1
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
2
|
Sugawara S, Reeves RK, Jost S. Learning to Be Elite: Lessons From HIV-1 Controllers and Animal Models on Trained Innate Immunity and Virus Suppression. Front Immunol 2022; 13:858383. [PMID: 35572502 PMCID: PMC9094575 DOI: 10.3389/fimmu.2022.858383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022] Open
Abstract
Although antiretroviral therapy (ART) has drastically changed the lives of people living with human immunodeficiency virus-1 (HIV-1), long-term treatment has been associated with a vast array of comorbidities. Therefore, a cure for HIV-1 remains the best option to globally eradicate HIV-1/acquired immunodeficiency syndrome (AIDS). However, development of strategies to achieve complete eradication of HIV-1 has been extremely challenging. Thus, the control of HIV-1 replication by the host immune system, namely functional cure, has long been studied as an alternative approach for HIV-1 cure. HIV-1 elite controllers (ECs) are rare individuals who naturally maintain undetectable HIV-1 replication levels in the absence of ART and whose immune repertoire might be a desirable blueprint for a functional cure. While the role(s) played by distinct human leukocyte antigen (HLA) expression and CD8+ T cell responses expressing cognate ligands in controlling HIV-1 has been widely characterized in ECs, the innate immune phenotype has been decidedly understudied. Comparably, in animal models such as HIV-1-infected humanized mice and simian Immunodeficiency Virus (SIV)-infected non-human primates (NHP), viremic control is known to be associated with specific major histocompatibility complex (MHC) alleles and CD8+ T cell activity, but the innate immune response remains incompletely characterized. Notably, recent work demonstrating the existence of trained innate immunity may provide new complementary approaches to achieve an HIV-1 cure. Herein, we review the known characteristics of innate immune responses in ECs and available animal models, identify gaps of knowledge regarding responses by adaptive or trained innate immune cells, and speculate on potential strategies to induce EC-like responses in HIV-1 non-controllers.
Collapse
|
3
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Hartana CA, Rassadkina Y, Gao C, Martin-Gayo E, Walker BD, Lichterfeld M, Yu XG. Long noncoding RNA MIR4435-2HG enhances metabolic function of myeloid dendritic cells from HIV-1 elite controllers. J Clin Invest 2021; 131:146136. [PMID: 33938445 PMCID: PMC8087208 DOI: 10.1172/jci146136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Restriction of HIV-1 replication in elite controllers (ECs) is frequently attributed to T cell-mediated immune responses, while the specific contribution of innate immune cells is less clear. Here, we demonstrate an upregulation of the host long noncoding RNA (lncRNA) MIR4435-2HG in primary myeloid dendritic cells (mDCs) from ECs. Elevated expression of this lncRNA in mDCs was associated with a distinct immunometabolic profile, characterized by increased oxidative phosphorylation and glycolysis activities in response to TLR3 stimulation. Using functional assays, we show that MIR4435-2HG directly influenced the metabolic state of mDCs, likely through epigenetic mechanisms involving H3K27ac enrichment at an intronic enhancer in the RPTOR gene locus, the main component of the mammalian target of rapamycin complex 1 (mTORC1). Together, these results suggest a role of MIR4435-2HG for enhancing immunometabolic activities of mDCs in ECs through targeted epigenetic modifications of a member of the mTOR signaling pathway.
Collapse
Affiliation(s)
| | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Enrique Martin-Gayo
- Immunology Unit, Universidad Autónoma de Madrid, Hospital Universitario la Princesa, Madrid, Spain
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Sciences, and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Pallikkuth S, Bolivar H, Fletcher MA, Babic DZ, De Armas LR, Gupta S, Termini JM, Arheart KL, Stevenson M, Tung FY, Fischl MA, Pahwa S, Stone GW. A therapeutic HIV-1 vaccine reduces markers of systemic immune activation and latent infection in patients under highly active antiretroviral therapy. Vaccine 2020; 38:4336-4345. [PMID: 32387010 DOI: 10.1016/j.vaccine.2020.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
HIV infection is characterized by chronic immune activation and the establishment of a pool of latently infected cells. Antiretroviral therapy (ART) can suppress viral load to undetectable levels in peripheral blood by standard measure, however immune activation/chronic inflammation and latent infection persist and affect quality of life. We have now shown that a novel therapeutic HIV vaccine consisting of replication-defective HIV (HIVAX), given in the context of viral suppression under ART, can reduce both immune activation/chronic inflammation and latent infection. Immune activation, as measured by percent of CD8 + HLA-DR + CD38 + T cells, approached levels of healthy controls at week 16 following vaccination. Reduced immune activation was accompanied by a reduction in pro-inflammatory cytokines and peripheral α4β7 + plasmacytoid DC (a marker of mucosal immune activation). Levels of both HIV-1 DNA and 2-LTR circles were reduced at week 16 following vaccination, suggesting HIVAX can impact HIV-1 latency and reduce viral replication. Surprisingly, reduced immune activation/chronic inflammation was accompanied by an increase in the percent of memory CD4 + T cells expressing markers PD-1 and TIM-3. In addition, evaluation of HIV-1 Gag-specific CD4 + T cells for expression of 96 T cell related genes pre- and post-therapy revealed increased expression of a number of genes involved in the regulation of immune activation, T cell activation, and antiviral responses. Overall this study provides evidence that vaccination with HIVAX in subjects under long term antiviral suppression can reduce immune activation/chronic inflammation and latent infection (Clinicaltrials.gov, identifier NCT01428596).
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hector Bolivar
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary A Fletcher
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dunja Z Babic
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lesley R De Armas
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sachin Gupta
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James M Termini
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristopher L Arheart
- Department of Public Health Sciences and the Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mario Stevenson
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Margaret A Fischl
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Geoffrey W Stone
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Alculumbre S, Raieli S, Hoffmann C, Chelbi R, Danlos FX, Soumelis V. Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association. Semin Cell Dev Biol 2019; 86:24-35. [DOI: 10.1016/j.semcdb.2018.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/28/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
|
7
|
MANICKAM C, NWANZE C, RAM DR, SHAH SV, SMITH S, JONES R, HUEBER B, KROLL K, VARNER V, GOEPFERT P, JOST S, REEVES RK. Progressive lentivirus infection induces natural killer cell receptor-expressing B cells in the gastrointestinal tract. AIDS 2018; 32:1571-1578. [PMID: 29734222 PMCID: PMC6043388 DOI: 10.1097/qad.0000000000001855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Recently, a seemingly novel innate immune cell subset bearing features of natural killer and B cells was identified in mice. So-called NKB cells appear as first responders to infections, but whether this cell population is truly novel or is in fact a subpopulation of B cells and exists in higher primates remains unclear. The objective of this study was to identify NKB cells in primates and study the impact of HIV/SIV infections. DESIGN AND METHODS NKB cells were quantified in both naive and lentivirus infected rhesus macaques and humans by excluding lineage markers (CD3, CD127) and positive Boolean gating for CD20, NKG2A/C and/or NKp46. Additional phenotypic measures were conducted by RNA-probe and traditional flow cytometry. RESULTS Circulating cytotoxic NKB cells were found at similar frequencies in humans and rhesus macaques (range, 0.01-0.2% of total lymphocytes). NKB cells were notably enriched in spleen (median, 0.4% of lymphocytes), but were otherwise systemically distributed in tonsil, lymph nodes, colon, and jejunum. Expression of immunoglobulin was highly variable, but heavily favoured IgM and IgA rather than IgG. Interestingly, NKB cell frequencies expanded in PBMC and colon during SIV infection, as did IgG expression, but were generally unaltered in HIV-infected humans. CONCLUSION These results suggest a cell type expressing both natural killer and B-cell features exists in rhesus macaques and humans and are perturbed by HIV/SIV infection. The full functional niche remains unknown, but the unique phenotype and systemic distribution could make NKB cells unique targets for immunotherapeutics or vaccine strategies.
Collapse
Affiliation(s)
- Cordelia MANICKAM
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chiadika NWANZE
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel R. RAM
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Spandan V. SHAH
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Scott SMITH
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rhianna JONES
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady HUEBER
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kyle KROLL
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Valerie VARNER
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Paul GOEPFERT
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephanie JOST
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R. Keith REEVES
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
8
|
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154:3-20. [PMID: 29313948 PMCID: PMC5904714 DOI: 10.1111/imm.12888] [Citation(s) in RCA: 886] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| | - Venetia Bigley
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
9
|
Autissier E, Li H, Goepfert PA, Reeves RK. Short Communication: Apoptotic Membrane Microparticles Quantified by Fluorescent Bead-Based Assay Are Elevated in HIV and SIV Infections. AIDS Res Hum Retroviruses 2018; 34:446-448. [PMID: 29486582 DOI: 10.1089/aid.2018.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apoptotic membrane microparticles (MMPs) derived from dying cells of multiple cell origins are highly immunostimulatory and are indicative of global immune activation and cell death in a variety of diseases. In this study, we developed a flow cytometric bead assay to quantify annexin-V+ apoptotic (MMPs) in plasma from humans and rhesus macaques. With a combination of flow cytometry and pan-fluorescent beads, MMPs were enumerated in plasma specimens by adding a constant ratio of beads to initial fluid volumes and then calculating MMP/mL based on MMP-to-bead ratios. Using this straightforward assay, we found that circulating MMP quantifications were highly reproducible and similar in number between normal rhesus macaques and humans subjects. However, MMPs increased two- to threefold during HIV and simian immunodeficiency virus (SIV) infections and were positively associated with T cell immune activation. Collectively, we present a rapid bead-based assay for both humans and macaque models to quantify MMPs that could be an instigator and predictor of immune activation, which is a primary source of HIV/SIV disease.
Collapse
Affiliation(s)
- Estelle Autissier
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, Massachusetts
| |
Collapse
|
10
|
Reeves RK, Burgener A, Klatt NR. Targeting the gastrointestinal tract to develop novel therapies for HIV. Clin Pharmacol Ther 2015; 98:381-6. [PMID: 26179624 DOI: 10.1002/cpt.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023]
Abstract
Despite the use of antiretroviral therapy (ART), which delays and/or prevents AIDS pathogenesis, human immunodeficiency virus (HIV)-infected individuals continue to face increased morbidities and mortality rates compared with uninfected individuals. Gastrointestinal (GI) mucosal dysfunction is a key feature of HIV infection, and is associated with mortality. In this study, we review current knowledge about mucosal dysfunction in HIV infection, and describe potential avenues for therapeutic targets to enhance mucosal function and decrease morbidities and mortalities in HIV-infected individuals.
Collapse
Affiliation(s)
- R K Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - A Burgener
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Sweden
| | - N R Klatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.,Washington National Primate Research Center, Seattle, Washington, USA
| |
Collapse
|
11
|
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique DC subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases that are characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. In this Review, we summarize recent progress in the field of pDC biology, focusing on the molecular mechanisms that regulate the development and functions of pDCs, the pathways involved in their sensing of pathogens and endogenous nucleic acids, their functions at mucosal sites, and their roles in infection, autoimmunity and cancer.
Collapse
|