1
|
Butt AK, Patel J, Shirwany H, Mirza Q, Hoover J, Khouzam RN. Beneficial Extracardiac Effects of Cardiovascular Medications. Curr Cardiol Rev 2022; 18:e151021197270. [PMID: 34779371 PMCID: PMC9413730 DOI: 10.2174/1573403x17666211015145132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death worldwide, with cardiovascular medications being amongst the most common medications prescribed. These medications have diverse effects on the heart, vascular system, as well as other tissues and organ systems. The extra cardiovascular effects have been found to be of use in the treatment of non-cardiovascular diseases and pathologies. Minoxidil is used to manage systemic hypertension with its well-known side effect of hirsutism used to treat alopecia and baldness. Sildenafil was originally investigated as a treatment option for systemic hypertension; however, its side effect of penile erection led to it being widely used for erectile dysfunction. Alpha-1 blockers such as terazosin are indicated to treat systemic hypertension but are more commonly used for benign prostatic hyperplasia and post-traumatic stress disorder. Beta blockers are the mainstay treatment for congestive heart failure and systemic hypertension but have been found useful to help in patients with intention tremors as well as prophylaxis of migraines. Similarly, calcium channel blockers are indicated in medical expulsion therapy for ureteric calculi in addition to their cardiovascular indications. Thiazides are commonly used for treating systemic hypertension and as diuretics. Thiazides can cause hypocalciuria and hypercalcemia. This side effect has led to thiazides being used to treat idiopathic hypercalciuria and associated nephrolithiasis. Spironolactone is commonly utilized in treating heart failure and as a diuretic for edema. It's well described anti-androgen side effects have been used for acne vulgaris and hirsutism in polycystic ovarian syndrome. This review article discusses how the various extracardiovascular effects of commonly used cardiovascular medications are put to use in managing non-cardiovascular conditions.
Collapse
Affiliation(s)
- Asra K. Butt
- Department of Internal Medicine, Veteran Affairs Medical Center, Memphis, TN 38104, USA
| | - Jay Patel
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hamid Shirwany
- University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA
| | - Qasim Mirza
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jonathan Hoover
- Department of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rami N. Khouzam
- Department of Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Weintraub S, Frishman WH. A Novel Calcium Channel Blocker: Etripamil: What is the Future of Intranasal Drug Delivery in the Treatment of Cardiac Arrhythmias? Cardiol Rev 2021; 29:253-258. [PMID: 33060411 DOI: 10.1097/crd.0000000000000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Symptomatic paroxysmal cardiac arrhythmias are common cardiac conditions that lead to a decreased quality of life, increased healthcare costs, and significant morbidity. Many cardiac arrhythmias increase in frequency with age, and as the elderly population continues to increase, so will the incidence and prevalence of cardiac arrhythmias. The long-term treatment options for patients with paroxysmal arrhythmias include ablation procedures and daily oral antiarrhythmics. Acute management entails vagal maneuvers, intravenous antiarrhythmics, and synchronized cardioversion. However, there are limited treatment options for patients with less frequent and less severe arrhythmias, ablation refractory disease, or who are poor candidates for ablative procedures, For abortive therapy, oral anti-arrhythmic medications are ineffective due to their slow onset of action and intravenous medications require treatment at an acute care facility, which is both costly and stressful to the patient. Etripamil is a novel intranasal non-dihydropyridine calcium channel blocker that has begun phase III clinical trials for the treatment of paroxysmal supraventricular tachycardias. Due to its intranasal mode of delivery, etripamil has a rapid onset of action, and could feasibly be administered by the patient themselves. Clinical phase II trials of etripamil in moderate to high doses demonstrated efficacy comparable to the standard of care, and took an average of 3 minutes from drug administration to conversion to sinus rhythm. In this article, we have conducted an extensive literature review of intranasal drug delivery, calcium channel blockers, and etripamil, to discuss the future possibilities of using this new medication.
Collapse
Affiliation(s)
- Spencer Weintraub
- From the Department of Medicine, Zucker School of Medicine at Hofstra/Northwell Northshore and Long Island Jewish Hospitals, New Hyde Park, NY
| | - William H Frishman
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
3
|
Shabbir W. T1143 essential for Ca V1.2 inhibition by diltiazem. Eur J Pharmacol 2021; 895:173889. [PMID: 33482177 DOI: 10.1016/j.ejphar.2021.173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/15/2022]
Abstract
Careful analysis of previously published reports and some new insights into the structure activity studies revealed an important role of Threonine 1143 in drug binding. Substituting T1143 by alanine and other residues significantly reduced channel inhibition by qDil and Dil. Mutation T1143A did not affect channel activation or inactivation while almost completely diminishing channel block by Dil or qDil. These findings support the view that T1143 serves as drug binding determinant. Other mutations in this position than T1143A (T1143L/Y/S/N/C/V/E) diminished channel inhibition by qDil but additionally affected channel activation and inactivation and may therefore affect channel block allosterically. Collectively, our data suggest that T1143 is an essential diltiazem binding determinant.
Collapse
Affiliation(s)
- Waheed Shabbir
- Institute for Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
4
|
Özdemir HI, van Dijk CHB, Özdemir AB, van Straten BHM, Haanschoten M, Soliman-Hamad MA. Preventing spasm of the radial artery conduit during coronary artery bypass grafting: Nicardipine versus verapamil. J Card Surg 2019; 34:1505-1510. [PMID: 31794130 DOI: 10.1111/jocs.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM OF THE STUDY In vitro studies have shown a reduction in radial artery spasm with the use of calcium antagonists. The purpose of this study was to evaluate the efficacy of topical treatment of the radial artery conduit using either verapamil or nicardipine before the anastomoses. METHODS This prospective randomized study included 131 patients, who underwent coronary artery bypass grafting surgery with the use of the radial artery as a conduit. In 65 patients, the harvested radial artery was topically treated with verapamil and in 66 patients with nicardipine. After harvesting the radial artery, the direct flow through the conduit was measured in vitro before 5-minute incubation in nicardipine or verapamil and measured again after incubation. The flow before and after incubation was compared. Postincubation flow was also compared in the two groups. After performing the anastomosis, the flow through the radial artery was measured in vivo. RESULTS The mean flow after NaCl incubation was 19.93 ± 12.66 mL/min and after incubation in the Ca+ channel blocker 47.16 ± 14.58 mL/min (P < .001). No significant difference in postincubation free flow was found between verapamil (46.29 ± 15.43 mL/min) and nicardipine (48.01 ± 13.77 mL/min; P = .503). CONCLUSION Topical treatment with Ca+ channel blockers reduces radial artery spasm and significantly increases the free flow through the radial artery conduit. Nicardipine is a safe and effective alternative of verapamil in preventing spasm of radial artery conduit.
Collapse
Affiliation(s)
- H Ibrahim Özdemir
- Department of Cardiothoracic Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Carola H B van Dijk
- Department of Cardiothoracic Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Bart H M van Straten
- Department of Cardiothoracic Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Marco Haanschoten
- Department of Anesthesiology, Catharina Hospital, Eindhoven, The Netherlands
| | | |
Collapse
|
5
|
Sudewi AA, Susilawathi NM, Mahardika BK, Mahendra AN, Pharmawati M, Phuong MA, Mahardika GN. Selecting Potential Neuronal Drug Leads from Conotoxins of Various Venomous Marine Cone Snails in Bali, Indonesia. ACS OMEGA 2019; 4:19483-19490. [PMID: 31763573 PMCID: PMC6868881 DOI: 10.1021/acsomega.9b03122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Many conotoxins, natural peptides of marine cone snails, have been identified to target neurons. Here, we provide data on pharmacological families of the conotoxins of 11 species of cone snails collected in Bali. The identified definitive pharmacological families possibly targeting neuronal tissues were α (alpha), ι (iota), κ (kappa), and ρ (rho). These classes shall target nicotinic acetylcholine receptors, voltage-gated Na channels, voltage-gated K channels, and α1-adrenoceptors, respectively. The VI/VII-O3 conotoxins might be prospected as an inhibitor of N-methyl-d-aspartate. Con-ikot-ikot could be applied as an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor blocker medicine. The definitive pharmacology classes of conotoxins as well as those yet to be elucidated need to be further established and verified.
Collapse
Affiliation(s)
- Anak A.
R. Sudewi
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Ni M. Susilawathi
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Bayu K. Mahardika
- The
Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa 6, Denpasar 80223, Bali, Indonesia
| | - Agung N. Mahendra
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Made Pharmawati
- Faculty
of Mathematic and Natural Sciences, Udayana
University of Bali, Kampus
Bukit Jimbaran, Badung 80361, Bali, Indonesia
| | - Mark A. Phuong
- Department
of Ecology and Evolutionary Biology, University
of California, Los Angeles, Los
Angeles 90095, California, United States
| | - Gusti N. Mahardika
- The
Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa 6, Denpasar 80223, Bali, Indonesia
- The Indonesian
Biodiversity Research Center, Jl. Sudirman, Denpasar 80225, Bali, Indonesia
| |
Collapse
|
6
|
Simonyte S, Kuciene R, Dulskiene V, Lesauskaite V. Association between ATP2B1 and CACNB2 polymorphisms and high blood pressure in a population of Lithuanian children and adolescents: a cross-sectional study. BMJ Open 2018; 8:e019902. [PMID: 29982197 PMCID: PMC6042568 DOI: 10.1136/bmjopen-2017-019902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Recently, genome-wide associated studies have identified several genetic loci that are associated with elevated blood pressure and could play a critical role in intracellular calcium homeostasis. The aim of this study was to assess the associations of ATP2B1 rs2681472 and CACNB2 rs12258967 gene polymorphisms with high blood pressure (HBP) among Lithuanian children and adolescents aged 12-15 years. STUDY DESIGN AND PARTICIPANTS This was a cross-sectional study of a randomly selected sample of 646 12-15-year-old adolescents who participated in the survey 'The Prevalence and Risk Factors of HBP in 12-15 Year-Old Lithuanian Children and Adolescents (from November 2010 to April 2012)'. Anthropometric parameters and BP were measured. The participants with HBP were screened on two separate occasions. Subjects were genotyped ATP2B1 rs2681472 and CACNB2 rs12258967 gene polymorphisms using real-time PCR method. RESULTS The prevalence of HBP was 36.7%, significantly higher for boys than for girls. In the multivariate analysis, after adjustment for body mass index and waist circumference, boys with CACNB2 CG genotype, CACNB2 GG genotype and CACNB2 CG +GG genotype had higher odds of having HBP in codominant (adjusted OR (aOR)=1.92; 95% CI 1.16 to 3.18, p=0.011; and aOR=2.64; 95% CI 1.19 to 5.90, p=0.018) and in dominant (aOR=2.05; 95% CI 1.27 to 3.30, p=0.003) inheritance models. Girls carrying CACNB2 CG genotype and CACNB2 CG +GG genotype had increased odds of HBP in codominant (aOR=1.82; 95% CI 1.02 to 3.24, p=0.044) and in dominant (aOR=1.89; 95% CI 1.09 to 3.28, p=0.023) inheritance models. Furthermore, significant associations were found in additive models separately for boys (aOR=1.72; 95% CI 1.20 to 2.46, p=0.003) and girls (aOR=1.52; 95% CI 1.05 to 2.20, p=0.027). No significant association was found between ATP2B1 gene polymorphism and the odds of HBP. CONCLUSIONS Our results indicate that CACNB2 gene polymorphism was significantly associated with higher odds of HBP in Lithuanian adolescents aged 12-15 years.
Collapse
Affiliation(s)
- Sandrita Simonyte
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Renata Kuciene
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virginija Dulskiene
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Lesauskaite
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
7
|
Antihypertensive therapy in nondiabetic chronic kidney disease: a review and update. ACTA ACUST UNITED AC 2018; 12:154-181. [PMID: 29396103 DOI: 10.1016/j.jash.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Hypertension is an important contributor to progression of nondiabetic chronic kidney disease (CKD). Compelling observational evidence indicates that the divergence of blood pressure (BP) away from an ideal range in either direction is associated with a progressive rise in the risk of mortality and cardiovascular and renal disease progression. To date, various clinical trials and meta-analyses examining strict versus less intensive BP control in nondiabetic CKD have not conclusively demonstrated a renal advantage of one BP-lowering approach over another, except in certain subgroups such as proteinuric patients where evidence is circumstantial. As recent data have come to light suggesting that intensive BP control yields superior survival and cardiovascular outcomes in patients at high risk for cardiovascular disease, interest in the prospect of whether such benefit extends to individuals with CKD has surged. This review is a comprehensive analysis of antihypertensive literature in nondiabetic renal disease, with a particular emphasis on BP target.
Collapse
|
8
|
Lajarín-Cuesta R, Nanclares C, Arranz-Tagarro JA, González-Lafuente L, Arribas RL, Araujo de Brito M, Gandía L, de Los Ríos C. Gramine Derivatives Targeting Ca(2+) Channels and Ser/Thr Phosphatases: A New Dual Strategy for the Treatment of Neurodegenerative Diseases. J Med Chem 2016; 59:6265-80. [PMID: 27280380 DOI: 10.1021/acs.jmedchem.6b00478] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe the synthesis of gramine derivatives and their pharmacological evaluation as multipotent drugs for the treatment of Alzheimer's disease. An innovative multitarget approach is presented, targeting both voltage-gated Ca(2+) channels, classically studied for neurodegenerative diseases, and Ser/Thr phosphatases, which have been marginally aimed, even despite their key role in protein τ dephosphorylation. Twenty-five compounds were synthesized, and mostly their neuroprotective profile exceeded that offered by the head compound gramine. In general, these compounds reduced the entry of Ca(2+) through VGCC, as measured by Fluo-4/AM and patch clamp techniques, and protected in Ca(2+) overload-induced models of neurotoxicity, like glutamate or veratridine exposures. Furthermore, we hypothesize that these compounds decrease τ hyperphosphorylation based on the maintenance of the Ser/Thr phosphatase activity and their neuroprotection against the damage caused by okadaic acid. Hence, we propose this multitarget approach as a new and promising strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rocío Lajarín-Cuesta
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid , C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Carmen Nanclares
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid , C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Juan-Alberto Arranz-Tagarro
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid , C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Laura González-Lafuente
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa , C/Diego de León, 62, 28006 Madrid, Spain
| | - Raquel L Arribas
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid , C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Monique Araujo de Brito
- Programa de Pós Graduação em Ciências Aplicadas a Produtos Para a Saúde, Faculdade de Farmácia, Universidade Federal Fluminense , Niterói, Rio de Janeiro, Brasil
| | - Luis Gandía
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid , C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid , C/Arzobispo Morcillo, 4, 28029 Madrid, Spain.,Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa , C/Diego de León, 62, 28006 Madrid, Spain
| |
Collapse
|
9
|
Walker MJ. David J. Triggle: Medicinal chemistry, to pharmacology, calcium channels, and beyond. Biochem Pharmacol 2015. [DOI: 10.1016/j.bcp.2015.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Janis RA. Collaborating with Alexander Scriabine and the Miles Institute for Preclinical Pharmacology. Biochem Pharmacol 2015; 98:318-21. [DOI: 10.1016/j.bcp.2015.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
11
|
Fardal Ø, Lygre H. Management of periodontal disease in patients using calcium channel blockers - gingival overgrowth, prescribed medications, treatment responses and added treatment costs. J Clin Periodontol 2015; 42:640-6. [PMID: 26076712 DOI: 10.1111/jcpe.12426] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Gingival overgrowth (GO) is an adverse drug reaction in patients using calcium channel blockers (CCBs). Little is known about the effects of CCBs on the management of periodontal diseases. The aim of this study was to assess how the use of CCBs affects the long-term supportive treatment and outcomes in patients undergoing periodontal therapy. METHODS All patients using CCBs during the initial treatment and/or the supportive periodontal therapy (SPT) were selected from a periodontal practice. Patients were scored using a Gingival Overgrowth Index (GOI). The effects of CCB types and dosages were assessed in terms of the frequency and the severity of GO, treatment responses, substitutions and extra treatment costs. Mean values, Standard Deviation (SD) and range were calculated. The Mann-Whitney test was used to assess statistically significant differences (p < 0.05) for GO between patients with good and poor oral hygiene, differences between before and after terminating or replacing the CCBs, possible differences between drug dosages (Dihydropyridine 5 mg and 10 mg) and differences between three drug combinations (CCB and inhibitors of the renin-angiotensin system (IRAS), CCB and non-IRAS, CCB and statins). RESULTS One hundred and twenty-four patients (58 females, 66 males, 4.6% of the patient population) were using CCBs. 103 patients were assessed. Average age was 66.53 years (SD. 9.89, range 42-88) and the observation time was 11.30 years (SD 8.06, range 1-27). Eighty-nine patients had GO, 75 of these required treatment for GO. Terminating or replacing with alternatives to CCBs resulted in significant decreases in GO (p = 0.00016, p = 0.00068) respectively. No differences were found between good and poor oral hygiene (p = 0.074), drug dosages or the various drug combinations. Surgical treatment was more effective than non-surgical treatment in controlling the GO. Long-term tooth loss was 0.11 teeth per patient per year. Forty-two patients needed re-treatments for GO, resulting in an extra life cost per patient of €13471 (discounted €4177). CONCLUSION The majority of patients (86.4%) using CCBs experienced GO. 47.2% of these experienced recurrence(s) of GO during the SPT and needed re-treatments with resulting added costs. The long-term tooth loss was considerably higher for patients using CCBs than for other patients groups from the same practice setting.
Collapse
Affiliation(s)
| | - Henning Lygre
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Bladen C, Gadotti VM, Gündüz MG, Berger ND, Şimşek R, Şafak C, Zamponi GW. 1,4-Dihydropyridine derivatives with T-type calcium channel blocking activity attenuate inflammatory and neuropathic pain. Pflugers Arch 2014; 467:1237-47. [DOI: 10.1007/s00424-014-1566-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 02/04/2023]
|
13
|
Kuryshev YA, Brown AM, Duzic E, Kirsch GE. Evaluating state dependence and subtype selectivity of calcium channel modulators in automated electrophysiology assays. Assay Drug Dev Technol 2014; 12:110-9. [PMID: 24579774 PMCID: PMC4657039 DOI: 10.1089/adt.2013.552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Voltage-gated Ca2+ channels play essential roles in control of neurosecretion and muscle contraction. The pharmacological significance of Cav channels stem from their identification as the molecular targets of calcium blockers used in the treatment of cardiovascular diseases, such as hypertension, angina, and arrhythmia, and neurologic diseases, such as pain and seizure. It has been proposed that state-dependent Cav inhibitors, that is, those that preferentially bind to channels in open or inactivated states, may improve the therapeutic window over relatively state-independent Cav inhibitors. High-throughput fluorescent-based functional assays have been useful in screening chemical libraries to identify Cav inhibitors. However, hit confirmation, mechanism of action, and subtype selectivity are better suited to automated patch clamp assays that have sufficient capacity to handle the volume of compounds identified during screening, even of modest sized libraries (≤500,000 compounds), and the flexible voltage control that allows evaluation of state-dependent drug blocks. IonWorks Barracuda (IWB), the newest generation of IonWorks instruments, provides the opportunity to accelerate the Cav drug discovery studies in an automated patch clamp platform in 384-well format capable of medium throughput screening and profiling studies. We have validated hCav1.2, hCav2.1, hCav2.2, and hCav3.2 channels assays on the IWB platform (population patch clamp mode) and demonstrated that the biophysical characteristics of the channels (activation, inactivation, and steady-state inactivation) obtained with the IWB system are consistent with known subtype-specific characteristics. Using standard reference compounds (nifedipine, BAY K8644, verapamil, mibefradil, and pimozide), we demonstrated subtype-selective and state- and use-dependent characteristics of drug-channel interactions. Here we describe the design and validation of novel robust high-throughput Cav channel assays on the IWB platform. The assays can be used to screen focused compound libraries for state-dependent Cav channel antagonists, to prioritize compounds for potency or to counterscreen for Cav subtype selectivity.
Collapse
|
14
|
|
15
|
Yang T, Xu X, Kernan T, Wu V, Colecraft HM. Rem, a member of the RGK GTPases, inhibits recombinant CaV1.2 channels using multiple mechanisms that require distinct conformations of the GTPase. J Physiol 2010; 588:1665-81. [PMID: 20308247 DOI: 10.1113/jphysiol.2010.187203] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rad/Rem/Gem/Kir (RGK) GTPases potently inhibit Ca(V)1 and Ca(V)2 (Ca(V)1-2) channels, a paradigm of ion channel regulation by monomeric G-proteins with significant physiological ramifications and potential biotechnology applications. The mechanism(s) underlying how RGK proteins inhibit I(Ca) is unknown, and it is unclear how key structural and regulatory properties of these GTPases (such as the role of GTP binding to the nucleotide binding domain (NBD), and the C-terminus which contains a membrane-targeting motif) feature in this effect. Here, we show that Rem inhibits Ca(V)1.2 channels by three independent mechanisms that rely on distinct configurations of the GTPase: (1) a reduction in surface density of channels is accomplished by enhancing dynamin-dependent endocytosis, (2) a diminution of channel open probability (P(o)) that occurs without impacting on voltage sensor movement, and (3) an immobilization of Ca(V) channel voltage sensors. The presence of both the Rem NBD and C-terminus (whether membrane-targeted or not) in one molecule is sufficient to reconstitute all three mechanisms. However, membrane localization of the NBD by a generic membrane-targeting module reconstitutes only the decreased P(o) function (mechanism 2). A point mutation that prevents GTP binding to the NBD selectively eliminates the capacity to immobilize voltage sensors (mechanism 3). The results reveal an uncommon multiplicity in the mechanisms Rem uses to inhibit I(Ca), predict new physiological dimensions of the RGK GTPase-Ca(V) channel crosstalk, and suggest original approaches for developing novel Ca(V) channel blockers.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
16
|
Characterization of endogenous calcium responses in neuronal cell lines. Biochem Pharmacol 2009; 79:908-20. [PMID: 19883631 DOI: 10.1016/j.bcp.2009.10.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/23/2022]
Abstract
An increasing number of putative therapeutic targets have been identified in recent years for the treatment of neuronal pathophysiologies including pain, epilepsy, stroke and schizophrenia. Many of these targets signal through calcium (Ca(2+)), either by directly facilitating Ca(2+) influx through an ion channel, or through activation of G proteins that couple to intracellular Ca(2+) stores or voltage-gated Ca(2+) channels. Immortalized neuronal cell lines are widely used models to study neuropharmacology. However, systematic pharmacological characterization of the receptors and ion channels expressed in these cell lines is lacking. In this study, we systematically assessed endogenous Ca(2+) signaling in response to addition of agonists at potential therapeutic targets in a range of cell lines of neuronal origin (ND7/23, SH-SY5Y, 50B11, F11 and Neuro2A cells) as well as HEK293 cells, a cell line commonly used for over-expression of receptors and ion channels. This study revealed a remarkable diversity of endogenous Ca(2+) responses in these cell lines, with one or more cell lines responding to addition of trypsin, bradykinin, ATP, nicotine, acetylcholine, histamine and neurotensin. Subtype specificity of these responses was inferred from agonist potency and the effect of receptor subtype specific antagonist. Surprisingly, HEK293 and SH-SY5Y cells responded to the largest number of agonists with potential roles in neuronal signaling. These findings have implications for the heterologous expression of neuronal receptors and ion channels in these cell lines, and highlight the potential of neuron-derived cell lines for the study of a range of endogenously expressed receptors and ion channels that signal through Ca(2+).
Collapse
|
17
|
Buraei Z, Elmslie KS. The separation of antagonist from agonist effects of trisubstituted purines on CaV2.2 (N-type) channels. J Neurochem 2008; 105:1450-61. [PMID: 18221369 DOI: 10.1111/j.1471-4159.2008.05248.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dihydropyridines can affect L-type calcium channels (CaV1) as either agonists or antagonists. Seliciclib or R-roscovitine, a 2,6,9-trisubstituted purine, is a potent cyclin-dependent kinase inhibitor that induces both agonist and antagonist effects on CaV2 channels (N-, P/Q- and R-type). We studied the effects induced by various trisubstituted purines on CaV2.2 (N-type) channels to learn about chemical structure-function relationships. We found that S-roscovitine and R-roscovitine showed similar potency to inhibit, but agonist activity of S-roscovitine required at least a 20-fold higher concentration, suggesting stereospecificity of the agonist-binding site. The testing of other trisubstituted purines showed a correlation between CaV2.2 inhibition and cyclin-dependent kinase affinity that broke down after determining that a chemically unrelated inhibitor, kenpaullone, was a poor CaV2.2 inhibitor, and a kinase inactive analog (dimethylamino-olomoucine; DMAO) was a strong inhibitor, which together support a kinase independent effect. In fact, like dihydropyridine-induced L-channel inhibition, R-roscovitine left-shifted the closed-state inactivation versus voltage relationship, which suggests that inhibition results from CaV2 channels moving into the inactivated state. Trisubstituted purine antagonists could become clinically important drugs to treat diseases, such as heart failure and neuropathic pain that result from elevated CaV2 channel activity.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
18
|
Yang T, Suhail Y, Dalton S, Kernan T, Colecraft HM. Genetically encoded molecules for inducibly inactivating CaV channels. Nat Chem Biol 2007; 3:795-804. [DOI: 10.1038/nchembio.2007.42] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/30/2007] [Indexed: 11/09/2022]
|
19
|
Abstract
TRPC5 [TRP (transient receptor potential) canonical (or classical) 5] is a widely expressed mammalian homologue of Drosophila TRP, forming a calcium- and sodium-permeable channel in the plasma membrane either as a homomultimer or heteromultimer with other proteins (e.g. TRPC1). Although several factors are known to stimulate the channel, understanding of its endogenous activators and functions is limited. This paper provides a brief and focused review of our latest findings that show that TRPC5 is a sensor of important signalling phospholipids, including lysophosphatidylcholine and sphingosine 1-phosphate, acting extracellularly or intracellularly. Underlying mechanisms of action and biological relevance are discussed.
Collapse
Affiliation(s)
- D J Beech
- Institute of Membrane and Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Copello JA, Zima AV, Diaz-Sylvester PL, Fill M, Blatter LA. Ca2+ entry-independent effects of L-type Ca2+ channel modulators on Ca2+ sparks in ventricular myocytes. Am J Physiol Cell Physiol 2007; 292:C2129-40. [PMID: 17314267 PMCID: PMC2094215 DOI: 10.1152/ajpcell.00437.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the cardiac action potential, Ca(2+) entry through dyhidropyridine receptor L-type Ca(2+) channels (DHPRs) activates ryanodine receptors (RyRs) Ca(2+)-release channels, resulting in massive Ca(2+) mobilization from the sarcoplasmic reticulum (SR). This global Ca(2+) release arises from spatiotemporal summation of many localized elementary Ca(2+)-release events, Ca(2+) sparks. We tested whether DHPRs modulate Ca(2+)sparks in a Ca(2+) entry-independent manner. Negative modulation by DHPR of RyRs via physical interactions is accepted in resting skeletal muscle but remains controversial in the heart. Ca(2+) sparks were studied in cat cardiac myocytes permeabilized with saponin or internally perfused via a patch pipette. Bathing and pipette solutions contained low Ca(2+) (100 nM). Under these conditions, Ca(2+) sparks were detected with a stable frequency of 3-5 sparks.s(-1).100 microm(-1). The DHPR blockers nifedipine, nimodipine, FS-2, and calciseptine decreased spark frequency, whereas the DHPR agonists Bay-K8644 and FPL-64176 increased it. None of these agents altered the spatiotemporal characteristics of Ca(2+) sparks. The DHPR modulators were also without effect on SR Ca(2+) load (caffeine-induced Ca(2+) transients) or sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity (Ca(2+) loading rates of isolated SR microsomes) and did not change cardiac RyR channel gating (planar lipid bilayer experiments). In summary, DHPR modulators affected spark frequency in the absence of DHPR-mediated Ca(2+) entry. This action could not be attributed to a direct action of DHPR modulators on SERCA or RyRs. Our results suggest that the activity of RyR Ca(2+)-release units in ventricular myocytes is modulated by Ca(2+) entry-independent conformational changes in neighboring DHPRs.
Collapse
Affiliation(s)
- Julio A Copello
- Dept. of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA.
| | | | | | | | | |
Collapse
|
21
|
Triggle DJ. Drug discovery and delivery in the 21st century. Med Princ Pract 2007; 16:1-14. [PMID: 17159357 DOI: 10.1159/000096133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Accepted: 05/28/2006] [Indexed: 02/05/2023] Open
Abstract
Drug discovery in the late 20th century has increasingly focused on the definition and characterization of the macromolecular substrates that serve as targets for drug design. The advent of genomics and the molecular biology revolution has permitted both the definition of new targets and the characterization of the genetic basis of disease states. The introduction of powerful new technologies should greatly accelerate the pace of new drug discovery. Although genomics, both human and nonhuman, should in principle increase the number of potential drug targets and provide a greater understanding of cellular events contributing to the pathology of disease this has yet to occur in practice, primarily because of the underlying complexity of cellular signaling processes. The emerging discipline of systems biology is attempting to bring both order and understanding to these signaling processes. Genomics has, however, impacted on drug discovery in ways that are important beyond a mere increase in potential drug target numbers. Genomics has provided the tools of contemporary drug discovery, the pharmacogenomic pathways to personalized medicine, and has greatly influenced the nature of synthetic organic chemistry, a discipline that is still the cornerstone of contemporary drug discovery. In the future, genomics and the tools of molecular biology will have a corresponding impact on drug delivery processes and mechanisms through introduction of drug delivery machines capable of both synthesis and activation by disease-specific signals. Such machines will be based on a synthetic genome, using an expanded genetic code, and designed for specific drug synthesis and delivery and activation by a pathological signal. This essay is based upon a lecture of the same title presented at the Faculty of Medicine, Kuwait University during a visit in the spring of 2005. It is intended, as was the lecture, to be a broad, descriptive and speculative overview rather than a comprehensive and detailed review.
Collapse
|
22
|
Buraei Z, Schofield G, Elmslie KS. Roscovitine differentially affects CaV2 and Kv channels by binding to the open state. Neuropharmacology 2006; 52:883-94. [PMID: 17125805 DOI: 10.1016/j.neuropharm.2006.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 09/13/2006] [Accepted: 10/10/2006] [Indexed: 12/01/2022]
Abstract
Roscovitine potently inhibits cyclin-dependent kinases (CDK) and can independently slow the closing of neuronal (CaV2.2) calcium channels. We were interested if this drug could affect other ion channels similarly. Using whole cell recordings, we found that roscovitine specifically slows deactivation of all CaV2 channels (N, P/Q and R) by binding to the open state. This effect had a rapid onset and EC(50)=54, 120 and 54microM for N-, P/Q-, and R-type channels, respectively. Deactivation of other channel types was not slowed, including L-type calcium channels (CaV1.2, CaV1.3), potassium channels (native, Kv4.2, Kv2.1 and Kv1.3), and native sodium channels. However, most of the channels tested were inhibited by roscovitine. The inhibition was characterized by slow development and a lower affinity (EC(50)=100-300microM). Surprisingly, potassium channels were rapidly inhibited with an EC(50)=23microM, which is similar to the EC(50) for roscovitine block of cell division [Meijer, L., Borgne, A., Mulner, O., Chong, J., Blow, J., Inagaki, N., Inagaki, M., Delcros, J., Moulinoux, J., 1997. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527-536]. Potassium current inhibition seemed to result from open channel block. The high potency of these two rapid onset effects makes them complicating factors for ongoing clinical trials and research using roscovitine. Thus, the physiology and pharmacology of slow CaV2 deactivation and potassium channel block must be explored.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
23
|
Abstract
The voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of ion channels found throughout the central nervous system (CNS) and the periphery. Neuronal functions include the control of neurotransmitter release and neuronal excitability in important pain pathways. In the current review we will give an overview of the data that has been generated in support of these channels performing a pivotal role in the pain pathway.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Knopp Neurosciences, Inc., 100 Technology Drive, Suite 400, Pittsburgh, PA 15219, USA.
| |
Collapse
|
24
|
Ford C, Bieger D, Mong K, Tabrizchi R. Relaxant responses to calcium channel antagonists and potassium channel opener in human saphenous vein. ACTA ACUST UNITED AC 2006; 26:7-13. [PMID: 16371061 DOI: 10.1111/j.1474-8673.2005.00352.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1.-- As shown in a parallel study the magnitude of depolarization induced in human saphenous vein by raising external potassium ([K(+)](e)) falls markedly below the theoretical values predicted by the Goldman-Hodgkin-Katz equations. This anomaly prompted us to re-examine the relaxant actions of L-type (nifedipine) and T-type (mibefradil) Ca(2+) channel antagonists, and relaxant and electrophysiological effects of the K(+) channel opener, pinacidil, on saphenous veins contracted by the elevation of [K(+)](e). 2.-- Nifedipine produced concentration-dependent relaxations in tissues contracted at various high [K(+)](e). In tissues contracted with 20 mm [K(+)](e), the pIC(50) for nifedipine was significantly (8.20 +/- 0.05; n = 6; mean +/- SEM; P < 0.05) greater than in tissues contracted with > or =40 mm [K(+)](e). 3.-- Tissues contracted with 20 mm [K(+)](e) also relaxed in response to mibefradil (pIC(50) = 6.1 +/- 0.14) and pinacidil (pIC(50) = 6.45 +/- 0.08), the latter being almost completely reversed (93.4 +/- 9.9%) by addition of glibenclamide (10 microm). 4.-- The resting E(m) of smooth muscle cells of saphenous vein was -77.0 +/- 0.7 mV (n = 52), and 20 mm [K(+)](e) produced a modest but significant depolarization to -73.0 +/- 0.7 mV (n = 52). Incubation with pinacidil plus 20 mm [K(+)](e) resulted in a significant hyperpolarization of the E(m) to -82 +/- 0.6 mV (n = 52). 5.-- N(omega)-nitro-L-arginine methyl ester did not impede the relaxant responses of nifedipine, mibefradil or pinacidil. 6.-- In conclusion, the relaxant effects of nifedipine and pinacidil (i) occurred at an E(m) distinctly below the presumed threshold for the opening of the classic (Ca(V)1.3alpha(1)) L-type Ca(2+) channels, and (ii) did not depend on generation of nitric oxide.
Collapse
Affiliation(s)
- C Ford
- Division of Basic Medical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St John's, NL, Canada A1B 3V6
| | | | | | | |
Collapse
|
25
|
Xu SZ, Zeng F, Lei M, Li J, Gao B, Xiong C, Sivaprasadarao A, Beech DJ. Generation of functional ion-channel tools by E3 targeting. Nat Biotechnol 2005; 23:1289-93. [PMID: 16170312 DOI: 10.1038/nbt1148] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 08/17/2005] [Indexed: 11/09/2022]
Abstract
Here we describe a strategy for generating ion-channel inhibitors. It takes advantage of antibody specificity combined with a pattern recognition approach that targets the third extracellular region (E3) of a channel. To test the concept, we first focused on TRPC5, a member of the transient receptor potential (TRP) calcium channel family, the study of which has been hindered by poor pharmacological tools. Extracellular application of E3-targeted anti-TRPC5 antibody led to a specific TRPC5 inhibitor, enabling TRPC5 to be distinguished from its closest family members, and TRPC5 function to be explored in a relatively intractable physiological system. E3 targeting was further applied to voltage-gated sodium channels, leading to discovery of a subtype-specific inhibitor of Na(V)1.5. These examples illustrate the potential power of E3 targeting as a systematic method for producing gene-type specific ion-channel inhibitors for use in routine assays on cells or tissues from a range of species and having therapeutic potential.
Collapse
Affiliation(s)
- Shang-Zhong Xu
- Membrane and Systems Biology Research Institute, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang ECY, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G. ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 2005; 115:2412-22. [PMID: 16110327 PMCID: PMC1187935 DOI: 10.1172/jci24086] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 06/07/2005] [Indexed: 01/08/2023] Open
Abstract
The umbrella cells that line the bladder are mechanosensitive, and bladder filling increases the apical surface area of these cells; however, the upstream signals that regulate this process are unknown. Increased pressure stimulated ATP release from the isolated uroepithelium of rabbit bladders, which was blocked by inhibitors of vesicular transport, connexin hemichannels, ABC protein family members, and nucleoside transporters. Pressure-induced increases in membrane capacitance (a measure of apical plasma membrane surface area where 1 microF approximately equals 1 cm2) were inhibited by the serosal, but not mucosal, addition of apyrase or the purinergic receptor antagonist PPADS. Upon addition of purinergic receptor agonists, increased capacitance was observed even in the absence of pressure. Moreover, knockout mice lacking expression of P2X2 and/or P2X3 receptors failed to show increases in apical surface area when exposed to hydrostatic pressure. Treatments that prevented release of Ca2+ from intracellular stores or activation of PKA blocked ATPgammaS-stimulated changes in capacitance. These results indicate that increased hydrostatic pressure stimulates release of ATP from the uroepithelium and that upon binding to P2X and possibly P2Y receptors on the umbrella cell, downstream Ca2+ and PKA second messenger cascades may act to stimulate membrane insertion at the apical pole of these cells.
Collapse
Affiliation(s)
- Edward C Y Wang
- Renal-Electrolyte Division and Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
French RJ, Zamponi GW. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. IEEE Trans Nanobioscience 2005; 4:58-69. [PMID: 15816172 DOI: 10.1109/tnb.2004.842500] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated ion channels are membrane proteins which underlie rapid electrical signals among neurons and the spread of excitation in skeletal muscle and heart. We outline some recent advances in the study of voltage-sensitive sodium and calcium channels. Investigations are providing insight into the changes in molecular conformation associated with open-closed gating of the channels, the mechanisms by which they allow only specific ion species to pass through and carry an electric current, and the pathological consequences of small perturbations in channel structure which result from genetic mutations. Determination of three-dimensional structures, coupled with molecular manipulations by site-directed mutagenesis, and parallel electrophysiological analyses of currents through the ion channels, are providing an understanding of the roles and function of these channels at an unprecedented level of molecular detail. Crucial to these advances are studies of bacterial homologues of ion channels from man and other eukaryotes, and the use of naturally occurring peptide toxins which target different ion channel types with exquisite specificity.
Collapse
Affiliation(s)
- Robert J French
- Department of Physiology and Biophysics, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
28
|
Triggle D. An Interview with Professor David Triggle, Ph.D. SUNY at Buffalo, School of Pharmacy and Pharmaceutical Sciences. Assay Drug Dev Technol 2004; 2:457-64. [PMID: 15671643 DOI: 10.1089/adt.2004.2.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
McClelland D, Evans RM, Barkworth L, Martin DJ, Scott RH. A study comparing the actions of gabapentin and pregabalin on the electrophysiological properties of cultured DRG neurones from neonatal rats. BMC Pharmacol 2004; 4:14. [PMID: 15294026 PMCID: PMC514605 DOI: 10.1186/1471-2210-4-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 08/04/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gabapentin and pregabalin have wide-ranging therapeutic actions, and are structurally related to the inhibitory neurotransmitter GABA. Gabapentin, pregablin and GABA can all modulate voltage-activated Ca2+ channels. In this study we have used whole cell patch clamp recording and fura-2 Ca2+ imaging to characterise the actions of pregabalin on the electrophysiological properties of cultured dorsal root ganglion (DRG) neurones from neonatal rats. The aims of this study were to determine whether pregabalin and gabapentin had additive inhibitory effects on high voltage-activated Ca2+ channels, evaluate whether the actions of pregabalin were dependent on GABA receptors and characterise the actions of pregabalin on voltage-activated potassium currents. RESULTS Pregabalin (25 nM - 2.5 microM) inhibited 20-30% of the high voltage-activated Ca2+ current in cultured DRG neurones. The residual Ca2+ current recorded in the presence of pregabalin was sensitive to the L-type Ca2+ channel modulator, Bay K8644. Saturating concentrations of gabapentin failed to have additive effects when applied with pregabalin, indicating that these two compounds act on the same type(s) of voltage-activated Ca2+ channels but the majority of Ca2+ current was resistant to both drugs. The continual application of GABA, the GABAB receptor antagonist CGP52432, or intracellular photorelease of GTP-gamma-S had no effect on pregabalin-induced inhibition of Ca2+ currents. Although clear inhibition of Ca2+ influx was produced by pregabalin in a population of small neurones, a significant population of larger neurones showed enhanced Ca2+ influx in response to pregabalin. The enhanced Ca2+ influx evoked by pregabalin was mimicked by partial block of K+ conductances with tetraethylammonium. Pregabalin produced biphasic effects on voltage-activated K+ currents, the inhibitory effect of pregabalin was prevented with apamin. The delayed enhancement of K+ currents was attenuated by pertussis toxin and by intracellular application of a (Rp)-analogue of cAMP. CONCLUSIONS Pregabalin reduces excitatory properties of cultured DRG neurones by modulating voltage-activated Ca2+ and K+ channels. The pharmacological activity of pregabalin is similar but not identical to that of gabapentin. The actions of pregabalin may involve both extracellular and intracellular drug target sites and modulation of a variety of neuronal conductances, by direct interactions, and through intracellular signalling involving protein kinase A.
Collapse
Affiliation(s)
- David McClelland
- Department of Biomedical Sciences, Institute of Medical Sciences, The University of Aberdeen, Foresterhill, Aberdeen AB25 2RL, Scotland, UK
| | - Rhian M Evans
- Department of Biomedical Sciences, Institute of Medical Sciences, The University of Aberdeen, Foresterhill, Aberdeen AB25 2RL, Scotland, UK
| | - Louise Barkworth
- Department of Biomedical Sciences, Institute of Medical Sciences, The University of Aberdeen, Foresterhill, Aberdeen AB25 2RL, Scotland, UK
| | - Duncan J Martin
- Department of Biomedical Sciences, Institute of Medical Sciences, The University of Aberdeen, Foresterhill, Aberdeen AB25 2RL, Scotland, UK
| | - Roderick H Scott
- Department of Biomedical Sciences, Institute of Medical Sciences, The University of Aberdeen, Foresterhill, Aberdeen AB25 2RL, Scotland, UK
| |
Collapse
|