1
|
Mohammed AF, Othman SA, Abou-Ghadir OF, Kotb AA, Mostafa YA, El-Mokhtar MA, Abdu-Allah HHM. Design, synthesis, biological evaluation and docking study of some new aryl and heteroaryl thiomannosides as FimH antagonists. Bioorg Chem 2024; 145:107258. [PMID: 38447463 DOI: 10.1016/j.bioorg.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
FimH is a mannose-recognizing lectin that is expressed by Escherichia coli guiding its ability to adhere and infect cells. It is involved in pathogenesis of urinary tract infections and Chron's disease. Several X-ray structure-guided ligand design studies were extensively utilized in the discovery and optimization of small molecule aryl mannoside FimH antagonists. These antagonists retain key specific interactions of the mannose scaffolds with the FimH carbohydrate recognition domains. Thiomannosides are attractive and stable scaffolds, and this work reports the synthesis of some of their new aryl and heteroaryl derivatives as FimH antagonists. FimH-competitive binding assays as well as biofilm inhibition of the new compounds (24-32) were determined in comparison with the reference n-heptyl α-d-mannopyranoside (HM). The affinity among these compounds was found to be governed by the structure of the aryl and heteroarylf aglycones. Two compounds 31 and 32 revealed higher activity than HM. Molecular docking and total hydrophobic to topological polar surface area ratio calculations attributed to explain the obtained biological results. Finally, the SAR study suggested that introducing an aryl or heteroaryl aglycone of sufficient hydrophobicity and of proper orientation within the tyrosine binding site considerably enhance binding affinity. The potent and synthetically feasible FimH antagonists described herein hold potential as leads for the development of sensors for detection of E. coli and treatment of its diseases.
Collapse
Affiliation(s)
- Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed A Kotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
Filipić B, Ušjak D, Rambaher MH, Oljacic S, Milenković MT. Evaluation of novel compounds as anti-bacterial or anti-virulence agents. Front Cell Infect Microbiol 2024; 14:1370062. [PMID: 38510964 PMCID: PMC10951914 DOI: 10.3389/fcimb.2024.1370062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global threat, leading to an alarming increase in the prevalence of bacterial infections that can no longer be treated with available antibiotics. The World Health Organization estimates that by 2050 up to 10 million deaths per year could be associated with antimicrobial resistance, which would equal the annual number of cancer deaths worldwide. To overcome this emerging crisis, novel anti-bacterial compounds are urgently needed. There are two possible approaches in the fight against bacterial infections: a) targeting structures within bacterial cells, similar to existing antibiotics; and/or b) targeting virulence factors rather than bacterial growth. Here, for the first time, we provide a comprehensive overview of the key steps in the evaluation of potential new anti-bacterial and/or anti-virulence compounds. The methods described in this review include: a) in silico methods for the evaluation of novel compounds; b) anti-bacterial assays (MIC, MBC, Time-kill); b) anti-virulence assays (anti-biofilm, anti-quorum sensing, anti-adhesion); and c) evaluation of safety aspects (cytotoxicity assay and Ames test). Overall, we provide a detailed description of the methods that are an essential tool for chemists, computational chemists, microbiologists, and toxicologists in the evaluation of potential novel antimicrobial compounds. These methods are cost-effective and have high predictive value. They are widely used in preclinical studies to identify new molecular candidates, for further investigation in animal and human trials.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dušan Ušjak
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marina T. Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Montes-Robledo A, Baldiris-Avila R, Galindo JF. D-Mannoside FimH Inhibitors as Non-Antibiotic Alternatives for Uropathogenic Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10091072. [PMID: 34572654 PMCID: PMC8465801 DOI: 10.3390/antibiotics10091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
FimH is a type I fimbria of uropathogenic Escherichia coli (UPEC), recognized for its ability to adhere and infect epithelial urinary tissue. Due to its role in the virulence of UPEC, several therapeutic strategies have focused on the study of FimH, including vaccines, mannosides, and molecules that inhibit their assembly. This work has focused on the ability of a set of monosubstituted and disubstituted phenyl mannosides to inhibit FimH. To determine the 3D structure of FimH for our in silico studies, we obtained fifteen sequences by PCR amplification of the fimH gene from 102 UPEC isolates. The fimH sequences in BLAST had a high homology (97–100%) to our UPEC fimH sequences. A search for the three-dimensional crystallographic structure of FimH proteins in the PDB server showed that proteins 4X5P and 4XO9 were found in 10 of the 15 isolates, presenting a 67% influx among our UPEC isolates. We focused on these two proteins to study the stability, free energy, and the interactions with different mannoside ligands. We found that the interactions with the residues of aspartic acid (ASP 54) and glutamine (GLN 133) were significant to the binding stability. The ligands assessed demonstrated high binding affinity and stability with the lectin domain of FimH proteins during the molecular dynamic simulations, based on MM-PBSA analysis. Therefore, our results suggest the potential utility of phenyl mannoside derivatives as FimH inhibitors to mitigate urinary tract infections produced by UPEC; thus, decreasing colonization, disease burden, and the costs of medical care.
Collapse
Affiliation(s)
- Alfredo Montes-Robledo
- Grupo de Investigación Microbiología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias 13001, Colombia;
- Maestría en Microbiología, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 13001, Colombia
| | - Rosa Baldiris-Avila
- Grupo de Investigación Microbiología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias 13001, Colombia;
- Maestría en Microbiología, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 13001, Colombia
- Grupo de Investigación CIPTEC, Facultad de Ingeniería, Fundacion Universitaria Tecnologico Comfenalco—Cartagena, Cartagena de Indias 13001, Colombia
- Correspondence: (R.B.-A.); (J.F.G.)
| | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá 11321, Colombia
- Correspondence: (R.B.-A.); (J.F.G.)
| |
Collapse
|
4
|
Sarshar M, Behzadi P, Ambrosi C, Zagaglia C, Palamara AT, Scribano D. FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics (Basel) 2020; 9:E397. [PMID: 32664222 PMCID: PMC7400442 DOI: 10.3390/antibiotics9070397] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives. The best-characterized bacterial adhesin is FimH, produced by uropathogenic Escherichia coli (UPEC). Hence, a number of high-affinity mono- and polyvalent mannose-based FimH antagonists, characterized by different bioavailabilities, have been reported. Given that antagonist affinities are firmly associated with the functional heterogeneities of different FimH variants, several FimH inhibitors have been developed using ligand-drug discovery strategies to generate high-affinity molecules for successful anti-adhesion therapy. As clinical trials have shown d-mannose's efficacy in UTIs prevention, it is supposed that mannosides could be a first-in-class strategy not only for UTIs, but also to combat other Gram-negative bacterial infections. Therefore, the current review discusses valuable and effective FimH anti-adhesive molecules active against UTIs, from design and synthesis to in vitro and in vivo evaluations.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| |
Collapse
|
5
|
Zhu Z, Chen Y, Li S, Lin H, Qin G, Cai C. Ortho-Substituted α-Phenyl Mannoside Derivatives Promoted Early-Stage Adhesion and Biofilm Formation of E. coli 83972. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21300-21310. [PMID: 32107915 DOI: 10.1021/acsami.9b17868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Prevention of catheter-associated urinary tract infection (CAUTI) over long-term usage of urinary catheters remains a great challenge. Bacterial interference using nonpathogenic bacteria, such as E. coli 83972, have been investigated in many pilot-scale clinical studies as a potentially nonantibiotic based strategy for CAUTI prevention. We have demonstrated that preforming a dense and stable biofilm of the nonpathogenic E. coli greatly enhances their capability to prevent pathogen colonization. Such nonpathogenic biofilms were formed by E. coli 83972 expressing type 1 fimbriae (fim+ E. coli 83972) on mannoside-presenting surfaces. In this work, we report the synthesis of a series of mannoside derivatives with a wide range of binding affinities, all being equipped with a handle for covalent attachment to silicone surfaces. We established a high-throughput competitive assay based on mannoside-modified particles and flow-cytometry to directly measure the binding affinity between the mannoside ligands and fim+ E. coli 83972. We demonstrated that the bacterial adhesion and biofilm formation were strongly correlated to the binding affinity of the immobilized mannoside ligands. Mass spectrometry based proteomic analysis indicated a substantial difference in the proteome of the extracellular polymeric substance (EPS) secreted by biofilms on different mannoside surfaces, which might be related to the biofilm stability.
Collapse
Affiliation(s)
- Zhiling Zhu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yanxin Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hong Lin
- Department of Department of Computer and Mathematical Sciences, University of Houston-Downtown, Houston, Texas 77002, United States
| | - Guoting Qin
- College of Optometry, University of Houston, Houston, Texas 77204, United States
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
6
|
Sager CP, Fiege B, Zihlmann P, Vannam R, Rabbani S, Jakob RP, Preston RC, Zalewski A, Maier T, Peczuh MW, Ernst B. The price of flexibility - a case study on septanoses as pyranose mimetics. Chem Sci 2017; 9:646-654. [PMID: 29629131 PMCID: PMC5868388 DOI: 10.1039/c7sc04289b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Seven-membered ring mimetics of mannose were studied as ligands for the mannose-specific bacterial lectin FimH, which plays an essential role in the first step of urinary tract infections (UTI). A competitive binding assay and isothermal titration calorimetry (ITC) experiments indicated an approximately ten-fold lower affinity for the seven-membered ring mannose mimetic 2-O-n-heptyl-1,6-anhydro-d-glycero-d-galactitol (7) compared to n-heptyl α-d-mannopyranoside (2), resulting exclusively from a loss of conformational entropy. Investigations by solution NMR, X-ray crystallography, and molecular modeling revealed that 7 establishes a superimposable H-bond network compared to mannoside 2, but at the price of a high entropic penalty due to the loss of its pronounced conformational flexibility. These results underscore the importance of having access to the complete thermodynamic profile of a molecular interaction to "rescue" ligands from entropic penalties with an otherwise perfect fit to the protein binding site.
Collapse
Affiliation(s)
- Christoph P Sager
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Brigitte Fiege
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Pascal Zihlmann
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Raghu Vannam
- Department of Chemistry , University of Connecticut , 55 N. Eagleville Road U3060, Storrs , CT , 06279 USA .
| | - Said Rabbani
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Roman P Jakob
- University of Basel , Biozentrum: Focal Area Structural Biology , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Roland C Preston
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Adam Zalewski
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Timm Maier
- University of Basel , Biozentrum: Focal Area Structural Biology , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Mark W Peczuh
- Department of Chemistry , University of Connecticut , 55 N. Eagleville Road U3060, Storrs , CT , 06279 USA .
| | - Beat Ernst
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| |
Collapse
|
7
|
Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections. Microbiol Spectr 2017; 4. [PMID: 27227305 DOI: 10.1128/microbiolspec.vmbf-0023-2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.
Collapse
|
8
|
Mydock-McGrane LK, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discov 2017; 12:711-731. [PMID: 28506090 DOI: 10.1080/17460441.2017.1331216] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The bacterial adhesin FimH is a virulence factor and an attractive therapeutic target for urinary tract infection (UTI) and Crohn's Disease (CD). Located on type 1 pili of uropathogenic E. coli (UPEC), the FimH adhesin plays an integral role in the pathogenesis of UPEC. Recent efforts have culminated in the development of small-molecule mannoside FimH antagonists that target the mannose-binding lectin domain of FimH, inhibiting its function and preventing UPEC from binding mannosylated host cells in the bladder, thereby circumventing infection. Areas covered: The authors describe the structure-guided design of mannoside ligands, and review the structural biology of the FimH lectin domain. Additionally, they discuss the lead optimization of mannosides for therapeutic application in UTI and CD, and describe various assays used to measure mannoside potency in vitro and mouse models used to determine efficacy in vivo. Expert opinion: To date, mannoside optimization has led to a diverse set of small-molecule FimH antagonists with oral bioavailability. With clinical trials already initiated in CD and on the horizon for UTI, it is the authors, opinion that mannosides will be a 'first-in-class' treatment strategy for UTI and CD, and will pave the way for treatment of other Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - James W Janetka
- b Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
9
|
Mayer K, Eris D, Schwardt O, Sager CP, Rabbani S, Kleeb S, Ernst B. Urinary Tract Infection: Which Conformation of the Bacterial Lectin FimH Is Therapeutically Relevant? J Med Chem 2017; 60:5646-5662. [PMID: 28471659 DOI: 10.1021/acs.jmedchem.7b00342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Frequent antibiotic treatment of urinary tract infections has resulted in the emergence of antimicrobial resistance, necessitating alternative treatment options. One such approach centers around FimH antagonists that block the bacterial adhesin FimH, which would otherwise mediate binding of uropathogenic Escherichia coli to the host urothelium to trigger the infection. Although the FimH lectin can adopt three distinct conformations, the evaluation of FimH antagonists has mainly been performed with a truncated construct of FimH locked in one particular conformation. For a successful therapeutic application, however, FimH antagonists should be efficacious against all physiologically relevant conformations. Therefore, FimH constructs with the capacity to adopt various conformations were applied. By examining the binding properties of a series of FimH antagonists in terms of binding affinity and thermodynamics, we demonstrate that depending on the FimH construct, affinities may be overestimated by a constant factor of 2 orders of magnitude. In addition, we report several antagonists with excellent affinities for all FimH conformations.
Collapse
Affiliation(s)
- Katharina Mayer
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Deniz Eris
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Oliver Schwardt
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christoph P Sager
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Said Rabbani
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Simon Kleeb
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Feenstra T, Thøgersen MS, Wieser E, Peschel A, Ball MJ, Brandes R, Satchell SC, Stockner T, Aarestrup FM, Rees AJ, Kain R. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations. Eur J Clin Microbiol Infect Dis 2016; 36:467-478. [PMID: 27816993 PMCID: PMC5309269 DOI: 10.1007/s10096-016-2820-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022]
Abstract
FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different FimH mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel insights into screening methods to determine the effect of FimH mutants and potentially FimH antagonists.
Collapse
Affiliation(s)
- T Feenstra
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M S Thøgersen
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark.,Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology Group, Technical University of Denmark, Matematiktorvet 301, 2800, Kongens Lyngby, Denmark
| | - E Wieser
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - A Peschel
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M J Ball
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Department of Nephrology, Ipswich Hospital, Heath Road, Ipswich, IP4 5PD, UK
| | - R Brandes
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - S C Satchell
- Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, UK
| | - T Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - F M Aarestrup
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark
| | - A J Rees
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - R Kain
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
11
|
García Méndez KB, Bragagnolo G, O'Callaghan D, Lavigne JP, Keriel A. A high-throughput assay for the measurement of uropathogenic Escherichia coli attachment to urinary bladder cells. Int J Exp Pathol 2016; 97:194-201. [PMID: 27273601 DOI: 10.1111/iep.12181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/24/2016] [Indexed: 12/14/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the major causative agent of urinary tract infections (UTI), the most common infectious diseases in the world. Their ability to attach and enter into cells in the urinary tract is a limiting step for their pathogenicity. Many studies are thus focussing on these key mechanisms to propose new therapeutic strategies. To facilitate such studies, we developed a fast and high-throughput assay which makes it possible to monitor the interaction of UPEC with cultured human uroepithelial cells. This assay allows measurement of the in vitro association of fluorescently labelled clinical isolates with bladder epithelial cells using flow cytometry in a microplate format. The assay was sensitive enough to detect variations between isolates expressing different adhesins and virulence factors and the inhibitory effect of proanthocyanidins. Thus we have developed a fast and robust assay which allows us to measure variations in the adhesion properties of UPEC to human bladder cells. This novel assay will be valuable for the study of initial steps of pathogenesis in UTI and for the screening or validation of inhibitory molecules.
Collapse
Affiliation(s)
- Karellen Beren García Méndez
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - Gabriel Bragagnolo
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - David O'Callaghan
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - Jean-Philippe Lavigne
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France.,Service de Microbiologie, CHU Carémeau, Nîmes, Cedex, France
| | - Anne Keriel
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| |
Collapse
|
12
|
Eris D, Preston RC, Scharenberg M, Hulliger F, Abgottspon D, Pang L, Jiang X, Schwardt O, Ernst B. The Conformational Variability of FimH: Which Conformation Represents the Therapeutic Target? Chembiochem 2016; 17:1012-20. [PMID: 26991759 DOI: 10.1002/cbic.201600066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/21/2022]
Abstract
FimH is a bacterial lectin found at the tips of type 1 pili of uropathogenic Escherichia coli (UPEC). It mediates shear-enhanced adhesion to mannosylated surfaces. Binding of UPEC to urothelial cells initiates the infection cycle leading to urinary tract infections (UTIs). Antiadhesive glycomimetics based on α-d-mannopyranose offer an attractive alternative to the conventional antibiotic treatment because they do not induce a selection pressure and are therefore expected to have a reduced resistance potential. Genetic variation of the fimH gene in clinically isolated UPEC has been associated with distinct mannose binding phenotypes. For this reason, we investigated the mannose binding characteristics of four FimH variants with mannose-based ligands under static and hydrodynamic conditions. The selected FimH variants showed individually different binding behavior under both sets of conditions as a result of the conformational variability of FimH. Clinically relevant FimH variants typically exist in a dynamic conformational equilibrium. Additionally, we evaluated inhibitory potencies of four FimH antagonists representing different structural classes. Inhibitory potencies of three of the tested antagonists were dependent on the binding phenotype and hence on the conformational equilibrium of the FimH variant. However, the squarate derivative was the notable exception and inhibited FimH variants irrespective of their binding phenotype. Information on antagonist affinities towards various FimH variants has remained largely unconsidered despite being essential for successful antiadhesion therapy.
Collapse
Affiliation(s)
- Deniz Eris
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roland C Preston
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Meike Scharenberg
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Fabian Hulliger
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Daniela Abgottspon
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lijuan Pang
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Xiaohua Jiang
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, Institute of Molecular Pharmacy, Pharmacenter, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
13
|
Mydock-McGrane LK, Cusumano ZT, Janetka JW. Mannose-derived FimH antagonists: a promising anti-virulence therapeutic strategy for urinary tract infections and Crohn’s disease. Expert Opin Ther Pat 2016; 26:175-97. [DOI: 10.1517/13543776.2016.1131266] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Fiege B, Rabbani S, Preston RC, Jakob RP, Zihlmann P, Schwardt O, Jiang X, Maier T, Ernst B. The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography. Chembiochem 2015; 16:1235-46. [PMID: 25940742 DOI: 10.1002/cbic.201402714] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 12/22/2022]
Abstract
Urinary tract infections caused by uropathogenic E. coli are among the most prevalent infectious diseases. The mannose-specific lectin FimH mediates the adhesion of the bacteria to the urothelium, thus enabling host cell invasion and recurrent infections. An attractive alternative to antibiotic treatment is the development of FimH antagonists that mimic the physiological ligand. A large variety of candidate drugs have been developed and characterized by means of in vitro studies and animal models. Here we present the X-ray co-crystal structures of FimH with members of four antagonist classes. In three of these cases no structural data had previously been available. We used NMR spectroscopy to characterize FimH-antagonist interactions further by chemical shift perturbation. The analysis allowed a clear determination of the conformation of the tyrosine gate motif that is crucial for the interaction with aglycone moieties and was not obvious from X-ray structural data alone. Finally, ITC experiments provided insight into the thermodynamics of antagonist binding. In conjunction with the structural information from X-ray and NMR experiments the results provide a mechanism for the often-observed enthalpy-entropy compensation of FimH antagonists that plays a role in fine-tuning of the interaction.
Collapse
Affiliation(s)
- Brigitte Fiege
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Said Rabbani
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Roland C Preston
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Roman P Jakob
- Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel (Switzerland)
| | - Pascal Zihlmann
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Oliver Schwardt
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Timm Maier
- Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel (Switzerland).
| | - Beat Ernst
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland).
| |
Collapse
|
15
|
Kleeb S, Pang L, Mayer K, Eris D, Sigl A, Preston RC, Zihlmann P, Sharpe T, Jakob RP, Abgottspon D, Hutter AS, Scharenberg M, Jiang X, Navarra G, Rabbani S, Smiesko M, Lüdin N, Bezençon J, Schwardt O, Maier T, Ernst B. FimH antagonists: bioisosteres to improve the in vitro and in vivo PK/PD profile. J Med Chem 2015; 58:2221-39. [PMID: 25666045 DOI: 10.1021/jm501524q] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Urinary tract infections (UTIs), predominantly caused by uropathogenic Escherichia coli (UPEC), belong to the most prevalent infectious diseases worldwide. The attachment of UPEC to host cells is mediated by FimH, a mannose-binding adhesin at the tip of bacterial type 1 pili. To date, UTIs are mainly treated with antibiotics, leading to the ubiquitous problem of increasing resistance against most of the currently available antimicrobials. Therefore, new treatment strategies are urgently needed. Here, we describe the development of an orally available FimH antagonist. Starting from the carboxylate substituted biphenyl α-d-mannoside 9, affinity and the relevant pharmacokinetic parameters (solubility, permeability, renal excretion) were substantially improved by a bioisosteric approach. With 3'-chloro-4'-(α-d-mannopyranosyloxy)biphenyl-4-carbonitrile (10j) a FimH antagonist with an optimal in vitro PK/PD profile was identified. Orally applied, 10j was effective in a mouse model of UTI by reducing the bacterial load in the bladder by about 1000-fold.
Collapse
Affiliation(s)
- Simon Kleeb
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel , Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Scharenberg M, Jiang X, Pang L, Navarra G, Rabbani S, Binder F, Schwardt O, Ernst B. Kinetic Properties of Carbohydrate-Lectin Interactions: FimH Antagonists. ChemMedChem 2013; 9:78-83. [DOI: 10.1002/cmdc.201300349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Indexed: 11/12/2022]
|
17
|
Pang L, Kleeb S, Lemme K, Rabbani S, Scharenberg M, Zalewski A, Schädler F, Schwardt O, Ernst B. FimH antagonists: structure-activity and structure-property relationships for biphenyl α-D-mannopyranosides. ChemMedChem 2012; 7:1404-22. [PMID: 22644941 DOI: 10.1002/cmdc.201200125] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/27/2012] [Indexed: 11/09/2022]
Abstract
Urinary tract infections (UTIs) are caused primarily by uropathogenic Escherichia coli (UPEC), which encode filamentous surface-adhesive organelles called type 1 pili. FimH is located at the tips of these pili. The initial attachment of UPEC to host cells is mediated by the interaction of the carbohydrate recognition domain (CRD) of FimH with oligomannosides on urothelial cells. Blocking these lectins with carbohydrates or analogues thereof prevents bacterial adhesion to host cells and therefore offers a potential therapeutic approach for prevention and/or treatment of UTIs. Although numerous FimH antagonists have been developed so far, few of them meet the requirement for clinical application due to poor pharmacokinetics. Additionally, the binding mode of an antagonist to the CRD of FimH can switch from an in-docking mode to an out-docking mode, depending on the structure of the antagonist. In this communication, biphenyl α-D-mannosides were modified to improve their binding affinity, to explore their binding mode, and to optimize their pharmacokinetic properties. The inhibitory potential of the FimH antagonists was measured in a cell-free competitive binding assay, a cell-based flow cytometry assay, and by isothermal titration calorimetry. Furthermore, pharmacokinetic properties such as log D, solubility, and membrane permeation were analyzed. As a result, a structure-activity and structure-property relationships were established for a series of biphenyl α-D-mannosides.
Collapse
Affiliation(s)
- Lijuan Pang
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jiang X, Abgottspon D, Kleeb S, Rabbani S, Scharenberg M, Wittwer M, Haug M, Schwardt O, Ernst B. Antiadhesion Therapy for Urinary Tract Infections—A Balanced PK/PD Profile Proved To Be Key for Success. J Med Chem 2012; 55:4700-13. [DOI: 10.1021/jm300192x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaohua Jiang
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniela Abgottspon
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Simon Kleeb
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Said Rabbani
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Meike Scharenberg
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Matthias Wittwer
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Martina Haug
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Oliver Schwardt
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Beat Ernst
- Institute
of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
19
|
Hartmann M, Papavlassopoulos H, Chandrasekaran V, Grabosch C, Beiroth F, Lindhorst TK, Röhl C. Inhibition of bacterial adhesion to live human cells: Activity and cytotoxicity of synthetic mannosides. FEBS Lett 2012; 586:1459-65. [DOI: 10.1016/j.febslet.2012.03.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 01/22/2023]
|