1
|
Xiao M, Lv S, Zhu C. Bacterial Patterning: A Promising Biofabrication Technique. ACS APPLIED BIO MATERIALS 2024; 7:8008-8018. [PMID: 38408887 DOI: 10.1021/acsabm.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacterial patterning has emerged as a pivotal biofabrication technique in the biomedical field. In the past 2 decades, a diverse array of bacterial patterning approaches have been developed to enable the precise manipulation of the spatial distribution of bacterial patterns for various applications. Despite the significance of these advancements, there is a deficiency of review articles providing an overview of bacterial patterning technologies. In this mini-review, we systematically summarize the progress of bacterial patterning over the past 2 decades. This review commences with an elucidation of the definition and fundamental principles of bacterial patterning. Subsequently, we introduce the established bacterial patterning strategies, accompanied by discussions about the advantages and limitations of each approach. Furthermore, we showcase the biomedical applications of these strategies, highlighting their efficacy in spatial control of biofilms, biosensing, and biointervention. Finally, this mini-review is concluded with a summary and an outlook on future challenges and opportunities. It is anticipated that this mini-review can serve as a concise guide for those who are interested in this exciting and rapidly evolving research area.
Collapse
Affiliation(s)
- Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Chen C, Ran C, Yao Q, Wang J, Guo C, Gu L, Han H, Wang X, Chao L, Xia Y, Chen Y. Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303992. [PMID: 37541313 PMCID: PMC10558701 DOI: 10.1002/advs.202303992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Indexed: 08/06/2023]
Abstract
As a key contender in the field of photovoltaics, third-generation thin-film perovskite solar cells (PSCs) have gained significant research and investment interest due to their superior power conversion efficiency (PCE) and great potential for large-scale production. For commercialization consideration, low-cost and scalable fabrication is of primary importance for PSCs, and the development of the applicable film-forming techniques that meet the above requirements plays a key role. Currently, large-area perovskite films are mainly produced by printing techniques, such as slot-die coating, inkjet printing, blade coating, and screen-printing. Among these techniques, screen printing offers a high degree of functional layer compatibility, pattern design flexibility, and large-scale ability, showing great promise. In this work, the advanced progress on applying screen-printing technology in fabricating PSCs from technique fundamentals to practical applications is presented. The fundamentals of screen-printing technique are introduced and the state-of-the-art studies on screen-printing different functional layers in PSCs and the control strategies to realize fully screen-printed PSCs are summarized. Moreover, the current challenges and opportunities faced by screen-printed perovskite devices are discussed. This work highlights the critical significance of high throughput screen-printing technology in accelerating the commercialization course of PSCs products.
Collapse
Affiliation(s)
- Changshun Chen
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Chenxin Ran
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Qing Yao
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Jinpei Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Chunyu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Lei Gu
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Huchen Han
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Xiaobo Wang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Lingfeng Chao
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Yingdong Xia
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| |
Collapse
|
3
|
Sharma Y, Shankar V. Technologies for the fabrication of crosslinked polysaccharide-based hydrogels and its role in microbial three-dimensional bioprinting - A review. Int J Biol Macromol 2023; 250:126194. [PMID: 37562476 DOI: 10.1016/j.ijbiomac.2023.126194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Three-Dimensional bioprinting has recently gained more attraction among researchers for its wide variety of applicability. This technology involving in developing structures that mimic the natural anatomy, and also aims in developing novel biomaterials, bioinks which have a better printable ability. Different hydrogels (cross-linked polysaccharides) can be used and optimized for good adhesion and cell proliferation. Manufacturing hydrogels with adjustable characteristics allows for fine-tuning of the cellular microenvironment. Different printing technologies can be used to create hydrogels on a micro-scale which will allow regular, patterned integration of cells into hydrogels. Controlling tissue constructions' structural architecture is the important key to ensuring its function as it is designed. The designed tiny hydrogels will be useful in investigating the cellular behaviour within the environments. Three-Dimensional designs can be constructed by modifying their shape and behaviour analogous concerning pressure, heat, electricity, ultraviolet radiation or other environmental elements. Yet, its application in in vitro infection models needs more research and practical study. Microbial bioprinting has become an advancing field with promising potential to develop various biomedical as well as environmental applications. This review elucidates the properties and usage of different hydrogels for Three-Dimensional bioprinting.
Collapse
Affiliation(s)
- Yamini Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore - 14, India
| | - Vijayalakshmi Shankar
- CO(2) Research and Green Technologies Centre, Vellore Institute of Technology, Vellore - 14, India.
| |
Collapse
|
4
|
Borges F, Briandet R, Callon C, Champomier-Vergès MC, Christieans S, Chuzeville S, Denis C, Desmasures N, Desmonts MH, Feurer C, Leroi F, Leroy S, Mounier J, Passerini D, Pilet MF, Schlusselhuber M, Stahl V, Strub C, Talon R, Zagorec M. Contribution of omics to biopreservation: Toward food microbiome engineering. Front Microbiol 2022; 13:951182. [PMID: 35983334 PMCID: PMC9379315 DOI: 10.3389/fmicb.2022.951182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/14/2022] [Indexed: 01/12/2023] Open
Abstract
Biopreservation is a sustainable approach to improve food safety and maintain or extend food shelf life by using beneficial microorganisms or their metabolites. Over the past 20 years, omics techniques have revolutionised food microbiology including biopreservation. A range of methods including genomics, transcriptomics, proteomics, metabolomics and meta-omics derivatives have highlighted the potential of biopreservation to improve the microbial safety of various foods. This review shows how these approaches have contributed to the selection of biopreservation agents, to a better understanding of the mechanisms of action and of their efficiency and impact within the food ecosystem. It also presents the potential of combining omics with complementary approaches to take into account better the complexity of food microbiomes at multiple scales, from the cell to the community levels, and their spatial, physicochemical and microbiological heterogeneity. The latest advances in biopreservation through omics have emphasised the importance of considering food as a complex and dynamic microbiome that requires integrated engineering strategies to increase the rate of innovation production in order to meet the safety, environmental and economic challenges of the agri-food sector.
Collapse
Affiliation(s)
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Cécile Callon
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 545 Fromage, Aurillac, France
| | | | | | - Sarah Chuzeville
- ACTALIA, Pôle d’Expertise Analytique, Unité Microbiologie Laitière, La Roche sur Foron, France
| | | | | | | | - Carole Feurer
- IFIP, Institut de la Filière Porcine, Le Rheu, France
| | | | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | | | | | | | | | - Caroline Strub
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Régine Talon
- Université Clermont Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | | |
Collapse
|
5
|
Pandala N, LaScola MA, Tang Y, Bieberich M, Korley LTJ, Lavik E. Screen Printing Tissue Models Using Chemically Cross-Linked Hydrogel Systems: A Simple Approach To Efficiently Make Highly Tunable Matrices. ACS Biomater Sci Eng 2021; 7:5007-5013. [PMID: 34677053 DOI: 10.1021/acsbiomaterials.1c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro models provide a good starting point for drug screening and understanding various cellular mechanisms corresponding to different conditions. 3D cultures have drawn significant interest to mimic the in vivo microenvironment better and overcome the limitations of the 2D monolayered cultures. We previously reported a technique based on the screen printing process to pattern live mammalian cells using gelatin as the bioink. Even though gelatin is an inexpensive scaffolding material with various tissue engineering applications, it might not be the ideal hydrogel material to provide various mechanical and chemical cues to the cells. In this paper, we discuss the synthesis and characterization of two synthetic chemically cross-linked hydrogel systems based on poly(ethylene glycol) (PEG) and poly-l-lysine (PLL) to be used as the bioink in the screen printing process. These hydrogels are suitable as the bioinks for the screen printing process and serve as the barebone materials that can be tuned mechanically and augmented chemically to create a suitable in vitro microenvironment for the cells. This paper presents the synthesis, mechanical testing, and characterization of the hydrogel systems and their applications in the screen printing process.
Collapse
Affiliation(s)
- Narendra Pandala
- Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, Piscataway Territories, United States
| | - Michael A LaScola
- Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, Piscataway Territories, United States
| | - Yanchun Tang
- Department of Material Sciences and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Maria Bieberich
- Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, Piscataway Territories, United States
| | - LaShanda T J Korley
- Department of Material Sciences and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Erin Lavik
- Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, Piscataway Territories, United States
| |
Collapse
|
6
|
Pandala N, Haywood S, LaScola MA, Day A, Leckron J, Lavik E. Screen Printing to Create 3D Tissue Models. ACS APPLIED BIO MATERIALS 2020; 3:8113-8120. [PMID: 35019551 DOI: 10.1021/acsabm.0c01256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
3D printing has revolutionized making tissue models, but the instruments are often quite expensive, and the approach can involve heat and/or shear forces that can damage cells. As a complement to more traditional 3D printing approaches, we looked at screen printing. Screen printing is an additive manufacturing technique used to pattern inks through screens supporting patterns onto different surfaces. It has a wide range of applications ranging from traditional printing to printing electric circuit boards. Taking cues from this we have developed a process of screen printing live cells along with a suitable scaffold on to different surfaces to generate in vitro models. The process is not only inexpensive and simple to use, but it also offers a wide range of advantages like the ability to use a range of bioinks limited only by their gelation time, printing on different surfaces, and the ability to autoclave all of the major components. In this paper, we present the screen assembly and the setup we used to print the cells along with the resolution and limits of features printed and the effect of the printing on the cells.
Collapse
Affiliation(s)
- Narendra Pandala
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Sydney Haywood
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Michael A LaScola
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Adam Day
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Joshua Leckron
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Erin Lavik
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| |
Collapse
|