1
|
Maus KD, Stephenson DJ, Ali AN, MacKnight HP, Huang HJ, Serrats J, Kim M, Diegelmann RF, Chalfant CE. Ceramide kinase regulates acute wound healing by suppressing 5-oxo-ETE biosynthesis and signaling via its receptor OXER1. J Lipid Res 2022; 63:100187. [PMID: 35219746 PMCID: PMC8980959 DOI: 10.1016/j.jlr.2022.100187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a "class switch" in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Anika N Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Henry Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Huey-Jing Huang
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Jordi Serrats
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA; Cancer Biology and Evolution Program, The Moffitt Cancer Center, Tampa, FL, USA; Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA; Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA; Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| |
Collapse
|
2
|
Lin L, Liu S, Nie Z, Chen Y, Lei C, Wang Z, Yin C, Hu H, Huang Y, Yao S. Automatic and Integrated Micro-Enzyme Assay (AIμEA) Platform for Highly Sensitive Thrombin Analysis via an Engineered Fluorescence Protein-Functionalized Monolithic Capillary Column. Anal Chem 2015; 87:4552-9. [DOI: 10.1021/acs.analchem.5b00723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lihua Lin
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shengquan Liu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yingzhuang Chen
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhen Wang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chao Yin
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huiping Hu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
3
|
Iliuk A, Jayasundera K, Wang WH, Schluttenhofer R, Geahlen RL, Tao WA. In-Depth Analyses of B Cell Signaling Through Tandem Mass Spectrometry of Phosphopeptides Enriched by PolyMAC. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:744-753. [PMID: 25954137 PMCID: PMC4417941 DOI: 10.1016/j.ijms.2014.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tandem mass spectrometry (MS/MS) has enabled researchers to analyze complex biological samples since the original concept inception. It facilitates the identification and quantification of modifications within tens of thousands of proteins in a single large-scale proteomic experiment. Phosphorylation analysis, as one of the most common and important post-translational modifications, has particularly benefited from such progress in the field. Here we showcase the technique through in-depth analyses of B cell signaling based on quantitative phosphoproteomics. As a complement to the previously described PolyMAC-Ti (polymer-based metal ion affinity capture using titanium) reagent, we introduce here PolyMAC-Fe, which utilizes a different metal ion, Fe(III). An extensive comparison using the different available MS/MS fragmentations techniques was made between PolyMAC-Fe, PolyMAC-Ti and IMAC (immobilized metal ion affinity chromatography) reagents in terms of specificity, reproducibility and type of phosphopeptides being enriched. PolyMAC-Fe based chelation demonstrated good selectivity and unique specificity toward phosphopeptides, making it useful in specialized applications. We have combined PolyMAC-Ti and PolyMAC-Fe, along with SILAC-based quantitation and large-scale fractionation, for quantitative B cell phosphoproteomic analyses. The complementary approach allowed us to identify a larger percentage of multiply phosphorylated peptides than with PolyMAC-Ti alone. Overall, out of 13,794 unique phosphorylation sites identified, close to 20% were dependent on BCR signaling. These sites were further mapped to a variety of major signaling networks, offering more detailed information about the biochemistry of B cell receptor engagement.
Collapse
Affiliation(s)
- Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906
- Tymora Analytical Operations, LLC. 1281 Win Hentschel Blvd., West Lafayette, IN 47906
| | | | - Wen-Horng Wang
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | | | - Robert L. Geahlen
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906
- Tymora Analytical Operations, LLC. 1281 Win Hentschel Blvd., West Lafayette, IN 47906
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
4
|
Brooks E, Wu X, Hanel A, Nguyen S, Wang J, Zhang JH, Harrison A, Zhang W. Identification and Characterization of Small-Molecule Inhibitors of the R132H/R132H Mutant Isocitrate Dehydrogenase 1 Homodimer and R132H/Wild-Type Heterodimer. ACTA ACUST UNITED AC 2014; 19:1193-200. [PMID: 24980596 DOI: 10.1177/1087057114541148] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
Abstract
Recurrent genetic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) have been identified in multiple tumor types. The most frequent mutation, IDH1 R132H, is a gain-of-function mutation resulting in an enzyme-catalyzing conversion of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). A high-throughput assay quantifying consumption of NADPH by IDH1 R132H has been optimized and implemented to screen 3 million compounds in 1536-well formats. The primary high-throughput screening hits were further characterized by RapidFire-mass spectrometry measuring 2-HG directly. Multiple distinct chemotypes were identified with nanomolar potencies (6-300 nM). All inhibitors were found to be inactive against the wild-type IDH1 homodimers. An IDH1 heterodimer between wild-type and R132H mutant is capable of catalyzing conversion of α-KG to 2-HG and isocitrate to α-KG. Interestingly, one of the inhibitors, EXEL-9324, was found to inhibit both conversions by the IDH1 heterodimer. This indicates the R132H/WT heterodimer may adopt conformations distinct from that of the R132H/R132H homodimer. Further enzymatic studies support this conclusion as the heterodimer exhibited a significantly lower apparent Michaelis-Menten constant for α-KG (K(m)=110 µM) compared with the R132H homodimer (K(m)= 1200 µM). The enhanced apparent affinity for α-KG suggests R132H/WT heterodimeric IDH1 can produce 2-HG more efficiently at normal intracellular levels of α-KG (approximately 100 µM).
Collapse
Affiliation(s)
| | - Xiang Wu
- Exelixis, Inc, South San Francisco, CA, USA Quintara Discovery, 170 Harbor Way, Suite 100, South San Francisco, CA 94080, USA
| | - Art Hanel
- Exelixis, Inc, South San Francisco, CA, USA
| | | | - Jing Wang
- Exelixis, Inc, South San Francisco, CA, USA
| | | | | | - Wentao Zhang
- Exelixis, Inc, South San Francisco, CA, USA Quintara Discovery, 170 Harbor Way, Suite 100, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
A Nonradioactive Fluorimetric SPE-Based Ceramide Kinase Assay Using NBD-C(6)-Ceramide. J Lipids 2012; 2012:404513. [PMID: 22900189 PMCID: PMC3412103 DOI: 10.1155/2012/404513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/31/2012] [Indexed: 12/29/2022] Open
Abstract
Ceramide kinase (CERK) has been implicated in important cellular processes such as inflammation and apoptosis. Its activity is usually measured using radiolabeled ceramide or [γ-32P]-ATP, followed by extraction, thin-layer chromatography, and detection of the formed labeled ceramide-1-phosphate. To eliminate the use of radioactivity, we developed similarly but independently from the approach by Don and Rosen (2008), a fluorescence-based ceramide kinase assay, using N-[7-(4-nitrobenz-2-oxa-1,3-diazole)]-6-aminohexanoyl-sphingenine (NBD-C6-ceramide) as substrate. Its Km value (4 μM) was comparable to that of N-hexanoyl-sphingenine (C6-ceramide). The produced fluorescent NBD-C6-ceramide-1-phosphate was captured by means of solid-phase extraction on an aminopropyl phase, resulting in a fast and sensitive CERK measurement. By performing this assay in a 96-well format, it is also suitable for high-throughput screening (HTS) to search for CERK modulators. A limited screen revealed that some protein kinase inhibitors (e.g., U-0126; IC50 4 μM) and ceramide analogues (e.g., fenretinide, AMG-9810; IC50 1.1 μM) affect CERK in vitro.
Collapse
|
6
|
The design, synthesis, and biological evaluation of PIM kinase inhibitors. Bioorg Med Chem Lett 2012; 22:3732-8. [PMID: 22542012 DOI: 10.1016/j.bmcl.2012.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/22/2012] [Accepted: 04/03/2012] [Indexed: 11/23/2022]
|
7
|
Leahy JW, Buhr CA, Johnson HWB, Kim BG, Baik T, Cannoy J, Forsyth TP, Jeong JW, Lee MS, Ma S, Noson K, Wang L, Williams M, Nuss JM, Brooks E, Foster P, Goon L, Heald N, Holst C, Jaeger C, Lam S, Lougheed J, Nguyen L, Plonowski A, Song J, Stout T, Wu X, Yakes MF, Yu P, Zhang W, Lamb P, Raeber O. Discovery of a Novel Series of Potent and Orally Bioavailable Phosphoinositide 3-Kinase γ Inhibitors. J Med Chem 2012; 55:5467-82. [DOI: 10.1021/jm300403a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- James W. Leahy
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Chris A. Buhr
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Henry W. B. Johnson
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Byung Gyu Kim
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - TaeGon Baik
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Jonah Cannoy
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Timothy P. Forsyth
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Joon Won Jeong
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Matthew S. Lee
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Sunghoon Ma
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Kevin Noson
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Longcheng Wang
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Matthew Williams
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - John M. Nuss
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Eric Brooks
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Paul Foster
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Leanne Goon
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Nathan Heald
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Charles Holst
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Christopher Jaeger
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Scott Lam
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Julie Lougheed
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Lam Nguyen
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Arthur Plonowski
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Joanne Song
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Thomas Stout
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Xiang Wu
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Michael F. Yakes
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Peiwen Yu
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Wentao Zhang
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Peter Lamb
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Olivia Raeber
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| |
Collapse
|
8
|
Bornancin F. Ceramide kinase: the first decade. Cell Signal 2010; 23:999-1008. [PMID: 21111813 DOI: 10.1016/j.cellsig.2010.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/20/2022]
Abstract
It has been some 20 years since the initial discovery of ceramide 1-phosphate (C1P) and nearly a decade since ceramide kinase (CERK) was cloned. Many studies have shown that C1P is important for membrane biology and for the regulation of membrane-bound proteins, and the CERK enzyme has appeared to be tightly regulated in order to control both ceramide levels and production of C1P. Furthermore, C1P made by CERK has emerged as a genuine signalling entity. However, it represents only part of the C1P pool that is available in the cell, therefore suggesting that alternative unknown C1P-producing mechanisms may also play a role. Recent technological developments for measuring complex sphingolipids in biological samples, together with the availability of Cerk-deficient animals as well as potent CERK inhibitors, have now provided new grounds for investigating C1P biology further. Here, we will review the current understanding of CERK and C1P in terms of biochemistry and functional implications, with particular attention to C1P produced by CERK.
Collapse
Affiliation(s)
- Frédéric Bornancin
- Novartis Institutes for BioMedical Research, CH-4056 Basle, Switzerland.
| |
Collapse
|
9
|
Li H, Totoritis RD, Lor LA, Schwartz B, Caprioli P, Jurewicz AJ, Zhang G. Evaluation of an antibody-free ADP detection assay: ADP-Glo. Assay Drug Dev Technol 2010; 7:598-605. [PMID: 20059376 DOI: 10.1089/adt.2009.0221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Identification of kinase, especially protein kinase, modulators through high-throughput screening (HTS) has become a common strategy for drug discovery programs in both academia and the pharmaceutical industry. There are a number of platform technologies that can be used for measuring kinase activities. However, there is none that fits all criteria in terms of sensitivity, ATP tolerance, robustness, throughput, and cost-effectiveness. Therefore, development of a homogeneous and robust HTS assay for some kinase targets is still challenging. We recently evaluated the ADP-Glo assay from Promega. This is a homogeneous, signal increase assay that measures ADP production from a kinase reaction by coupled enzymes that first convert ADP to ATP and subsequently quantifies ATP using luciferase in the presence of luciferin. Since the unused ATP in the reaction is depleted prior to ADP to ATP conversion, this assay shows excellent sensitivity over a wide range of ATP concentrations. We demonstrate that ADP-Glo assay can be used for 2 kinase targets that belong to different classes, and compare the results of compound profiling with SPA and FP assay technologies.
Collapse
Affiliation(s)
- Hu Li
- GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yu XC, Miranda M, Liu Z, Patel S, Nguyen N, Carson K, Liu Q, Swaffield JC. Novel potent inhibitors of deoxycytidine kinase identified and compared by multiple assays. ACTA ACUST UNITED AC 2009; 15:72-9. [PMID: 19959816 DOI: 10.1177/1087057109353604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deoxycytidine kinase (dCK) phosphorylates deoxycytidine, deoxyguanosine, and deoxyadenosine and plays an important role in the salvage pathway of nucleoside metabolism. dCK is also required for the phosphorylation of several antiviral and anticancer nucleoside drugs, with resistance to these agents often being associated with a loss or decrease in dCK activity. Data also indicate a role for dCK in immune function, and dCK inhibitors may provide treatment for immune disorders. To identify novel dCK inhibitors, the authors evaluated 2 existing biochemical assays, adapted both to high-throughput screening, and identified several series of hits. They also compared the potency of the hits between purified recombinant and endogenous enzyme. Meanwhile, they also developed a novel cell-based assay that rests on the rescue of cells from dCK-dependent cytotoxic agents such as AraC. A large number of compounds were tested using the 3 assays, and a strong correlation in potency was observed between the biochemical assay using endogenous enzyme and the cell-based assay. The hits identified in these screens have proved to be good starting points for the synthesis of much more potent tool compounds to further investigate the physiological functions of dCK and potentially lead to the development of therapeutic agents.
Collapse
Affiliation(s)
- Xuan-Chuan Yu
- Department of Pharmaceutical Discovery, Lexicon Pharmaceuticals, Inc., The Woodlands, Texas 77381, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc Natl Acad Sci U S A 2009; 106:20063-8. [PMID: 19892737 DOI: 10.1073/pnas.0911028106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of phosphatidylinositol 4, 5, bisphosphate (PIP(2)), altering its distribution. Fluorescence image correlation spectroscopic studies on model membranes suggest that an increase in ceramide decreases clustering of PIP(2) and its partitioning into ordered membrane domains. Thus ceramide kinase-mediated maintenance of ceramide level is important for the local regulation of PIP(2) and PLC during phototransduction.
Collapse
|
12
|
Demian DJ, Clugston SL, Foster MM, Rameh L, Sarkes D, Townson SA, Yang L, Zhang M, Charlton ME. High-throughput, cell-free, liposome-based approach for assessing in vitro activity of lipid kinases. ACTA ACUST UNITED AC 2009; 14:838-44. [PMID: 19641220 DOI: 10.1177/1087057109339205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid kinases are central players in lipid signaling pathways involved in inflammation, tumorigenesis, and metabolic syndrome. A number of these kinase targets have proven difficult to investigate in higher throughput cell-free assay systems. This challenge is partially due to specific substrate interaction requirements for several of the lipid kinase family members and the resulting incompatibility of these substrates with most established, homogeneous assay formats. Traditional, cell-free in vitro investigational methods for members of the lipid kinase family typically involve substrate incorporation of [gamma-32P] and resolution of signal by thin-layer chromatography (TLC) and autoradiograph densitometry. This approach, although highly sensitive, does not lend itself to high-throughput testing of large numbers of small molecules (100 s to 1 MM+). The authors present the development and implementation of a fully synthetic, liposome-based assay for assessing in vitro activity of phosphatidylinositol-5-phosphate-4-kinase isoforms (PIP4KIIbeta and alpha) in 2 commonly used homogeneous technologies. They have validated these assays through compound testing in both traditional TLC and radioactive filterplate approaches as well as binding validation using isothermic calorimetry. A directed library representing known kinase pharmacophores was screened against type IIbeta phosphatidylinositol-phosphate kinase (PIPK) to identify small-molecule inhibitors. This assay system can be applied to other types and isoforms of PIPKs as well as a variety of other lipid kinase targets.
Collapse
Affiliation(s)
- Douglas J Demian
- Research Technology Center, Pfizer, Inc., Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Graf C, Klumpp M, Habig M, Rovina P, Billich A, Baumruker T, Oberhauser B, Bornancin F. Targeting ceramide metabolism with a potent and specific ceramide kinase inhibitor. Mol Pharmacol 2008; 74:925-32. [PMID: 18612076 DOI: 10.1124/mol.108.048652] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ceramide kinase (CerK) produces the bioactive lipid ceramide-1-phosphate (C1P) and appears as a key enzyme for controlling ceramide levels. In this study, we discovered and characterized adamantane-1-carboxylic acid (2-benzoylamino-benzothiazol-6-yl)amide (NVP-231), a potent, specific, and reversible CerK inhibitor that competitively inhibits binding of ceramide to CerK. NVP-231 is active in the low nanomolar range on purified as well as cellular CerK and abrogates phosphorylation of ceramide, resulting in decreased endogenous C1P levels. When combined with another ceramide metabolizing inhibitor, such as tamoxifen, NVP-231 synergistically increased ceramide levels and reduced cell growth. Therefore, NVP-231 represents a novel and promising compound for controlling ceramide metabolism that may provide insight into CerK physiological function.
Collapse
Affiliation(s)
- Christine Graf
- Novartis Institutes for BioMedical Research, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Graf C, Rovina P, Bornancin F. A secondary assay for ceramide kinase inhibitors based on cell growth inhibition by short-chain ceramides. Anal Biochem 2008; 384:166-9. [PMID: 18831956 DOI: 10.1016/j.ab.2008.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 08/15/2008] [Accepted: 09/08/2008] [Indexed: 12/30/2022]
Abstract
We recently reported that ectopic expression of ceramide kinase (CerK) in various cell lines increases their sensitivity to cell death induced by the exogenous addition of short-chain (e.g., C2) ceramides (Cer). Here we show that this higher sensitivity results from CerK catalytic activity and production of C2-ceramide 1-phosphate (C2-C1P). If CerK activity is inhibited by the potent inhibitor NVP-231, C2-C1P is not produced and viability returns to control levels. The EC(50) of NVP-231 in this assay is in the low nanomolar range, consistent with the IC(50) determined in activity assays in vitro using purified CerK. NVP-995, a structurally related but inactive compound, does not protect against C2-Cer-induced cell death. This assay is robust and easy to implement and scale up, thereby providing a valuable secondary screen assay for CerK inhibitors.
Collapse
Affiliation(s)
- Christine Graf
- Novartis Institutes for BioMedical Research, A-1235 Vienna, Austria
| | | | | |
Collapse
|
15
|
Sharlow ER, Leimgruber S, Yellow-Duke A, Barrett R, Wang QJ, Lazo JS. Development, validation and implementation of immobilized metal affinity for phosphochemicals (IMAP)-based high-throughput screening assays for low-molecular-weight compound libraries. Nat Protoc 2008; 3:1350-63. [PMID: 18714303 DOI: 10.1038/nprot.2008.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes assay development, validation and implementation of automated immobilized metal affinity for phosphochemicals (IMAP)-based fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET) high-throughput screening (HTS) assays for identification of low-molecular-weight kinase inhibitors. Both procedures are performed in miniaturized kinase reaction volumes and involve the stepwise addition of test or control compounds, enzyme and substrate/ATP. Kinase reactions are stopped by subsequent addition of IMAP-binding buffer. Assay attributes of the IMAP FP and TR-FRET methodologies are described. HTS assays developed using these procedures should result in Z-factors and low assay variability necessary for robust HTS assays. Providing that the required reagents and equipment are available, one scientist should be able to develop a 384-well, miniaturized HTS assay in approximately 6-8 weeks. Specific automated HTS assay conditions will determine the number of assay plates processed in a screening session, but two scientists should expect to process between 100 and 150 assay plates in one 8-h screening day.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- Drug Discovery Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS. High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 2007; 3:466-79. [PMID: 17637779 DOI: 10.1038/nchembio.2007.17] [Citation(s) in RCA: 446] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-throughput screening (HTS) assays enable the testing of large numbers of chemical substances for activity in diverse areas of biology. The biological responses measured in HTS assays span isolated biochemical systems containing purified receptors or enzymes to signal transduction pathways and complex networks functioning in cellular environments. This Review addresses factors that need to be considered when implementing assays for HTS and is aimed particularly at investigators new to this field. We discuss assay design strategies, the major detection technologies and examples of HTS assays for common target classes, cellular pathways and simple cellular phenotypes. We conclude with special considerations for configuring sensitive, robust, informative and economically feasible HTS assays.
Collapse
MESH Headings
- Animals
- Catalysis
- Chemistry, Pharmaceutical/instrumentation
- Chemistry, Pharmaceutical/methods
- Drug Design
- Drug Evaluation, Preclinical/instrumentation
- Drug Evaluation, Preclinical/methods
- Enzymes/chemistry
- Humans
- Ions
- Kinetics
- Models, Biological
- Models, Chemical
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Technology, Pharmaceutical/instrumentation
- Technology, Pharmaceutical/methods
- Transcription, Genetic
Collapse
Affiliation(s)
- James Inglese
- US National Institutes of Health Chemical Genomics Center, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3370, USA.
| | | | | | | | | | | | | |
Collapse
|