interfering RNAs(siRNAs) for a long time in mammalian cells. siRNA expression mediated by this system causes efficient and specific down-regulation of gene expression. Except for analyzing gene function, this study also provided a new optional and practical way for protein and/or RNAi-based therapies that require enduring effect.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Tianqiang Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Peipei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Qihan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
28
|
Wang X, Yuan W, Xu Y, Yuan H, Li F. Sensitive multiplex detection of MicroRNAs based on liquid suspension nano-chip. Anal Chim Acta 2020; 1112:24-33. [DOI: 10.1016/j.aca.2020.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023]
|
29
|
Berk C, Civenni G, Wang Y, Steuer C, Catapano CV, Hall J. Pharmacodynamic and Pharmacokinetic Properties of Full Phosphorothioate Small Interfering RNAs for Gene Silencing In Vivo. Nucleic Acid Ther 2020; 31:237-244. [PMID: 32311310 PMCID: PMC8215415 DOI: 10.1089/nat.2020.0852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
State-of-the-art small interfering RNA (siRNA) therapeutics such as givosiran and fitusiran are constructed from three variable components: a fully-modified RNA core that conveys metabolic stability, a targeting moiety that mediates target-cell uptake, and a linker. This structural complexity poses challenges for metabolite characterization and risk assessment after long-term patient exposure. In this study, we show that basic phosphorothioate modification of a siRNA targeting the oncoprotein Lin28B provides a useful increase in metabolic stability, without greatly compromising potency. We found that its stability in vitro matched that of nanoparticle-free patisiran in serum and surpassed it in liver tritosome extracts, although it did not reach the stability of the fitusiran siRNA core structure. Liver and kidney were the main sites of accumulation after its subcutaneous administration in mice. Despite the lack of a delivery agent-free antitumor effect, we anticipate our study to be a starting point to develop alternative siRNA scaffolds that can be degraded into naturally-occurring metabolites and help alleviate the aforementioned challenges. Furthermore, Lin28B is a promising target for cancers, and the development of such simplified siRNA analogs, possibly together with novel targeting units, holds potential.
Collapse
Affiliation(s)
- Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Yuluan Wang
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Kaushik M, Raghunand R, Maheshwari S. Exploring Promises of siRNA in Cancer Therapeutics. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666190207130128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of the RNA interference (RNAi) in 2006, several attempts have
been made to use it for designing and developing drug treatments for a variety of diseases, including
cancer. In this mini-review, we focus on the potential of small interfering RNAs (siRNA) in
anticancer treatment. We first describe the significant barriers that exist on the path to clinical application
of siRNA drugs. Then the current delivery approaches of siRNAs using lipids, polymers,
and, in particular, polymeric carriers that overcome the aforementioned obstacles have been reviewed.
Also, few siRNA mediated drugs currently in clinical trials for cancer therapy, and a collated
list of siRNA databases having a qualitative and/ or quantitative summary of the data in each
database have been briefly mentioned. This mini review aims to facilitate our understanding about
the siRNA, their delivery systems and the possible barriers in their in vivo usage for biomedical
applications.
Collapse
Affiliation(s)
- Mahima Kaushik
- Cluster Innovation Center, University of Delhi, Delhi, India
| | | | | |
Collapse
|
31
|
Lennox KA, Behlke MA. Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. Methods Mol Biol 2020; 2115:23-55. [PMID: 32006393 DOI: 10.1007/978-1-0716-0290-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemically modified oligonucleotides (ONs) are routinely used in the laboratory to assess gene function, and clinical advances are rapidly progressing as continual efforts are being made to optimize ON efficacy. Over the years, RNA interference (RNAi) has become one of the main tools used to inhibit RNA expression across a wide variety of species. Efforts have been made to improve the exogenous delivery of the double-stranded RNA components to the endogenous intracellular RNAi machinery to direct efficacious degradation of a user-defined RNA target. More recently, synthetic RNA ONs are being used to mimic the bacterial-derived CRISPR/Cas system to direct specific editing of the mammalian genome. Both of these techniques rely on the use of various chemical modifications to the RNA phosphate backbone or sugar in specific positions throughout the ONs to improve the desired biological outcome. Relevant chemical modifications also include conjugated targeting ligands to assist ON delivery to specific cell types. Chemical modifications are most beneficial for therapeutically relevant ONs, as they serve to enhance target binding, increase drug longevity, facilitate cell-specific targeting, improve internalization into productive intracellular compartments, and mitigate both sequence-specific as well as immune-related off-target effects (OTEs). The knowledge gained from years of optimizing RNAi reagents and characterizing the biochemical and biophysical properties of each chemical modification will hopefully accelerate the CRISPR/Cas technology into the clinic, as well as further expand the use of RNAi to treat currently undruggable diseases. This review discusses the most commonly employed chemical modifications in RNAi reagents and CRISPR/Cas guide RNAs and provides an overview of select publications that have demonstrated success in improving ON efficacy and/or mitigating undesired OTEs.
Collapse
Affiliation(s)
- Kim A Lennox
- Integrated DNA Technologies, Inc., Coralville, IA, USA.
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| |
Collapse
|
32
|
Syed A, Iftikhar R, Arif M, Mahmood A, Khan S, Rizwan M, Munir A. Computational approach to design potential siRNA for CDKN2A gene silencing in melanoma through RNA interference. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Koizumi M, Hirota Y, Nakayama M, Tamura M, Obuchi W, Kurimoto A, Tsuchida H, Maeda H. Design of 2'- O-methyl RNA and DNA double-stranded oligonucleotides: naturally-occurring nucleotide components with strong RNA interference gene expression inhibitory activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:292-309. [PMID: 31509065 DOI: 10.1080/15257770.2019.1663384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Double-stranded RNAs consisting of 21-nucleotide passenger and guide strands, known as small interfering RNAs (siRNAs), can be used for the identification of gene functions and the regulation of genes involved in disease for therapeutics. The difficulty with unmodified siRNAs lies in the chemical synthesis of RNA, its degradation by RNase, the immune response derived from natural RNA, and the off-target effects mediated by the passenger strand. In this study, asymmetrical 18 base-paired double-strand oligonucleotides comprised of alternately combined DNAs and 2'-O-methyl RNAs, denoted as MED-siRNA, were evaluated. These modified oligonucleotides showed high RNase resistance, a reduced immune response, a highly efficient cleavage of target mRNA with binding to Argonaute 2 (Ago2) via RNA interference, and the subsequent reduction of target protein expression. These findings suggest the possibility of alternatives to unmodified siRNAs with potential use in therapeutics.
Collapse
Affiliation(s)
- Makoto Koizumi
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Yasuhide Hirota
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Makiko Nakayama
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Masakazu Tamura
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Wataru Obuchi
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Akiko Kurimoto
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Hiroshi Tsuchida
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Hiroaki Maeda
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| |
Collapse
|
34
|
A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol 2019; 37:884-894. [PMID: 31375812 PMCID: PMC6879195 DOI: 10.1038/s41587-019-0205-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Sustained silencing of gene expression in deep regions of the brain using small interfering RNAs (siRNAs) has not been achieved. Here we describe an siRNA architecture, divalent-siRNA (Di-siRNA), that supports potent, sustained gene silencing in the central nervous system (CNS) of mice and non-human primates following a single injection into cerebrospinal fluid. Di-siRNAs are composed of two fully chemically modified, phosphorothioate-containing siRNAs connected by a linker. In mice, Di-siRNAs induced potent silencing of huntingtin, the causative gene in Huntington’s disease, reducing mRNA and protein throughout the brain. Silencing persisted for at least six months, with the degree of gene silencing correlating to guide strand tissue accumulation levels. In Cynomolgus macaques, a bolus injection of Di-siRNA showed substantial distribution and robust silencing throughout the brain and spinal cord without detectable toxicity and with minimal off-target effects. This siRNA design may enable RNAi-based gene silencing in the CNS for the treatment of neurological disorders.
Collapse
|
35
|
Biscans A, Coles A, Echeverria D, Khvorova A. The valency of fatty acid conjugates impacts siRNA pharmacokinetics, distribution, and efficacy in vivo. J Control Release 2019; 302:116-125. [PMID: 30940496 PMCID: PMC6546539 DOI: 10.1016/j.jconrel.2019.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Lipid-conjugated small-interfering RNAs (siRNAs) exhibit accumulation and gene silencing in extrahepatic tissues, providing an opportunity to expand therapeutic siRNA utility beyond the liver. Chemically engineering lipids may further improve siRNA delivery and efficacy, but the relationship between lipid structure/configuration and siRNA pharmacodynamics is unclear. Here, we synthesized a panel of mono-, di-, and tri-meric fatty acid-conjugated siRNAs to systematically evaluate the impact of fatty acid structure and valency on siRNA clearance, distribution, and efficacy. Fatty acid valency significantly altered the physicochemical properties of conjugated siRNAs, including hydrophobicity and micelle formation, which affected distribution. Trivalent lipid-conjugated siRNAs were predominantly retained at the site of injection with minimal systemic exposure, whereas monovalent lipid-conjugated siRNAs were quickly released into the circulation and accumulated primarily in kidney. Divalent lipid-conjugated siRNAs showed intermediate behavior, and preferentially accumulated in liver with functional distribution to lung, heart, and fat. The chemical structure of the conjugate, rather than overall physicochemical properties (i.e. hydrophobicity), predicted the degree of extrahepatic tissue accumulation necessary for productive gene silencing. Our findings will inform chemical engineering strategies for enhancing the extrahepatic delivery of lipophilic siRNAs.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA.
| |
Collapse
|
36
|
Chernikov IV, Vlassov VV, Chernolovskaya EL. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front Pharmacol 2019; 10:444. [PMID: 31105570 PMCID: PMC6498891 DOI: 10.3389/fphar.2019.00444] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNAs) acting via RNA interference mechanisms are able to recognize a homologous mRNA sequence in the cell and induce its degradation. The main problems in the development of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and the degradation of siRNAs by nucleases in biological fluids. Various approaches have been proposed to solve the problem of siRNA delivery in vivo (e.g., viruses, cationic lipids, polymers, nanoparticles), but all have limitations for therapeutic use. One of the most promising approaches to solve the problem of siRNA delivery to target cells is bioconjugation; i.e., the covalent connection of siRNAs with biogenic molecules (lipophilic molecules, antibodies, aptamers, ligands, peptides, or polymers). Bioconjugates are "ideal nanoparticles" since they do not need a positive charge to form complexes, are less toxic, and are less effectively recognized by components of the immune system because of their small size. This review is focused on strategies and principles for constructing siRNA bioconjugates for in vivo use.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
37
|
Biscans A, Coles A, Haraszti R, Echeverria D, Hassler M, Osborn M, Khvorova A. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res 2019; 47:1082-1096. [PMID: 30544191 PMCID: PMC6379722 DOI: 10.1093/nar/gky1239] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Small interfering RNA (siRNA)-based therapies are proving to be efficient for treating liver-associated disorders. However, extra-hepatic delivery remains challenging, limiting therapeutic siRNA utility. We synthesized a panel of fifteen lipid-conjugated siRNAs and systematically evaluated the impact of conjugate on siRNA tissue distribution and efficacy. Generally, conjugate hydrophobicity defines the degree of clearance and the liver-to-kidney distribution profile. In addition to primary clearance tissues, several conjugates achieve significant siRNA accumulation in muscle, lung, heart, adrenal glands and fat. Oligonucleotide distribution to extra-hepatic tissues with some conjugates was significantly higher than with cholesterol, a well studied conjugate, suggesting that altering conjugate structure can enhance extra-hepatic delivery. These conjugated siRNAs enable functional gene silencing in lung, muscle, fat, heart and adrenal gland. Required levels for productive silencing vary (5-200 μg/g) per tissue, suggesting that the chemical nature of conjugates impacts tissue-dependent cellular/intracellular trafficking mechanisms. The collection of conjugated siRNA described here enables functional gene modulation in vivo in several extra-hepatic tissues opening these tissues for gene expression modulation. A systemic evaluation of a panel of conjugated siRNA, as reported here, has not previously been investigated and shows that chemical engineering of lipid siRNAs is essential to advance the RNA therapeutic field.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Reka Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Maire Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| |
Collapse
|
38
|
Abstract
Background Small interfering RNA (siRNA) can be used to post-transcriptional gene regulation by knocking down targeted genes. In functional genomics, biomedical research and cancer therapeutics, siRNA design is a critical research topic. Various computational algorithms have been developed to select the most effective siRNA, whereas the efficacy prediction accuracy is not so satisfactory. Many existing computational methods are based on feature engineering, which may lead to biased and incomplete features. Deep learning utilizes non-linear mapping operations to detect potential feature pattern and has been considered perform better than existing machine learning method. Results In this paper, to further improve the prediction accuracy and facilitate gene functional studies, we developed a new powerful siRNA efficacy predictor based on a deep architecture. First, we extracted hidden feature patterns from two modalities, including sequence context features and thermodynamic property. Then, we constructed a deep architecture to implement the prediction. On the available largest siRNA database, the performance of our proposed method was measured with 0.725 PCC and 0.903 AUC value. The comparative experiment showed that our proposed architecture outperformed several siRNA prediction methods. Conclusions The results demonstrate that our deep architecture is stable and efficient to predict siRNA silencing efficacy. The method could help select candidate siRNA for targeted mRNA, and further promote the development of RNA interference.
Collapse
Affiliation(s)
- Ye Han
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Fei He
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Yongbing Chen
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Yuanning Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China.,College of Computer Science and Technology, Jilin University, Changchun, China
| | - Helong Yu
- School of Information Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
39
|
Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E, Melero I. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 2018; 17:751-767. [DOI: 10.1038/nrd.2018.132] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Optimized delivery of siRNA into 3D tumor spheroid cultures in situ. Sci Rep 2018; 8:7952. [PMID: 29785035 PMCID: PMC5962539 DOI: 10.1038/s41598-018-26253-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
3D tissue culture provides a physiologically relevant and genetically tractable system for studying normal and malignant human tissues. Despite this, gene-silencing studies using siRNA has proved difficult. In this study, we have identified a cause for why traditional siRNA transfection techniques are ineffective in eliciting gene silencing in situ within 3D cultures and proposed a simple method for significantly enhancing siRNA entry into spheroids/organoids. In 2D cell culture, the efficiency of gene silencing is significantly reduced when siRNA complexes are prepared in the presence of serum. Surprisingly, in both 3D tumour spheroids and primary murine organoids, the presence of serum during siRNA preparation rapidly promotes entry and internalization of Cy3-labelled siRNA in under 2 hours. Conversely, siRNA prepared in traditional low-serum transfection media fails to gain matrigel or spheroid/organoid entry. Direct measurement of CTNNB1 mRNA (encoding β-catenin) from transfected tumour spheroids confirmed a transient but significant knockdown of β-catenin when siRNA:liposome complexes were formed with serum, but not when prepared in the presence of reduced-serum media (Opti-MEM). Our studies suggest a simple modification to standard lipid-based transfection protocols facilitates rapid siRNA entry and transient gene repression, providing a platform for researchers to improve siRNA efficiency in established 3D cultures.
Collapse
|
41
|
Roloff A, Nelles DA, Thompson MP, Yeo GW, Gianneschi NC. Self-Transfecting Micellar RNA: Modulating Nanoparticle Cell Interactions via High Density Display of Small Molecule Ligands on Micelle Coronas. Bioconjug Chem 2018; 29:126-135. [PMID: 29286237 PMCID: PMC5993044 DOI: 10.1021/acs.bioconjchem.7b00657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intracellular delivery of synthetic nucleic acids represents a major challenge in biotechnology and in biomedicine. Methods to deliver short, double-stranded RNA to living cells are of particular interest because of the potential to engage the RNA interference machinery and to regulate mRNA expression. In this work, we describe novel RNA-polymer amphiphiles that assemble into spherical micellar nanoparticles with diameters of ca. 15-30 nm and efficiently enter live cells without transfection reagents. Each micelle consists of approximately 100 RNA strands forming a densely packed corona around a polymeric core. Importantly, the surface-displayed RNA remains accessible for hybridization with complementary RNA. Chemical modification of the termini of hybridized RNA strands enabled the display of small organic moieties on the outer surface of the micelle corona. We found that some of these modifications can have a tremendous impact on cellular internalization efficiencies. The display of hydrophobic dabcyl or stilbene units dramatically increased cell uptake, whereas hydrophilic neutral hydroxy or anionic phosphate residues were ineffective. Interestingly, neither of these modifications mediated noticeable uptake of free RNA oligonucleotides. We infer that their high density display on micellar nanoparticle surfaces is key for the observed effect; achieved with local effective surface concentrations in the millimolar range. We speculate that weak interactions with cell surface receptors that are amplified by the multivalent presentation of such modifications may be responsible. The installation of small molecule ligands on nanomaterial surfaces via hybridization of chemically modified oligonucleotides offers a simple and straightforward way to modulate cellular uptake of nanoparticles. Biological functionality of micellar RNA was demonstrated through the sequence-specific regulation of mRNA expression in HeLa cells.
Collapse
Affiliation(s)
- Alexander Roloff
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - David A. Nelles
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Matthew P. Thompson
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Gene W. Yeo
- Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry, Materials Science and Engineering, Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Vlaho D, Fakhoury JF, Damha MJ. Structural Studies and Gene Silencing Activity of siRNAs Containing Cationic Phosphoramidate Linkages. Nucleic Acid Ther 2017; 28:34-43. [PMID: 29195060 DOI: 10.1089/nat.2017.0702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A series of siRNA duplexes containing cationic non-bridging 3',5'-linked phosphoramidate (PN) linkages was designed and synthesized using a combination of phosphoramidite and H-phosphonate chemistries. Modified oligonucleotides were assayed for their thermal stability, helical structure, and ability to modulate the expression of firefly luciferase. We demonstrate that PN modifications of siRNAs are, in general, minimally destabilizing with respect to duplex thermal stability; destabilization can be mitigated through the incorporation of 2'-modified RNA-like residues or PN conjugates containing ionizable pendant moieties. We also demonstrate that single cationic dimethylethylenediamine PN linkages have little effect on siRNA potency, whether located in the passenger or guide strand of the duplex. Highly modified siRNA passenger strands were further modified with up to four cationic PN linkages, with little effect on duplex potency or helical structure. We envision that PN modifications could be useful in the production of therapeutic siRNAs with optimal biological properties.
Collapse
Affiliation(s)
- Danielle Vlaho
- Department of Chemistry, McGill University , Montreal, Canada
| | | | - Masad J Damha
- Department of Chemistry, McGill University , Montreal, Canada
| |
Collapse
|
43
|
Kamel W, Akusjärvi G. An Ago2-associated capped transcriptional start site small RNA suppresses adenovirus DNA replication. RNA (NEW YORK, N.Y.) 2017; 23:1700-1711. [PMID: 28839112 PMCID: PMC5648037 DOI: 10.1261/rna.061291.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Here we show that the adenovirus major late promoter produces a 31-nucleotide transcriptional start site small RNA (MLP-TSS-sRNA) that retains the 7-methylguanosine (m7G)-cap and is incorporated onto Ago2-containing RNA-induced silencing complexes (RISC) in human adenovirus-37 infected cells. RNA polymerase II CLIP (UV-cross linking immunoprecipitation) experiments suggest that the MLP-TSS-sRNA is produced by promoter proximal stalling/termination of RNA polymerase II transcription at the site of the small RNA 3' end. The MLP-TSS-sRNA is highly stable in cells and functionally active, down-regulating complementary targets in a sequence and dose-dependent manner. The MLP-TSS-sRNA is transcribed from the opposite strand to the adenoviral DNA polymerase and preterminal protein mRNAs, two essential viral replication proteins. We show that the MLP-TSS-sRNA act in trans to reduce DNA polymerase and preterminal protein mRNA expression. As a consequence of this, the MLP-TSS-sRNA has an inhibitory effect on the efficiency of viral DNA replication. Collectively, our results suggest that this novel sRNA may serve a regulatory function controlling viral genome replication during a lytic and/or persistent adenovirus infection in its natural host.
Collapse
Affiliation(s)
- Wael Kamel
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
44
|
Herrera-Carrillo E, Berkhout B. Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res 2017; 45:10369-10379. [PMID: 28977573 PMCID: PMC5737282 DOI: 10.1093/nar/gkx779] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in the regulation of cellular gene expression via the conserved RNA interference (RNAi) mechanism. Biogenesis of the unusual miR-451 does not require Dicer. This molecule is instead processed by the Argonaute 2 (Ago2) enzyme. Similarly, unconventional short hairpin RNA (shRNA) molecules have been designed as miR-451 mimics that rely exclusively on Ago2 for maturation. We will review recent progress made in the understanding of this alternative processing route. Next, we describe different Dicer-independent shRNA designs that have been developed and discuss their therapeutic advantages and disadvantages. As an example, we will present the route towards development of a durable gene therapy against HIV-1.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
45
|
Mutisya D, Hardcastle T, Cheruiyot SK, Pallan PS, Kennedy SD, Egli M, Kelley ML, Smith AVB, Rozners E. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs. Nucleic Acids Res 2017; 45:8142-8155. [PMID: 28854734 PMCID: PMC5737567 DOI: 10.1093/nar/gkx558] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/18/2017] [Indexed: 12/21/2022] Open
Abstract
While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA-DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs.
Collapse
Affiliation(s)
- Daniel Mutisya
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| | | | - Samwel K Cheruiyot
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| | - Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Scott D Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| |
Collapse
|
46
|
Godinho BMDC, Gilbert JW, Haraszti RA, Coles AH, Biscans A, Roux L, Nikan M, Echeverria D, Hassler M, Khvorova A. Pharmacokinetic Profiling of Conjugated Therapeutic Oligonucleotides: A High-Throughput Method Based Upon Serial Blood Microsampling Coupled to Peptide Nucleic Acid Hybridization Assay. Nucleic Acid Ther 2017; 27:323-334. [PMID: 29022758 DOI: 10.1089/nat.2017.0690] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Therapeutic oligonucleotides, such as small interfering RNAs (siRNAs), hold great promise for the treatment of incurable genetically defined disorders by targeting cognate toxic gene products for degradation. To achieve meaningful tissue distribution and efficacy in vivo, siRNAs must be conjugated or formulated. Clear understanding of the pharmacokinetic (PK)/pharmacodynamic behavior of these compounds is necessary to optimize and characterize the performance of therapeutic oligonucleotides in vivo. In this study, we describe a simple and reproducible methodology for the evaluation of in vivo blood/plasma PK profiles and tissue distribution of oligonucleotides. The method is based on serial blood microsampling from the saphenous vein, coupled to peptide nucleic acid hybridization assay for quantification of guide strands. Performed with minimal number of animals, this method allowed unequivocal detection and sensitive quantification without the need for amplification, or further modification of the oligonucleotides. Using this methodology, we compared plasma clearances and tissue distribution profiles of two different hydrophobically modified siRNAs (hsiRNAs). Notably, cholesterol-hsiRNA presented slow plasma clearances and mainly accumulated in the liver, whereas, phosphocholine-docosahexaenoic acid-hsiRNA was rapidly cleared from the plasma and preferably accumulated in the kidney. These data suggest that the PK/biodistribution profiles of modified hsiRNAs are determined by the chemical nature of the conjugate. Importantly, the method described in this study constitutes a simple platform to conduct pilot assessments of the basic clearance and tissue distribution profiles, which can be broadly applied for evaluation of new chemical variants of siRNAs and micro-RNAs.
Collapse
Affiliation(s)
- Bruno M D C Godinho
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - James W Gilbert
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Reka A Haraszti
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Andrew H Coles
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Annabelle Biscans
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Loic Roux
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Mehran Nikan
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Dimas Echeverria
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Matthew Hassler
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Anastasia Khvorova
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
47
|
Song X, Wang X, Ma Y, Liang Z, Yang Z, Cao H. Site-Specific Modification Using the 2'-Methoxyethyl Group Improves the Specificity and Activity of siRNAs. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:242-250. [PMID: 29246303 PMCID: PMC5675723 DOI: 10.1016/j.omtn.2017.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 11/29/2022]
Abstract
Rapid progress has been made toward small interfering RNA (siRNA)-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodified strand of siRNAs but were well tolerated by the modified strand. Intriguingly, addition of the 2′-methoxyethyl (MOE) group at the cleavage site improved both the specificity and silencing activity of siRNAs by facilitating the oriented RNA-induced silencing complex (RISC) loading of the modified strand. Furthermore, we combined MOE modifications at positions 9 and 10 of one strand together with 2′-O-methylation (OMe) at position 14 of the other strand and found a synergistic effect that improved the specificity of siRNAs. The surprisingly beneficial effect of the combined modification was validated using siRNA-targeting endogenous gene intercellular adhesion molecule 1 (ICAM1). We found that the combined modifications eliminated its off-target effects. In conclusion, we established effective strategies to optimize siRNAs using site-specific MOE modifications. The findings may allow the creation of superior siRNAs for therapy in terms of activity and specificity.
Collapse
Affiliation(s)
- Xinyun Song
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Hagopian JC, Hamil AS, van den Berg A, Meade BR, Eguchi A, Palm-Apergi C, Dowdy SF. Induction of RNAi Responses by Short Left-Handed Hairpin RNAi Triggers. Nucleic Acid Ther 2017; 27:260-271. [PMID: 28933656 DOI: 10.1089/nat.2017.0686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Small double-stranded, left-handed hairpin (LHP) RNAs containing a 5'-guide-loop-passenger-3' structure induce RNAi responses by a poorly understood mechanism. To explore LHPs, we synthesized fully 2'-modified LHP RNAs targeting multiple genes and found all to induce robust RNAi responses. Deletion of the loop and nucleotides at the 5'-end of the equivalent passenger strand resulted in a smaller LHP that still induced strong RNAi responses. Surprisingly, progressive deletion of up to 10 nucleotides from the 3'-end of the guide strand resulted in a 32mer LHP capable of inducing robust RNAi responses. However, further guide strand deletion inhibited LHP activity, thereby defining the minimal length guide targeting length to 13 nucleotides. To dissect LHP processing, we examined LHP species that coimmunoprecipitated with Argonaute 2 (Ago2), the catalytic core of RNA-induced silencing complex, and found that the Ago2-associated processed LHP species was of a length that correlated with Ago2 cleavage of the passenger strand. Placement of a blocking 2'-OMe blocking modification at the LHP predicted Ago2 cleavage site resulted in an intact LHP loaded into Ago2 and no RNAi response. Taken together, these data argue that in the absence of a substantial loop, this novel class of small LHP RNAs enters the RNAi pathway by a Dicer-independent mechanism that involves Ago2 cleavage and results in an extended guide strand. This work establishes LHPs as an alternative RNAi trigger that can be produced from a single synthesis for potential use as an RNAi therapeutic.
Collapse
Affiliation(s)
- Jonathan C Hagopian
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Alexander S Hamil
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Arjen van den Berg
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Bryan R Meade
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Akiko Eguchi
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Caroline Palm-Apergi
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Steven F Dowdy
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| |
Collapse
|
49
|
Nikan M, Osborn MF, Coles AH, Biscans A, Godinho BM, Haraszti RA, Sapp E, Echeverria D, DiFiglia M, Aronin N, Khvorova A. Synthesis and Evaluation of Parenchymal Retention and Efficacy of a Metabolically Stable O-Phosphocholine-N-docosahexaenoyl-l-serine siRNA Conjugate in Mouse Brain. Bioconjug Chem 2017; 28:1758-1766. [PMID: 28462988 PMCID: PMC5578421 DOI: 10.1021/acs.bioconjchem.7b00226] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ligand-conjugated siRNAs have the potential to achieve targeted delivery and efficient silencing in neurons following local administration in the central nervous system (CNS). We recently described the activity and safety profile of a docosahexaenoic acid (DHA)-conjugated, hydrophobic siRNA (DHA-hsiRNA) targeting Huntingtin (Htt) mRNA in mouse brain. Here, we report the synthesis of an amide-modified, phosphocholine-containing DHA-hsiRNA conjugate (PC-DHA-hsiRNA), which closely resembles the endogenously esterified biological structure of DHA. We hypothesized that this modification may enhance neuronal delivery in vivo. We demonstrate that PC-DHA-hsiRNA silences Htt in mouse primary cortical neurons and astrocytes. After intrastriatal delivery, Htt-targeting PC-DHA-hsiRNA induces ∼80% mRNA silencing and 71% protein silencing after 1 week. However, PC-DHA-hsiRNA did not substantially outperform DHA-hsiRNA under the conditions tested. Moreover, at the highest locally administered dose (4 nmol, 50 μg), we observe evidence of PC-DHA-hsiRNA-mediated reactive astrogliosis. Lipophilic ligand conjugation enables siRNA delivery to neural tissues, but rational design of functional, nontoxic siRNA conjugates for CNS delivery remains challenging.
Collapse
Affiliation(s)
- Mehran Nikan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maire F. Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew H. Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruno M.D.C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Reka A. Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ellen Sapp
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
50
|
Cambon K, Zimmer V, Martineau S, Gaillard MC, Jarrige M, Bugi A, Miniarikova J, Rey M, Hassig R, Dufour N, Auregan G, Hantraye P, Perrier AL, Déglon N. Preclinical Evaluation of a Lentiviral Vector for Huntingtin Silencing. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:259-276. [PMID: 28603746 PMCID: PMC5453866 DOI: 10.1016/j.omtm.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/07/2017] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from a polyglutamine expansion in the huntingtin (HTT) protein. There is currently no cure for this disease, but recent studies suggest that RNAi to downregulate the expression of both normal and mutant HTT is a promising therapeutic approach. We previously developed a small hairpin RNA (shRNA), vectorized in an HIV-1-derived lentiviral vector (LV), that reduced pathology in an HD rodent model. Here, we modified this vector for preclinical development by using a tat-independent third-generation LV (pCCL) backbone and removing the original reporter genes. We demonstrate that this novel vector efficiently downregulated HTT expression in vitro in striatal neurons derived from induced pluripotent stem cells (iPSCs) of HD patients. It reduced two major pathological HD hallmarks while triggering a minimal inflammatory response, up to 6 weeks after injection, when administered by stereotaxic surgery in the striatum of an in vivo rodent HD model. Further assessment of this shRNA vector in vitro showed proper processing by the endogenous silencing machinery, and we analyzed gene expression changes to identify potential off-targets. These preclinical data suggest that this new shRNA vector fulfills primary biosafety and efficiency requirements for further development in the clinic as a cure for HD.
Collapse
Affiliation(s)
- Karine Cambon
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Virginie Zimmer
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Sylvain Martineau
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Margot Jarrige
- Institut National de la Santé et de la Recherche Médicale UMR861, I-Stem, AFM, 91100 Corbeil-Essonnes, France
- UEVE UMR861, I-STEM, AFM, 91100 Corbeil-Essonnes, France
- CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Aurore Bugi
- CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Jana Miniarikova
- Department of Research & Development, uniQure, 1105 Amsterdam, the Netherlands
| | - Maria Rey
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Raymonde Hassig
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Noelle Dufour
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Gwenaelle Auregan
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Anselme L. Perrier
- Institut National de la Santé et de la Recherche Médicale UMR861, I-Stem, AFM, 91100 Corbeil-Essonnes, France
- UEVE UMR861, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Corresponding author: Nicole Déglon, Lausanne University Hospital (CHUV), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Pavillon 3, Avenue de Beaumont, 1011 Lausanne, Switzerland.
| |
Collapse
|