1
|
Reece JC, Martyushev A, Petravic J, Grimm A, Gooneratne S, Amaresena T, De Rose R, Loh L, Davenport MP, Kent SJ. Measuring turnover of SIV DNA in resting CD4+ T cells using pyrosequencing: implications for the timing of HIV eradication therapies. PLoS One 2014; 9:e93330. [PMID: 24710023 PMCID: PMC3977820 DOI: 10.1371/journal.pone.0093330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 01/28/2023] Open
Abstract
Resting CD4+ T cells are a reservoir of latent HIV-1. Understanding the turnover of HIV DNA in these cells has implications for the development of eradication strategies. Most studies of viral latency focus on viral persistence under antiretroviral therapy (ART). We studied the turnover of SIV DNA resting CD4+ T cells during active infection in a cohort of 20 SIV-infected pigtail macaques. We compared SIV sequences at two Mane-A1*084:01-restricted CTL epitopes using serial plasma RNA and resting CD4+ T cell DNA samples by pyrosequencing, and used a mathematical modeling approach to estimate SIV DNA turnover. We found SIV DNA turnover in resting CD4+ T cells was slow in animals with low chronic viral loads, consistent with the long persistence of latency seen under ART. However, in animals with high levels of chronic viral replication, turnover was high. SIV DNA half-life within resting CD4 cells correleated with viral load (p = 0.0052) at the Gag KP9 CTL epitope. At a second CTL epitope in Tat (KVA10) there was a trend towards an association of SIV DNA half-life in resting CD4 cells and viral load (p = 0.0971). Further, we found that the turnover of resting CD4+ T cell SIV DNA was higher for escape during early infection than for escape later in infection (p = 0.0084). Our results suggest viral DNA within resting CD4 T cells is more labile and may be more susceptible to reactivation/eradication treatments when there are higher levels of virus replication and during early/acute infection.
Collapse
Affiliation(s)
- Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Alexey Martyushev
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Andrew Grimm
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Shayarana Gooneratne
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Thakshila Amaresena
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
2
|
Trivalent live attenuated influenza-simian immunodeficiency virus vaccines: efficacy and evolution of cytotoxic T lymphocyte escape in macaques. J Virol 2013; 87:4146-60. [PMID: 23345519 DOI: 10.1128/jvi.02645-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8(+) cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401(+) female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIV(mac251). Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.
Collapse
|
3
|
An "escape clock" for estimating the turnover of SIV DNA in resting CD4⁺ T cells. PLoS Pathog 2012; 8:e1002615. [PMID: 22496643 PMCID: PMC3320584 DOI: 10.1371/journal.ppat.1002615] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/17/2012] [Indexed: 01/28/2023] Open
Abstract
Persistence of HIV DNA presents a major barrier to the complete control of HIV infection under current therapies. Most studies suggest that cells with latently integrated HIV decay very slowly under therapy. However, it is much more difficult to study the turnover and persistence of HIV DNA during active infection. We have developed an “escape clock” approach for measuring the turnover of HIV DNA in resting CD4+ T cells. This approach studies the replacement of wild-type (WT) SIV DNA present in early infection by CTL escape mutant (EM) strains during later infection. Using a strain-specific real time PCR assay, we quantified the relative amounts of WT and EM strains in plasma SIV RNA and cellular SIV DNA. Thus we can track the formation and turnover of SIV DNA in sorted resting CD4+ T cells. We studied serial plasma and PBMC samples from 20 SIV-infected Mane-A*10 positive pigtail macaques that have a signature Gag CTL escape mutation. In animals with low viral load, WT virus laid down early in infection is extremely stable, and the decay of this WT species is very slow, consistent with findings in subjects on anti-retroviral medications. However, during active, high level infection, most SIV DNA in resting cells was turning over rapidly, suggesting a large pool of short-lived DNA produced by recent infection events. Our results suggest that, in order to reduce the formation of a stable population of SIV DNA, it will be important either to intervene very early or intervene during active replication. New treatments for HIV have proved very successful at controlling viral replication and preventing the onset of AIDS. However, these treatments must be continued for life, because if they are stopped the virus rapidly ‘rebounds’ to its original levels. The reason for this rebound is the existence of a population of viruses that lie dormant inside cells during treatment, and reactivate as soon as treatment is stopped. This ‘latent virus’ is extremely long-lived under drug therapy conditions, and therefore presents a major barrier to viral eradication. However, very little is known about the survival and reactivation of latently infected cells during ongoing infection, because virus is being formed and destroyed all the time. We have developed a novel ‘escape clock’ approach to measure how long viral DNA lasts in monkeys. We find that, in the setting of low viral load, the lifespan of infected cells is very long, whereas during active infection there is a surprisingly high turnover of viral DNA within resting CD4 T cells. We believe this is due to high level of immune activation when there is a high level of replicating virus. This result may have important implications for the optimal timing of drug treatment.
Collapse
|
4
|
Epitope-specific CD8+ T lymphocytes cross-recognize mutant simian immunodeficiency virus (SIV) sequences but fail to contain very early evolution and eventual fixation of epitope escape mutations during SIV infection. J Virol 2011; 85:3746-57. [PMID: 21307185 DOI: 10.1128/jvi.02420-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) evade containment by CD8(+) T lymphocytes through focused epitope mutations. However, because of limitations in the numbers of viral sequences that can be sampled, traditional sequencing technologies have not provided a true representation of the plasticity of these viruses or the intensity of CD8(+) T lymphocyte-mediated selection pressure. Moreover, the strategy by which CD8(+) T lymphocytes contain evolving viral quasispecies has not been characterized fully. In the present study we have employed ultradeep 454 pyrosequencing of virus and simultaneous staining of CD8(+) T lymphocytes with multiple tetramers in the SIV/rhesus monkey model to explore the coevolution of virus and the cellular immune response during primary infection. We demonstrated that cytotoxic T lymphocyte (CTL)-mediated selection pressure on the infecting virus was manifested by epitope mutations as early as 21 days following infection. We also showed that CD8(+) T lymphocytes cross-recognized wild-type and mutant epitopes and that these cross-reactive cell populations were present at a time when mutant forms of virus were present at frequencies of as low as 1 in 22,000 sequenced clones. Surprisingly, these cross-reactive cells became enriched in the epitope-specific CD8(+) T lymphocyte population as viruses with mutant epitope sequences largely replaced those with epitope sequences of the transmitted virus. These studies demonstrate that mutant epitope-specific CD8(+) T lymphocytes that are present at a time when viral mutant epitope sequences are detected at extremely low frequencies fail to contain the later accumulation and fixation of the mutant epitope sequences in the viral quasispecies.
Collapse
|
5
|
Reece JC, Loh L, Alcantara S, Fernandez CS, Stambas J, Sexton A, De Rose R, Petravic J, Davenport MP, Kent SJ. Timing of immune escape linked to success or failure of vaccination. PLoS One 2010; 5. [PMID: 20862289 PMCID: PMC2940906 DOI: 10.1371/journal.pone.0012774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 11/23/2022] Open
Abstract
Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.
Collapse
Affiliation(s)
- Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Caroline S. Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Amy Sexton
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
6
|
Whole-genome characterization of human and simian immunodeficiency virus intrahost diversity by ultradeep pyrosequencing. J Virol 2010; 84:12087-92. [PMID: 20844037 DOI: 10.1128/jvi.01378-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid evolution and high intrahost sequence diversity are hallmarks of human and simian immunodeficiency virus (HIV/SIV) infection. Minor viral variants have important implications for drug resistance, receptor tropism, and immune evasion. Here, we used ultradeep pyrosequencing to sequence complete HIV/SIV genomes, detecting variants present at a frequency as low as 1%. This approach provides a more complete characterization of the viral population than is possible with conventional methods, revealing low-level drug resistance and detecting previously hidden changes in the viral population. While this work applies pyrosequencing to immunodeficiency viruses, this approach could be applied to virtually any viral pathogen.
Collapse
|
7
|
Arnott A, Jardine D, Wilson K, Gorry PR, Merlin K, Grey P, Law MG, Dax EM, Kelleher AD, Smith DE, McPhee DA, and the Pulse Study Team. High viral fitness during acute HIV-1 infection. PLoS One 2010; 5. [PMID: 20844589 PMCID: PMC2936565 DOI: 10.1371/journal.pone.0012631] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/07/2010] [Indexed: 11/26/2022] Open
Abstract
Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection.
Collapse
Affiliation(s)
- Alicia Arnott
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Darren Jardine
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
| | - Kim Wilson
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
| | - Paul R. Gorry
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kate Merlin
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Patricia Grey
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew G. Law
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth M. Dax
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony D. Kelleher
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Don E. Smith
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Dale A. McPhee
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | | |
Collapse
|
8
|
Bimber BN, Burwitz BJ, O'Connor S, Detmer A, Gostick E, Lank SM, Price DA, Hughes A, O'Connor D. Ultradeep pyrosequencing detects complex patterns of CD8+ T-lymphocyte escape in simian immunodeficiency virus-infected macaques. J Virol 2009; 83:8247-53. [PMID: 19515775 PMCID: PMC2715741 DOI: 10.1128/jvi.00897-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/01/2009] [Indexed: 11/20/2022] Open
Abstract
Human and simian immunodeficiency viruses (HIV/SIV) exhibit enormous sequence heterogeneity within each infected host. Here, we use ultradeep pyrosequencing to create a comprehensive picture of CD8(+) T-lymphocyte (CD8-TL) escape in SIV-infected macaques, revealing a previously undetected complex pattern of viral variants. This increased sensitivity enabled the detection of acute CD8-TL escape as early as 17 days postinfection, representing the earliest published example of CD8-TL escape in intrarectally infected macaques. These data demonstrate that pyrosequencing can be used to study the evolution of CD8-TL escape during immunodeficiency virus infection with an unprecedented degree of sensitivity.
Collapse
Affiliation(s)
- Benjamin N Bimber
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Balancing reversion of cytotoxic T-lymphocyte and neutralizing antibody escape mutations within human immunodeficiency virus type 1 Env upon transmission. J Virol 2009; 83:8986-92. [PMID: 19515763 DOI: 10.1128/jvi.00599-09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is subject to both neutralizing antibody (NAb) and CD8 T-cell (cytotoxic T-lymphocyte [CTL]) immune pressure. We studied the reversion of the Env CTL escape mutant virus to the wild type and the relationship between the reversion of CTL mutations with N-linked glycosylation site (NLGS)-driven NAb escape in pigtailed macaques. Env CTL mutations either did not revert to the wild type or only transiently reverted 5 to 7 weeks after infection. The CTL escape mutant reversion was coincident, for the same viral clones, with the loss of NLGS mutations. At one site studied, both CTL and NLGS mutations were needed to confer NAb escape. We conclude that CTL and NAb escape within Env can be tightly linked, suggesting opportunities to induce effective multicomponent anti-Env immunity.
Collapse
|
10
|
Loh L, Reece JC, Fernandez CS, Alcantara S, Center R, Howard J, Purcell DFJ, Balamurali M, Petravic J, Davenport MP, Kent SJ. Complexity of the inoculum determines the rate of reversion of SIV Gag CD8 T cell mutant virus and outcome of infection. PLoS Pathog 2009; 5:e1000378. [PMID: 19360124 PMCID: PMC2660429 DOI: 10.1371/journal.ppat.1000378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 03/12/2009] [Indexed: 11/19/2022] Open
Abstract
Escape mutant (EM) virus that evades CD8+ T cell recognition is frequently observed following infection with HIV-1 or SIV. This EM virus is often less replicatively “fit” compared to wild-type (WT) virus, as demonstrated by reversion to WT upon transmission of HIV to a naïve host and the association of EM virus with lower viral load in vivo in HIV-1 infection. The rate and timing of reversion is, however, highly variable. We quantified reversion to WT of a series of SIV and SHIV viruses containing minor amounts of WT virus in pigtail macaques using a sensitive PCR assay. Infection with mixes of EM and WT virus containing ≥10% WT virus results in immediate and rapid outgrowth of WT virus at SIV Gag CD8 T cell epitopes within 7 days of infection of pigtail macaques with SHIV or SIV. In contrast, infection with biologically passaged SHIVmn229 viruses with much smaller proportions of WT sequence, or a molecular clone of pure EM SIVmac239, demonstrated a delayed or slow pattern of reversion. WT virus was not detectable until ≥8 days after inoculation and took ≥8 weeks to become the dominant quasispecies. A delayed pattern of reversion was associated with significantly lower viral loads. The diversity of the infecting inoculum determines the timing of reversion to WT virus, which in turn predicts the outcome of infection. The delay in reversion of fitness-reducing CD8 T cell escape mutations in some scenarios suggests opportunities to reduce the pathogenicity of HIV during very early infection. Understanding how to contain HIV replication by the immune system is a key goal of vaccine strategies. HIV frequently mutates to avoid immune recognition, but this may come at a “fitness cost”, weakening the virus. When HIV is transmitted to a new host, the mutations often revert back to wild-type, allowing the virus to regain a fitter state. We found that when multiple HIV-like viruses are transmitted to monkeys, containing both mutant and wild-type, reversion to wild-type is very rapid and the fitter virus results in higher viral levels. In contrast, when only escape mutant virus initiates the infection, reversion to wild-type is delayed to later during early infection, and lower levels of virus result. Our results suggest that the composition of the infecting virus plays a role in determining the outcome of HIV infections. Strategies to maintain weakened virus strains during the early HIV infection may help the host control virus replication.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Caroline S. Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Center
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane Howard
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mehala Balamurali
- Center for Vascular Research, University of New South Wales, Sydney, Australia
| | - Janka Petravic
- Center for Vascular Research, University of New South Wales, Sydney, Australia
| | - Miles P. Davenport
- Center for Vascular Research, University of New South Wales, Sydney, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
11
|
Rates of HIV immune escape and reversion: implications for vaccination. Trends Microbiol 2008; 16:561-6. [PMID: 18964018 DOI: 10.1016/j.tim.2008.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/08/2008] [Accepted: 09/08/2008] [Indexed: 11/23/2022]
Abstract
HIV-1 mutates extensively in vivo to escape immune control by CD8+ T cells (CTLs). The CTL escape mutant virus might also revert back to wild-type upon transmission to new hosts if significant fitness costs are incurred by the mutation. Immune escape and reversion can be extremely fast if they occur very early after infection, whereas they are much slower when they begin later during infection. Immune escape presents a significant barrier to vaccination, because escape of vaccine-mediated immune responses could neutralise any benefits of vaccination. Here, we consider the dynamics of immune escape and reversion in vivo in natural infection, and suggest how understanding of this can be used to predict optimal vaccine targets and design vaccination strategies that maximise immune control. We predict that inducing synchronous, broad CTL by vaccination should limit the likelihood of viral escape from immune control.
Collapse
|