1
|
Abisi HK, Otieno LE, Irungu E, Onyambu FG, Chepchirchir A, Anzala O, Wamalwa DC, Nduati RW, McKinnon L, Kimani J, Mulinge MM. Net charge and position 22 of the V3 loop are associated with HIV-1 tropism in recently infected female sex workers in Nairobi, Kenya. Medicine (Baltimore) 2022; 101:e32024. [PMID: 36626483 PMCID: PMC9750520 DOI: 10.1097/md.0000000000032024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 01/11/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection affects around 37 million people worldwide, and in Kenya, key populations especially female sex workers (FSW), are thought to play a substantial role in the wider, mostly heterosexual HIV-1 transmission structure. Notably, HIV tropism has been found to correlate with HIV-1 transmission and disease progression in HIV-infected patients. In this study, recently infected FSWs from Nairobi, Kenya, were assessed for HIV tropism and the factors related to it. We used a cross-sectional study design to analyze 76 HIV-1 positive plasma samples obtained from FSWs enrolled in sex worker outreach program clinics in Nairobi between November 2020 and April 2021. The effects of clinical, demographic, and viral genetic characteristics were determined using multivariable logistic regression. HIV-1 subtype A1 accounted for 89.5% of all cases, with a prevalence of CXCR4-tropic viruses of 26.3%. WebPSSMR5X4 and Geno2Pheno [G2P:10-15% false positive rate] showed high concordance of 88%. Subjects infected with CXCR4-tropic viruses had statistically significant lower baseline CD4+T-cell counts than those infected with CCR5-tropic viruses (P = .044). Using multivariable logistic regression and adjusting for potential confounders, we found that net charge, the amino acid at position 22 of the V3 loop, and the geographic location of the subject were associated with tropism. A unit increase in V3 loop's net-charge increased the odds of a virus being CXCR4-tropic by 2.4 times (OR = 2.40, 95%CI = 1.35-5.00, P = .007). Second, amino acid threonine at position 22 of V3 loop increased the odds of a strain being X4 by 55.7 times compared to the alanine which occurred in CCR5-tropic strains (OR = 55.7, 95%CI = 4.04-84.1, P < .003). The Kawangware sex worker outreach program clinic was associated with CXCR4-tropic strains (P = .034), but there was there was no evidence of a distinct CXCR4-tropic transmission cluster. In conclusion, this study revealed a high concordance of WebPSSMR5X4 and Geno2Pheno in predicting HIV tropism. The most striking finding was that amino acid position 22 of the V3 loop is linked to tropism in HIV-1 subtype A1. Additional studies with a large dataset are warranted to confirm our findings.
Collapse
Affiliation(s)
- Hellen K Abisi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Leon E Otieno
- Molecular Medicine and Infectious Diseases Laboratory, University of Nairobi, Nairobi, Kenya
| | - Erastus Irungu
- Partners for Health and Development in Africa (PHDA), Nairobi, Kenya
| | - Frank G Onyambu
- School of Health Sciences, Meru University of Science and Technology, Meru, Kenya
| | | | - Omu Anzala
- Kenya AIDS Vaccine Initiative - Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Dalton C Wamalwa
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ruth W Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Lyle McKinnon
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Manitoba, MB, Canada
| | - Joshua Kimani
- Partners for Health and Development in Africa (PHDA), Nairobi, Kenya
| | - Martin M Mulinge
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
- Kenya AIDS Vaccine Initiative - Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
2
|
Lu Z, Jiao Y, Li J, Lan G, Lu C, Li X, Tang Z, Wang N. After 18 months of antiretroviral therapy, total HIV DNA decreases more pronouncedly in patients infected by CRF01_AE than in those infected by subtype B and CRF07_BC. Microbiol Immunol 2018; 62:248-254. [PMID: 29377267 DOI: 10.1111/1348-0421.12578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
Whether the amount of HIV DNA is associated with the subtype of HIV-1 after antiretroviral therapy (ART) has not been reported. In the present study, the amount of HIV DNA and RNA and CD4+T counts in blood and semen prior to and after 18 months of ART were compared in 48 patients infected by CRF01_AE, subtype B or CRF07_BC of HIV-1. Viral RNA was suppressed and CD4 cell count recovery achieved in all patients. The level of HIV DNA were similar before ART; however, patients with CRF01_AE had less HIV DNA after ART than those with subtype B and CRF07_BC infection. According to prediction of co-receptor usage by Geno2Pheno and PSSM in combination, more than 35.6% of clones for CRF01_AE were predicted as CXCR4-using before ART, whereas less than 6% of those for subtype B and CRF07_BC were predicted as CXCR4-using. After 18 months of ART, no CXCR4-using clones were predicted in any of the subtypes. Despite more HIV RNA and fewer CD4 + T cells in patients with CRF01_AE before therapy, no significant differences (P > 0.05) in viral RNA or CD4 cell counts were observed between the subtypes after 18 months of ART. Thus, 18 months of antiretroviral therapy was more efficient in patients with CRF01_AE. Considering that successful ART dramatically reduces the viral load in both blood and semen, risks of sexual transmission of HIV were reduced, contributing to prevention of rapid spread of HIV among men who have sex with men in the region.
Collapse
Affiliation(s)
- Zhenzhen Lu
- Institute of HIV/AIDS Prevention and Control, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China.,Department of Infectious Diseases, Beijing 302 Hospital, Beijing 100069, China
| | - Yanmei Jiao
- AIDS Antiviral Treatment Clinic, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China
| | - Jianjun Li
- Institute of HIV/AIDS Prevention and Control, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China
| | - Guanghua Lan
- Institute of HIV/AIDS Prevention and Control, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China
| | - Chunyan Lu
- AIDS Research Center, Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, China
| | - Xuan Li
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhenzhu Tang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China
| | - Ning Wang
- Department of Infectious Diseases, Beijing 302 Hospital, Beijing 100069, China
| |
Collapse
|
3
|
Sierra S, Dybowski JN, Pironti A, Heider D, Güney L, Thielen A, Reuter S, Esser S, Fätkenheuer G, Lengauer T, Hoffmann D, Pfister H, Jensen B, Kaiser R. Parameters Influencing Baseline HIV-1 Genotypic Tropism Testing Related to Clinical Outcome in Patients on Maraviroc. PLoS One 2015; 10:e0125502. [PMID: 25970632 PMCID: PMC4430318 DOI: 10.1371/journal.pone.0125502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/18/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES We analysed the impact of different parameters on genotypic tropism testing related to clinical outcome prediction in 108 patients on maraviroc (MVC) treatment. METHODS 87 RNA and 60 DNA samples were used. The viral tropism was predicted using the geno2pheno[coreceptor] and T-CUP tools with FPR cut-offs ranging from 1%-20%. Additionally, 27 RNA and 28 DNA samples were analysed in triplicate, 43 samples with the ESTA assay and 45 with next-generation sequencing. The influence of the genotypic susceptibility score (GSS) and 16 MVC-resistance mutations on clinical outcome was also studied. RESULTS Concordance between single-amplification testing compared to ESTA and to NGS was in the order of 80%. Concordance with NGS was higher at lower FPR cut-offs. Detection of baseline R5 viruses in RNA and DNA samples by all methods significantly correlated with treatment success, even with FPR cut-offs of 3.75%-7.5%. Triple amplification did not improve the prediction value but reduced the number of patients eligible for MVC. No influence of the GSS or MVC-resistance mutations but adherence to treatment, on the clinical outcome was detected. CONCLUSIONS Proviral DNA is valid to select candidates for MVC treatment. FPR cut-offs of 5%-7.5% and single amplification from RNA or DNA would assure a safe administration of MVC without excluding many patients who could benefit from this drug. In addition, the new prediction system T-CUP produced reliable results.
Collapse
Affiliation(s)
- Saleta Sierra
- Institute of Virology, University of Cologne, Cologne, Germany
| | - J Nikolai Dybowski
- Department for Bioinformatics, University of Duisburg-Essen, Essen, Germany
| | - Alejandro Pironti
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Dominik Heider
- Department for Bioinformatics, University of Duisburg-Essen, Essen, Germany
| | - Lisa Güney
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Alex Thielen
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Stefan Reuter
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Stefan Esser
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Gerd Fätkenheuer
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Thomas Lengauer
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Daniel Hoffmann
- Department for Bioinformatics, University of Duisburg-Essen, Essen, Germany
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Björn Jensen
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Edwards S, Stucki H, Bader J, Vidal V, Kaiser R, Battegay M, Klimkait T. A diagnostic HIV-1 tropism system based on sequence relatedness. J Clin Microbiol 2015; 53:597-610. [PMID: 25502529 PMCID: PMC4298515 DOI: 10.1128/jcm.02762-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022] Open
Abstract
Key clinical studies for HIV coreceptor antagonists have used the phenotyping-based Trofile test. Meanwhile various simpler-to-do genotypic tests have become available that are compatible with standard laboratory equipment and Web-based interpretation tools. However, these systems typically analyze only the most prominent virus sequence in a specimen. We present a new diagnostic HIV tropism test not needing DNA sequencing. The system, XTrack, uses physical properties of DNA duplexes after hybridization of single-stranded HIV-1 env V3 loop probes to the clinical specimen. Resulting "heteroduplexes" possess unique properties driven by sequence relatedness to the reference and resulting in a discrete electrophoretic mobility. A detailed optimization process identified diagnostic probe candidates relating best to a large number of HIV-1 sequences with known tropism. From over 500 V3 sequences representing all main HIV-1 subtypes (Los Alamos database), we obtained a small set of probes to determine the tropism in clinical samples. We found a high concordance with the commercial TrofileES test (84.9%) and the Web-based tool Geno2Pheno (83.0%). Moreover, the new system reveals mixed virus populations, and it was successful on specimens with low virus loads or on provirus from leukocytes. A replicative phenotyping system was used for validation. Our data show that the XTrack test is favorably suitable for routine diagnostics. It detects and dissects mixed virus populations and viral minorities; samples with viral loads (VL) of <200 copies/ml are successfully analyzed. We further expect that the principles of the platform can be adapted also to other sequence-divergent pathogens, such as hepatitis B and C viruses.
Collapse
Affiliation(s)
- Suzanne Edwards
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Heinz Stucki
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Joëlle Bader
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Panos G, Watson DC. Effect of HIV-1 subtype and tropism on treatment with chemokine coreceptor entry inhibitors; overview of viral entry inhibition. Crit Rev Microbiol 2014; 41:473-87. [DOI: 10.3109/1040841x.2013.867829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Aiamkitsumrit B, Dampier W, Antell G, Rivera N, Martin-Garcia J, Pirrone V, Nonnemacher MR, Wigdahl B. Bioinformatic analysis of HIV-1 entry and pathogenesis. Curr HIV Res 2014; 12:132-61. [PMID: 24862329 PMCID: PMC4382797 DOI: 10.2174/1570162x12666140526121746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
The evolution of human immunodeficiency virus type 1 (HIV-1) with respect to co-receptor utilization has been shown to be relevant to HIV-1 pathogenesis and disease. The CCR5-utilizing (R5) virus has been shown to be important in the very early stages of transmission and highly prevalent during asymptomatic infection and chronic disease. In addition, the R5 virus has been proposed to be involved in neuroinvasion and central nervous system (CNS) disease. In contrast, the CXCR4-utilizing (X4) virus is more prevalent during the course of disease progression and concurrent with the loss of CD4(+) T cells. The dual-tropic virus is able to utilize both co-receptors (CXCR4 and CCR5) and has been thought to represent an intermediate transitional virus that possesses properties of both X4 and R5 viruses that can be encountered at many stages of disease. The use of computational tools and bioinformatic approaches in the prediction of HIV-1 co-receptor usage has been growing in importance with respect to understanding HIV-1 pathogenesis and disease, developing diagnostic tools, and improving the efficacy of therapeutic strategies focused on blocking viral entry. Current strategies have enhanced the sensitivity, specificity, and reproducibility relative to the prediction of co-receptor use; however, these technologies need to be improved with respect to their efficient and accurate use across the HIV-1 subtypes. The most effective approach may center on the combined use of different algorithms involving sequences within and outside of the env-V3 loop. This review focuses on the HIV-1 entry process and on co-receptor utilization, including bioinformatic tools utilized in the prediction of co-receptor usage. It also provides novel preliminary analyses for enabling identification of linkages between amino acids in V3 with other components of the HIV-1 genome and demonstrates that these linkages are different between X4 and R5 viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102.
| |
Collapse
|