1
|
Kaur H, Minchella P, Alvarez-Carbonell D, Purandare N, Nagampalli VK, Blankenberg D, Hulgan T, Gerschenson M, Karn J, Aras S, Kallianpur AR. Contemporary Antiretroviral Therapy Dysregulates Iron Transport and Augments Mitochondrial Dysfunction in HIV-Infected Human Microglia and Neural-Lineage Cells. Int J Mol Sci 2023; 24:12242. [PMID: 37569616 PMCID: PMC10419149 DOI: 10.3390/ijms241512242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
HIV-associated cognitive dysfunction during combination antiretroviral therapy (cART) involves mitochondrial dysfunction, but the impact of contemporary cART on chronic metabolic changes in the brain and in latent HIV infection is unclear. We interrogated mitochondrial function in a human microglia (hμglia) cell line harboring inducible HIV provirus and in SH-SY5Y cells after exposure to individual antiretroviral drugs or cART, using the MitoStress assay. cART-induced changes in protein expression, reactive oxygen species (ROS) production, mitochondrial DNA copy number, and cellular iron were also explored. Finally, we evaluated the ability of ROS scavengers or plasmid-mediated overexpression of the antioxidant iron-binding protein, Fth1, to reverse mitochondrial defects. Contemporary antiretroviral drugs, particularly bictegravir, depressed multiple facets of mitochondrial function by 20-30%, with the most pronounced effects in latently infected HIV+ hμglia and SH-SY5Y cells. Latently HIV-infected hμglia exhibited upregulated glycolysis. Increases in total and/or mitochondrial ROS, mitochondrial DNA copy number, and cellular iron accompanied mitochondrial defects in hμglia and SH-SY5Y cells. In SH-SY5Y cells, cART reduced mitochondrial iron-sulfur-cluster-containing supercomplex and subunit expression and increased Nox2 expression. Fth1 overexpression or pre-treatment with N-acetylcysteine prevented cART-induced mitochondrial dysfunction. Contemporary cART impairs mitochondrial bioenergetics in hμglia and SH-SY5Y cells, partly through cellular iron accumulation; some effects differ by HIV latency.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paige Minchella
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - David Alvarez-Carbonell
- Department of Microbiology and Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Neeraja Purandare
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Vijay K. Nagampalli
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Blankenberg
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Todd Hulgan
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96844, USA
| | - Jonathan Karn
- Department of Microbiology and Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Asha R. Kallianpur
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Mataramvura H, Bunders MJ, Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023; 14:1182217. [PMID: 37350953 PMCID: PMC10282157 DOI: 10.3389/fimmu.2023.1182217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Commencing lifelong antiretroviral therapy (ART) immediately following HIV diagnosis (Option B+) has dramatically improved the health of HIV-infected women and their children, with the majority being of HIV-exposed children born uninfected (HEU). This success has led to an increasing population of HIV-infected women receiving ART during pregnancy and children exposed to ART in utero. Nonetheless, a small proportion of children are still infected with HIV (HEI) each year. HEI children suffer from reduced immunocompetence and host-defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other immune cells including CD8+ T lymphocytes, natural killer (NK) cells, macrophages including B lymphocytes. Furthermore, although HEU children are uninfected, altered immune responses are observed and associated with increased vulnerability to infections. The mechanisms underlying immune dysregulation in HEU children remain poorly described. Building on early studies, emerging data suggests that HIV/ART exposure early in life affects cell metabolic function of HEU children. Prenatal HIV/ART exposure has been associated with dysregulation of mitochondria, including impaired DNA polymerase activity. Furthermore, dysregulation of oxidative phosphorylation (OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and increased production of reactive oxygen species (ROS), resulting in oxidative stress. These altered metabolic processes can affect immune cell viability and immune responses. Recent studies have indicated that immune-metabolic dysregulation may contribute to HIV-associated pathogenesis and clinical observations associated with HIV and ART exposure in HEU/HEI children. Given the critical role metabolic processes in immune cell functioning, immune-metabolic dysregulation in HEU and HEI children may have implications in effective host-defence responses against pathogens, as well as efficacy of standard ART regimens and future novel HIV cure approaches in HEI children. At the same time, targeting metabolic pathways of immune cells may provide safer and novel approaches for HIV cure strategies. Here, we review the current literature investigating immune-metabolic dysregulation in paediatric HIV pathogenesis.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Madeleine J. Bunders
- III. Medical Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW HIV and antiretroviral therapy (ART) use are linked to an increased incidence of atherosclerotic cardiovascular disease (ASCVD). Immune activation persists in ART-treated people with HIV (PWH), and markers of inflammation (i.e. IL-6, C-reactive protein) predict mortality in this population. This review discusses underlying mechanisms that likely contribute to inflammation and the development of ASCVD in PWH. RECENT FINDINGS Persistent inflammation contributes to accelerated ASCVD in HIV and several new insights into the underlying immunologic mechanisms of chronic inflammation in PWH have been made (e.g. clonal haematopoiesis, trained immunity, lipidomics). We will also highlight potential pro-inflammatory mechanisms that may differ in vulnerable populations, including women, minorities and children. SUMMARY Mechanistic studies into the drivers of chronic inflammation in PWH are ongoing and may aid in tailoring effective therapeutic strategies that can reduce ASCVD risk in this population. Focus should also include factors that lead to persistent disparities in HIV care and comorbidities, including sex as a biological factor and social determinants of health. It remains unclear whether ASCVD progression in HIV is driven by unique mediators (HIV itself, ART, immunodeficiency), or if it is an accelerated version of disease progression seen in the general population.
Collapse
Affiliation(s)
- Sahera Dirajlal-Fargo
- Rainbow Babies and Children’s Hospital, Cleveland, OH
- Case Western Reserve University, Cleveland, OH
| | - Nicholas Funderburg
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH
| |
Collapse
|
4
|
HIV-1 Latency and Viral Reservoirs: Existing Reversal Approaches and Potential Technologies, Targets, and Pathways Involved in HIV Latency Studies. Cells 2021; 10:cells10020475. [PMID: 33672138 PMCID: PMC7926981 DOI: 10.3390/cells10020475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Eradication of latent human immunodeficiency virus (HIV) infection is a global health challenge. Reactivation of HIV latency and killing of virus-infected cells, the so-called "kick and kill" or "shock and kill" approaches, are a popular strategy for HIV cure. While antiretroviral therapy (ART) halts HIV replication by targeting multiple steps in the HIV life cycle, including viral entry, integration, replication, and production, it cannot get rid of the occult provirus incorporated into the host-cell genome. These latent proviruses are replication-competent and can rebound in cases of ART interruption or cessation. In general, a very small population of cells harbor provirus, serve as reservoirs in ART-controlled HIV subjects, and are capable of expressing little to no HIV RNA or proteins. Beyond the canonical resting memory CD4+ T cells, HIV reservoirs also exist within tissue macrophages, myeloid cells, brain microglial cells, gut epithelial cells, and hematopoietic stem cells (HSCs). Despite a lack of active viral production, latently HIV-infected subjects continue to exhibit aberrant cellular signaling and metabolic dysfunction, leading to minor to major cellular and systemic complications or comorbidities. These include genomic DNA damage; telomere attrition; mitochondrial dysfunction; premature aging; and lymphocytic, cardiac, renal, hepatic, or pulmonary dysfunctions. Therefore, the arcane machineries involved in HIV latency and its reversal warrant further studies to identify the cryptic mechanisms of HIV reservoir formation and clearance. In this review, we discuss several molecules and signaling pathways, some of which have dual roles in maintaining or reversing HIV latency and reservoirs, and describe some evolving strategies and possible approaches to eliminate viral reservoirs and, ultimately, cure/eradicate HIV infection.
Collapse
|
5
|
Shiau S, Evans H, Strehlau R, Shen Y, Burke M, Liberty A, Coovadia A, Abrams EJ, Yin MT, Violari A, Kuhn L, Arpadi SM. Behavioral Functioning and Quality of Life in South African Children Living with HIV on Antiretroviral Therapy. J Pediatr 2020; 227:308-313.e2. [PMID: 32712285 PMCID: PMC8811608 DOI: 10.1016/j.jpeds.2020.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
This study examined behavioral functioning and quality of life in South African children living with perinatally acquired HIV. Compared with controls, children living with perinatally acquired HIV had a higher mean total difficulties score assessed by the Strengths and Difficulties Questionnaire and lower mean quality of life scores assessed by the Pediatric Quality of Life Inventory.
Collapse
Affiliation(s)
- Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Henry Evans
- Department of Medicine, Division of Infectious Diseases, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Renate Strehlau
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Pediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yanhan Shen
- ICAP at Columbia University, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Megan Burke
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Pediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Afaaf Liberty
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Ashraf Coovadia
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Pediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Elaine J Abrams
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY; G.H. Sergievsky Center, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY; Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael T Yin
- Department of Medicine, Division of Infectious Diseases, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Avy Violari
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Louise Kuhn
- ICAP at Columbia University, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY; G.H. Sergievsky Center, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Stephen M Arpadi
- ICAP at Columbia University, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY; G.H. Sergievsky Center, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY; Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
6
|
Health Outcomes at School Age among Children Who Are HIV-Exposed but Uninfected with Detected Mitochondrial DNA Depletion at One Year. J Clin Med 2020; 9:jcm9113680. [PMID: 33207772 PMCID: PMC7696966 DOI: 10.3390/jcm9113680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
Infant antiretroviral (ARV) prophylaxis given to children who are human immunodeficiency virus (HIV)-exposed but uninfected (CHEU) to prevent HIV transmission through breastfeeding previously proved its efficacy in the fight against the pediatric epidemic. However, few studies have investigated the short- and long-term safety of prophylactic regimens. We previously reported a decrease of mitochondrial DNA (mtDNA) content among CHEU who received one year of lamivudine (3TC) or lopinavir-boosted ritonavir (LPV/r) as infant prophylaxis. We aimed to describe mtDNA content at six years of age among these CHEU, including those for whom we identified mtDNA depletion at week 50 (decrease superior or equal to 50% from baseline), and to compare the two prophylactic drugs. We also addressed the association between mtDNA depletion at week 50 with growth, clinical, and neuropsychological outcomes at year 6. Quantitative PCR was used to measure mtDNA content in whole blood of CHEU seven days after birth, at week 50, and at year 6. Among CHEU with identified mtDNA depletion at week 50 (n = 17), only one had a persistent mtDNA content decrease at year 6. No difference between prophylactic drugs was observed. mtDNA depletion was not associated with growth, clinical, or neuropsychological outcomes at year 6. This study brought reassuring data concerning the safety of infant 3TC or LPV/r prophylaxis.
Collapse
|
7
|
Monnin A, Nagot N, Periès M, Vallo R, Meda N, Singata-Madliki M, Tumwine JK, Kankasa C, Ngandu N, Goga A, Reynier P, Tylleskär T, Van de Perre P, Molès JP. Mitochondrial DNA Parameters in Blood of Infants Receiving Lopinavir/Ritonavir or Lamivudine Prophylaxis to Prevent Breastfeeding Transmission of HIV-1. J Clin Med 2020; 9:E2972. [PMID: 32937988 PMCID: PMC7564660 DOI: 10.3390/jcm9092972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 01/09/2023] Open
Abstract
Children who are human immunodeficiency virus (HIV)-exposed but uninfected (CHEU) accumulate maternal HIV and antiretroviral exposures through pregnancy, postnatal prophylaxis, and breastfeeding. Here, we compared the dynamics of mitochondrial DNA (mtDNA) parameters in African breastfed CHEU receiving lopinavir/ritonavir (LPV/r) or lamivudine (3TC) pre-exposure prophylaxis during the first year of life. The number of mtDNA copies per cell (MCN) and the proportion of deleted mtDNA (MDD) were assessed at day 7 and at week 50 post-delivery (PrEP group). mtDNA depletion was defined as a 50% or more decrease from the initial value, and mtDNA deletions was the detection of mtDNA molecules with large DNA fragment loss. We also performed a sub-analysis with CHEU who did not receive a prophylactic treatment in South Africa (control group). From day seven to week 50, MCN decreased with a median of 41.7% (interquartile range, IQR: 12.1; 64.4) in the PrEP group. The proportion of children with mtDNA depletion was not significantly different between the two prophylactic regimens. Poisson regressions showed that LPV/r and 3TC were associated with mtDNA depletion (reference: control group; LPV/r: PR = 1.75 (CI95%: 1.15-2.68), p < 0.01; 3TC: PR = 1.54 (CI95%: 1.00-2.37), p = 0.05). Moreover, the proportion of children with MDD was unexpectedly high before randomisation in both groups. Long-term health impacts of these mitochondrial DNA parameters should be investigated further for both CHEU and HIV-infected children receiving LPV/r- or 3TC- based regimens.
Collapse
Affiliation(s)
- Audrey Monnin
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, 34934 Montpellier, France; (M.P.); (R.V.); (J.-P.M.)
| | - Nicolas Nagot
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Centre Hospitalier Universitaire, 34934 Montpellier, France; (N.N.); (P.V.d.P.)
| | - Marianne Periès
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, 34934 Montpellier, France; (M.P.); (R.V.); (J.-P.M.)
| | - Roselyne Vallo
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, 34934 Montpellier, France; (M.P.); (R.V.); (J.-P.M.)
| | - Nicolas Meda
- Centre MURAZ, Bobo-Dioulasso 01 B.P. 390, Burkina Faso;
| | - Mandisa Singata-Madliki
- Effective Care Research Unit, Cecilia Makiwane Hospital, University of Fort Hare, East London 5201, South Africa;
| | - James K. Tumwine
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala 7062, Uganda;
| | - Chipepo Kankasa
- Department of Paediatric and Child Health, University Teaching Hospital, Lusaka PO Box 50110, Zambia;
| | - Nobubelo Ngandu
- Health Systems Research Unit, South African Medical Research Council, Cape Town 7501, South Africa; (N.N.); (A.G.)
| | - Ameena Goga
- Health Systems Research Unit, South African Medical Research Council, Cape Town 7501, South Africa; (N.N.); (A.G.)
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France;
| | - Thorkild Tylleskär
- Centre for International Health, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| | - Philippe Van de Perre
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Centre Hospitalier Universitaire, 34934 Montpellier, France; (N.N.); (P.V.d.P.)
| | - Jean-Pierre Molès
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, 34934 Montpellier, France; (M.P.); (R.V.); (J.-P.M.)
| |
Collapse
|