1
|
Kangari P, Roshangar L, Iraji A, Talaei-Khozani T, Razmkhah M. Accelerating effect of Shilajit on osteogenic property of adipose-derived mesenchymal stem cells (ASCs). J Orthop Surg Res 2022; 17:424. [PMID: 36153551 PMCID: PMC9509599 DOI: 10.1186/s13018-022-03305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Shilajit has been widely used remedy for treating a numerous of illness such as bone defects in Iran traditional folk medicine since hundreds of years ago. The aim of the present study was to explore the effect of Shilajit on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (ASCs) in two- (2D) and three-dimensional (3D) cultures. MATERIALS AND METHODS ASCs were seeded in 3D 1% alginate (Alg) hydrogel with or without Shilajit (500 µg/mL) and compared with 2D cultures. Then, characterization was done using electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), alkaline phosphatase (ALP) activity, alizarin red staining and Raman confocal microscopy. RESULTS Adding Shilajit had no impact on the Alg scaffold degradability. In the 3D hydrogel and in the presence of osteogenic medium (OM), Shilajit acted as enhancer to increase ALP activity and also showed osteoinductive property in the absence of OM compared to the 2D matched groups at all time points (days 7 and 21 both P = 0.0006, for 14 days P = 0.0006 and P = 0.002, respectively). In addition, calcium deposition was significantly increased in the cultures exposed to Shilajit compared to 2D matched groups on days 14 (P < 0.0001) and 21 (P = 0.0003 and P = 0.003, respectively). In both 3D and 2D conditions, Shilajit induced osteogenic differentiation, but Shilajit/Alg combination starts osteogenic differentiation in a short period of time. CONCLUSION As Shilajit accelerates the differentiation of ASCs into the osteoblasts, without changing the physical properties of the Alg hydrogel, this combination may pave the way for more promising remedies considering bone defects.
Collapse
Affiliation(s)
- Parisa Kangari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Aldakheel RK, Gondal MA, Alsayed HN, Almessiere MA, Nasr MM, Shemsi AM. Rapid Determination and Quantification of Nutritional and Poisonous Metals in Vastly Consumed Ayurvedic Herbal Medicine (Rejuvenator Shilajit) by Humans Using Three Advanced Analytical Techniques. Biol Trace Elem Res 2022; 200:4199-4216. [PMID: 34800280 DOI: 10.1007/s12011-021-03014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Shilajit is used commonly as Ayurvedic medicine worldwide which is Rasayana herbo-mineral substance and consumed to restore the energetic balance and to prevent diseases like cognitive disorders and Alzheimer. Locally, Shilajit is applied for patients diagnosed with bone fractures. For safety of the patients, the elemental analysis of Shilajit is imperative to evaluate its nutritional quality as well as contamination from heavy metals. The elemental composition of Shilajit was conducted using three advanced analytical techniques (LIBS, ICP, and EDX). For the comparative studies, the two Shilajit kinds mostly sold globally produced in India and Pakistan were collected. Our main focus is to highlight nutritional eminence and contamination of heavy metals to hinge on Shilajit therapeutic potential. In this work, laser-induced breakdown spectroscopy (LIBS) was applied for qualitative and quantitative analysis of the Shilajit. Our LIBS analysis revealed that Shilajit samples composed of several elements like Ca, S, K, Mg, Al, Na, Sr, Fe, P, Si, Mn, Ba, Zn, Ni, B, Cr, Co, Pb, Cu, As, Hg, Se, and Ti. Indian and Pakistani Shilajits were highly enriched with Ca, S, and K nutrients and contained Al, Sr, Mn, Ba, Zn, Ni, B, Cr, Pb, As, and Hg toxins in amounts that exceeded the standard permissible limit. Even though the content of most elements was comparable among both Shilajits, nutrients, and toxins, in general, were accentuated more in Indian Shilajit with the sole detection of Hg and Ti. The elemental quantification was done using self-developed calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method, and LIBS results are in well agreement with the concentrations determined by standard ICP-OES/MS method. To verify our results by LIBS and ICP-OES/MS techniques, EDX spectroscopy was also conducted which confirmed the presence above mentioned elements. This work is highly significant for creating awareness among people suffering due to overdose of this product and save many human lives.
Collapse
Affiliation(s)
- R K Aldakheel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M A Gondal
- Laser Research Group, Physics Department, IRC-Hydrogen & Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
- K.A. CARE Energy Research and Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Hasan N Alsayed
- Department of Orthopedic Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M M Nasr
- Physics Department, Riyadh Elm University, P.O. Box 321815, Riyadh, 11343, Saudi Arabia
| | - A M Shemsi
- Center for Environment and Marine Study, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Comparison of the Effects of Intramedullary Nailing and Plate Fixation on Lower-Extremity Deep Vein Thrombosis after Tibial Fractures. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4852201. [PMID: 35401776 PMCID: PMC8993547 DOI: 10.1155/2022/4852201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 11/18/2022]
Abstract
Lower-extremity deep vein thrombosis (DVT) is prone to occur after internal fixation of tibial fractures. This study analyzed the effect of intramedullary nailing (IMN) and plate fixation (PF) on lower-extremity DVT, providing reliable reference and guidance for future clinical treatment of tibial fractures. Sixty-eight patients with tibial fractures admitted to Honghui Hospital, Xi’an Jiaotong University, between February 2019 and October 2020 were selected as research participants, of which 32 cases treated with open reduction and locking-compression plate fixation were assigned to the FP group and 36 cases treated with closed reduction and interlocking IMN were included in the FN group. The two groups were compared regarding the following items: clinical efficacy, operation, rehabilitation, joint function, pain, inflammatory factors (IFs), incidence of adverse reactions (ARs), blood loss, prognosis, and quality of life (QoL). The related factors affecting the occurrence of DVT were analyzed. The results identified no evident difference in the overall response rate between the two groups (
). The FN group showed longer operation time, higher incidence of ARs, and better rehabilitation, while there were lower incision length, VAS score, and IF levels (
). The results revealed no significant difference in estnimated blood volume(EBV) and the incidence of DVT between the two groups(
); however, the total blood loss (TBL), hidden blood loss (HBL), and blood transfusion rates in FN group were higher while the visible blood loss (VBL) was lower compared to the FP group (
). Logistic regression analysis identified that blood transfusion, VBL, HBL, TBL, and treatment methods were independent risk factors affecting the occurrence of lower-extremity DVT (
). In addition, the prognostic QoL was better in the FN group (
). Therefore, closed reduction and interlocking IMN are more effective than open reduction and locking-compression plate fixation in the treatment of tibial fractures, but patients are more likely to suffer from lower-extremity DVT. In the future, it is necessary to carefully choose the treatment method in the treatment of tibial fracture patients to ensure their rehabilitation.
Collapse
|
4
|
Knapik JJ, Trone DW, Steelman RA, Farina EK, Lieberman HR. Adverse effects associated with use of specific dietary supplements: The US Military Dietary Supplement Use Study. Food Chem Toxicol 2022; 161:112840. [PMID: 35093428 DOI: 10.1016/j.fct.2022.112840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
Dietary supplements (DSs) are used by 50% of Americans and 70% of United States military service members (SMs); some have adverse effects (AEs). This cross-sectional investigation examined AEs associated with specific DSs. A stratified random sample of SMs from the Air Force, Army, Marine Corps, and Navy was obtained. Volunteers completed a questionnaire reporting AEs for 96 generic and 62 specific DSs. The highest prevalence (≥1 AE) in specific DS categories was 35% prohormones, 33% weight loss supplements, 26% pre/post workout supplements, 14% herbal products, 12% multivitamin/multiminerals, 11% protein/amino acids, 9% muscle building supplements, 7% other DSs, 6% joint health products, and 5% individual vitamins/minerals. Specific DSs of concern (with proportion reporting AEs) included: Libido Max® (35%), Hydroxycut Hardcore® (33%), OxyElite® (33%), Roxylean® (31%), Growth Factor 9® (30%), Super HD® (29%), Hydroxycut Advanced® (29%), Lipo 6® (28%), The Ripper® (27%), Test Booster® (27%), Xenadrine Xtreme Thermogenic® (27%), C4 Extreme® (26%), and C4 Origional® (25%). Products marketed for weight loss, use before/after workout, and prohormones had the highest AE prevalence. DSs can contain substances with independent/additive AEs and/or interact with other ingredients or prescribed medications. Methods described here could provide a continuous surveillance system detecting dangerous DSs entering the market.
Collapse
Affiliation(s)
- Joseph J Knapik
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA.
| | - Daniel W Trone
- Naval Health Research Center, Building 329, Ryne Rd, San Diego, CA, 92152, USA
| | - Ryan A Steelman
- Army Public Health Center, 8252 Blackhawk Rd, Aberdeen Proving Ground, MD, 21010, USA
| | - Emily K Farina
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| |
Collapse
|
5
|
Kloskowski T, Szeliski K, Krzeszowiak K, Fekner Z, Kazimierski Ł, Jundziłł A, Drewa T, Pokrywczyńska M. Mumio (Shilajit) as a potential chemotherapeutic for the urinary bladder cancer treatment. Sci Rep 2021; 11:22614. [PMID: 34799663 PMCID: PMC8604984 DOI: 10.1038/s41598-021-01996-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Mumio (Shilajit) is a traditional medicinal drug known and used for hundreds of years. Bladder cancer is one of the most common cancer types and better treatments are needed. This study analysed the in vitro effect of Mumio on urinary bladder cancer cells (T24 and 5637) in comparison to normal uroepithelial cells (SV-HUC1). Cytotoxicity of Mumio was analysed in these cell lines via MTT and real-time cell growth assays as well via the assessment of the cytoskeleton, apoptosis, and cell cycle. Mumio affected the viability of both cell types in a time and concentration dependent manner. We observed a selectivity of Mumio against cancer cells. Cell cycle and apoptosis analysis showed that Mumio inhibited G0/G1 or S phase cell cycle, which in turn induced apoptosis. Our results showed that Mumio was significantly more cytotoxic to urinary bladder cancer cells than to normal cells. These results are promising and indicate Mumio as a great candidate for urinary bladder cancer treatment and further investigations should be performed.
Collapse
Affiliation(s)
- T Kloskowski
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, M. Sklodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| | - K Szeliski
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, M. Sklodowskiej-Curie 9, 85-094, Bydgoszcz, Poland.
| | - K Krzeszowiak
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, M. Sklodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| | - Z Fekner
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, M. Sklodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| | - Ł Kazimierski
- Department of Tissue Engineering, Chair of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - A Jundziłł
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, M. Sklodowskiej-Curie 9, 85-094, Bydgoszcz, Poland.,Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - T Drewa
- Chair of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - M Pokrywczyńska
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, M. Sklodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|