1
|
Gunjal P, Vishwas S, Kumar R, Bashir B, Kumar B, Khurana N, Gulati M, Gupta G, Prasher P, Kumbhar P, Disouza J, Kuppusamy G, Mohammed Y, Dureja H, Dua K, Singh SK. Enhancing the oral bioavailability of fisetin: polysaccharide-based self nano-emulsifying spheroids for colon-targeted delivery. Drug Deliv Transl Res 2024; 14:1-17. [PMID: 38789909 DOI: 10.1007/s13346-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Fisetin (FS) is a flavonoid that possesses antioxidant and anti-inflammatory properties against ulcerative colitis. FS shows poor dissolution rate and permeability. An attempt has been made to develop colon-targeted solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of FS. Initially, liquid (L) SNEDDS were prepared by loading FS into isotropic mixture of L-SNEDDS was prepared using Labrafil M 1944 CS, Transcutol P, and Tween 80. These L-SNEDDS were further converted into solid (S) SNEDDS by mixing the isotropic mixture with 1:1:1 ratio of guar gum (GG), xanthan gum (XG) and pectin (PC) [GG:XG:PC (1:1:1)]. Aerosil-200 (A-200) was added to enhance their flow characteristics. Further, they were converted into spheroids by extrusion-spheronization technique. The solid-state characterization of S-SNEDDS was done by SEM, DSC, and PXRD, which revealed that the crystalline form of FS was converted into the amorphous form. In the dissolution study, S-SNEDDS spheroids [GG:XG:PC (1:1:1)] exhibited less than 20% drug release within the first 5 h, followed by rapid release of the drug between the 5th and 10th h, indicating its release at colonic site. The site-specific delivery of FS to colon via FS-S-SNEDDS spheroids was confirmed by conducting pharmacokinetic studies on rats. Wherein, results showed delay in absorption of FS loaded in spheroids up to 5 h and achievement of Cmax at 7h, whereas L-SNEDDS showed rapid absorption of FS. Furthermore, FS-L-SNEDDS and FS-S-SNEDDS spheroids [GG:XG:PC (1:1:1)] increased oral bioavailability of FS by 6.86-fold and 4.44-fold, respectively, as compared to unprocessed FS.
Collapse
Affiliation(s)
- Pradnya Gunjal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Yousuf Mohammed
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Gopalaiah SB, Jayaseelan K. Analytical quality by design approach to develop an eco-friendly RP-HPLC method for estimation of irbesartan in chitosan polymeric nanoparticles: forced degradation studies and assessment of in vitro release mathematical modelling. RSC Adv 2024; 14:22169-22184. [PMID: 39005249 PMCID: PMC11243759 DOI: 10.1039/d4ra03952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Irbesartan is an angiotensin converting enzyme blocker, primarily utilized for the management of hypertension and the mitigation of diabetic nephropathy progression. The present study introduces rapid, robust and environmentally sustainable reverse phase high performance liquid chromatography (RP-HPLC) validated under the analytical quality by design (AQbD) framework according to ICH guidelines. Utilizing a central composite design, the method's systemic optimization was achieved, ensuring reproducibility and accuracy. Chromatographic separation was accomplished utilizing an ethanol and sodium acetate buffer (60 : 40 v/v) isocratic mobile phase system on a zorbax sb C18 column, with a flow rate of at 0.6 mL min-1. Studies on forced degradation outlined stability of irbesartan and its degradation processes, enhancing our understanding of its chemical robustness under varied conditions. Complementing the green chemistry paradigm, the method's environmental impact was critically assessed, affirming its alignment with sustainability objectives. The validated method proved pivotal in determining the percent entrapment and loading efficiency of the formulated nanoparticles and holds potential for application in biological matrices. Furthermore, the encapsulation of IRB within chitosan nanoparticles was explored to assess release kinetics and enhance bioavailability. This study not only advances the analytical sciences by merging eco-friendly practices with method development but also broadens the applicative landscape of HPLC methodologies in drug delivery research.
Collapse
Affiliation(s)
- Sinchana B Gopalaiah
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur, Chengalpattu District - 603203 Tamil Nadu India (+91) 9094903309
| | - Kavitha Jayaseelan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur, Chengalpattu District - 603203 Tamil Nadu India (+91) 9094903309
| |
Collapse
|
3
|
Fan H, Li R, Chen Y, Zhang H, Zeng S, Ji W, Hu W, Yin S, Li Y, Liu GL, Huang L. Flexible nanoplasmonic sensor for multiplexed and rapid quantitative food safety analysis with a thousand-times sensitivity improvement. Biosens Bioelectron 2024; 248:115974. [PMID: 38171221 DOI: 10.1016/j.bios.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
The accumulation of trace amounts of certain small molecules in food poses considerable human health challenges, including the potential for carcinogenesis and mutagenesis. Here, an ultrasensitive gold-platinum nanoflower-coupled metasurface plasmon resonance (MetaSPR) (APNMSPR) biosensor, based on a competitive immunoassay, was developed for the multiplexed and rapid quantitative analysis of trace small molecules in eggs, offering timely monitoring of food safety. This one-step biosensor can be integrated into either a newly designed detachable high-throughput MetaSPR chip-strip plate device or a standard 96-well plate for multiplexed small-molecule detection within a single egg. The limits of detection were 0.81, 1.12, and 1.74 ppt for florfenicol, fipronil, and enrofloxacin, respectively, demonstrating up to 1000-fold increased sensitivity and a 15-fold reduction in analysis time compared with those of traditional methods. The results obtained using the APNMSPR biosensor showed a strong correlation with those obtained using liquid chromatography-tandem mass spectrometry. The APNMSPR biosensor holds immense promise for the multiplexed, highly sensitive, and rapid quantitative analysis of small molecules for applications in food safety control, early diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Hongli Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Rui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Youqian Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Huazhi Zhang
- Liangzhun (Wuhan) Industrial Co. Ltd., Wuhan, Hubei, 430073, China
| | - Shaoqi Zeng
- Liangzhun (Wuhan) Industrial Co. Ltd., Wuhan, Hubei, 430073, China
| | - Weihao Ji
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei, 430075, China; Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, Hubei, 430075, China
| | - Wenjun Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| | - Gang L Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Liping Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Liangzhun (Wuhan) Industrial Co. Ltd., Wuhan, Hubei, 430073, China.
| |
Collapse
|
4
|
Halder J, Saha I, Rajwar TK, Kar B, Ghosh G, Rath G. Implementation of Quality by Design Approaches for Development and Validation of Reverse-Phase High-Performance Liquid Chromatography Assay Method for Determination of Glycyrrhizin in Nanoformulation. Assay Drug Dev Technol 2024; 22:28-39. [PMID: 38150225 DOI: 10.1089/adt.2023.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Glycyrrhizin (GL) is the principal constituent of Glycyrrhiza glabra, having antiallergic, anticancer, anti-inflammatory, and antimicrobial action. The reverse-phase high-performance liquid chromatography (RP-HPLC) analytical method was used to quantitatively estimate GL in a nanoformulation and validated as per International Conference on Harmonization Q2 (R1) standards. A stationary phase of the C18-HL reversed-phase column and a mobile phase of acetonitrile and water were used for effective elution. The chromatographic conditions of RP-HPLC were optimized utilizing a quality-by-design approach to accomplish the required chromatographic separation of GL from its nanoformulation with minimal experimental runs. Optimized RP-HPLC conditions for the assay method consist of acetonitrile (41%) and water, pH 1.8, balanced with phosphoric acid (0.1%) as a mobile phase with a flow rate of 1 mL/min. The retention time was found at 7.25 min, and method validation confirmed its sensitivity, preciseness, accuracy, and robustness.
Collapse
Affiliation(s)
- Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Quality by Design (QbD) Based Method for Estimation of Xanthohumol in Bulk and Solid Lipid Nanoparticles and Validation. Molecules 2023; 28:molecules28020472. [PMID: 36677532 PMCID: PMC9864017 DOI: 10.3390/molecules28020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
The analytical quality by design (AQbD) approach is utilized for developing and validating the simple, sensitive, cost-effective reverse-phase high performance liquid chromatographic method for the estimation of xanthohumol (XH) in bulk and nanoformulations. The Box-Behnken design (BBD) is applied for method optimization. The mobile phase ratio, pH and flow rate were selected as independent variables, whereas retention time, peak area, peak height, tailing factor, and theoretical plates were selected as dependent variables. The chromatogram of XH obtained under optimized conditions has given optimum conditions such as retention time (5.392 min), peak area (1,226,737 mAU), peak height (90,121 AU), tailing factor (0.991) and theoretical plates (4446.667), which are contoured in the predicted values shown by BBD. Validation of the method has been performed according to ICH Q2(R1) recommendations, using optimized conditions for linearity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, robustness and system suitability. All the values of validation parameters lie within the acceptable limits prescribed by ICH. Therefore, the developed and validated method of XH by the AQbD approach can be applied for the estimation of XH in bulk and various nanoformulations.
Collapse
|
6
|
Liu F, Zhan S, Zhang P, Jia C, Zhu Q, Dai Q, Yu M, Cheng L, Xiong L, Sun F, Xia P, Zhang X, Hu J. Simultaneous quantitative analysis and in vitro anti-arthritic effects of five polyphenols from Terminalia chebula. Front Physiol 2023; 14:1138947. [PMID: 36969583 PMCID: PMC10030958 DOI: 10.3389/fphys.2023.1138947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Background: The fruit of Terminalia chebula has been widely used for a thousand years for treating diarrhea, ulcers, and arthritic diseases in Asian countries. However, the active components of this Traditional Chinese medicine and their mechanisms remain unclear, necessitating further investigation. Objectives: To perform simultaneous quantitative analysis of five polyphenols in T. chebula and evaluate their anti-arthritic effects including antioxidant and anti-inflammatory activity in vitro. Materials and methods: Water, 50% water-ethanol, and pure ethanol were used as extract solvents. Quantitative analysis of gallic acid, corilagin, chebulanin, chebulagic acid, and ellagic acid in the three extracts was performed using high-performance liquid chromatography (HPLC). Antioxidant activity was assessed by the 2,2-diphenylpicrylhydrazyl (DPPH) radical-scavenging assay, and anti-inflammatory activity was evaluated by detecting interleukin (IL)-6 and IL-8 expression in IL-1β-stimulated MH7A cells. Results: The 50% water-ethanol solvent was the optimal solvent yielding the highest total polyphenol content, and the concentrations of chebulanin and chebulagic acid were much higher than those of gallic acid, corilagin, and ellagic acid in the extracts. The DPPH radical-scavenging assay showed that gallic acid and ellagic acid were the strongest antioxidative components, while the other three components showed comparable antioxidative activity. As for the anti-inflammatory effect, chebulanin and chebulagic acid significantly inhibited IL-6 and IL-8 expression at all three concentrations; corilagin and ellagic acid significantly inhibited IL-6 and IL-8 expression at high concentration; and gallic acid could not inhibit IL-8 expression and showed weak inhibition of IL-6 expression in IL-1β-stimulated MH7A cells. Principal component analysis indicated that chebulanin and chebulagic acid were the main components responsible for the anti-arthritic effects of T. chebula. Conclusion: Our findings highlight the potential anti-arthritic role of chebulanin and chebulagic acid from T. chebula.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shipeng Zhan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pu Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Changsheng Jia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingzong Zhu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Dai
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingjie Yu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Cheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lirong Xiong
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Peiyuan Xia, ; Xiao Zhang, ; Jing Hu,
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Peiyuan Xia, ; Xiao Zhang, ; Jing Hu,
| | - Jing Hu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Peiyuan Xia, ; Xiao Zhang, ; Jing Hu,
| |
Collapse
|
7
|
Harish V, Tewari D, Mohd S, Govindaiah P, Babu MR, Kumar R, Gulati M, Gowthamarajan K, Madhunapantula SV, Chellappan DK, Gupta G, Dua K, Dallavalasa S, Singh SK. Quality by Design Based Formulation of Xanthohumol Loaded Solid Lipid Nanoparticles with Improved Bioavailability and Anticancer Effect against PC-3 Cells. Pharmaceutics 2022; 14:2403. [PMID: 36365221 PMCID: PMC9699314 DOI: 10.3390/pharmaceutics14112403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Many natural products with greater therapeutic efficacy are limited to target several chronic diseases such as cancer, diabetes, and neurodegenerative diseases. Among the natural products from hops, i.e., Xanthohumol (XH), is a prenylated chalcone. The present research work focuses on the enhancement of the poor oral bioavailability and weak pharmacokinetic profile of XH. We exemplified the development of a Xanthohumol-loaded solid lipid nanoparticles (XH-SLNs) cargo system to overcome the limitations associated with its bioavailability. The XH-SLNs were prepared by a high-shear homogenization/ultrasonication method and graphical, numerical optimization was performed by using Box-Behnken Design. Optimized XH-SLNs showed PS (108.60 nm), PDI (0.22), ZP (-12.70 mV), %EE (80.20%) and an amorphous nature that was confirmed by DSC and PXRD. FE-SEM and HRTEM revealed the spherical morphology of XH-SLNs. The results of release studies were found to be 9.40% in 12 h for naive XH, whereas only 28.42% of XH was released from XH-SLNs. The slow release of drugs may be due to immobilization of XH in the lipid matrix. In vivo pharmacokinetic study was performed for the developed XH-SLNs to verify the enhancement in the bioavailability of XH than naive XH. The enhancement in the bioavailability of the XH was confirmed from an increase in Cmax (1.07-folds), AUC0-t (4.70-folds), t1/2 (6.47-folds) and MRT (6.13-folds) after loading into SLNs. The relative bioavailability of XH loaded in SLNs and naive XH was found to be 4791% and 20.80%, respectively. The cytotoxicity study of naive XH, XH-SLNs were performed using PC-3 cell lines by taking camptothecin as positive control. The results of cytotoxicity study revealed that XH-SLNs showed good cell inhibition in a sustained pattern. This work successfully demonstrated formulation of XH-SLNs with sustained release profile and improved oral bioavailability of XH with good anticancer properties against PC-3 cells.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Sharfuddin Mohd
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Pilli Govindaiah
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Malakapogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570015, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570015, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|