1
|
Pandey SK, Roy K. Hybrid model development through the integration of quantitative read-across (qRA) hypothesis with the QSAR framework: An alternative risk assessment of acute inhalation toxicity testing in rats. CHEMOSPHERE 2025; 370:143931. [PMID: 39672347 DOI: 10.1016/j.chemosphere.2024.143931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Regulatory authorities frequently need information on a chemical's capacity to produce acute systemic toxicity in humans. Due to concerns about animal welfare, human relevance, and reproducibility, numerous international initiatives have centered on finding a substitute for using animals in acute systemic lethality testing. These substitutes include the more current in-silico and in vitro techniques. Meanwhile, Advances in artificial intelligence and computational resources have led to a rise in the speed and accuracy of machine learning algorithms. Therefore, new approach methodologies (NAMs) based on in-silico modeling are considered a suitable place to start, even though many non-animal testing approaches exist for evaluating the safety of chemicals. Eventually, in this investigation, we have developed a hybrid computational model for acute inhalational toxicity data. In this case study, two major in silico techniques, QSAR (quantitative structure-activity relationship) and qRA (quantitative read-across) predictions, were utilized in a hybrid manner to extract more insightful information about the compounds based on similarity as well as the physicochemical properties. The findings of this investigation demonstrate that the integrated method surpasses the traditional QSAR model in terms of statistical quality for inhalational toxicity data, with greater predictability and transferability, due to a much smaller number of descriptors used in the hybrid modeling process. This hybrid modeling technique is a promising alternative, which can be paired with other methods in an integrated manner for a more rational categorization and evaluation of inhaled chemicals as a substitute for animal testing for regulatory purposes in the future.
Collapse
Affiliation(s)
- Sapna Kumari Pandey
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Vitucci ECM, Carberry CK, Payton A, Herring LE, Mordant AL, Kim YH, Gilmour MI, McCullough SD, Rager JE. Wildfire-relevant woodsmoke and extracellular vesicles (EVs): Alterations in EV proteomic signatures involved in extracellular matrix degradation and tissue injury in airway organotypic models. ENVIRONMENTAL RESEARCH 2025; 264:120395. [PMID: 39571711 DOI: 10.1016/j.envres.2024.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Wildfires adversely impact air quality and public health worldwide. Exposures to wildfire smoke are linked to adverse health outcomes, including cardiopulmonary diseases. Critical research gaps remain surrounding the underlying biological pathways leading to wildfire-induced health effects. The regulation of intercellular communication and downstream toxicity driven by extracellular vesicles (EVs) is an important, understudied biological mechanism. This study investigated EVs following a wildfire smoke-relevant in vitro exposure. We hypothesized that woodsmoke (WS) would alter the proteomic content of EVs secreted in organotypic in vitro airway models. Exposures were carried out using a tri-culture model of alveolar epithelial cells, fibroblasts, and endothelial cells and a simplified co-culture model of alveolar epithelial cells and fibroblasts to inform responses across different cell populations. Epithelial cells were exposed to WS condensate and EVs were isolated from basolateral conditioned medium following 24 h exposure. WS exposure did not influence EV particle characteristics, and it moderately increased EV count. Exposure caused the differential loading of 25 and 35 proteins within EVs collected from the tri- and co-culture model, respectively. EV proteins involved in extracellular matrix degradation and wound healing were consistently modulated across both models. However, distinct proteins involved in the wound healing pathway were altered between models, suggesting unique but concerted efforts across cell types to communicate in response to injury. These findings demonstrate that a wildfire-relevant exposure alters the EV proteome and suggest an impact on EV-mediated intercellular communication. Overall, results demonstrate the viability of organotypic approaches in evaluating EVs to investigate exposure-induced biomarkers and underlying mechanisms. Findings also highlight the impact of differences in the biological complexity of in vitro models used to evaluate the effects of inhaled toxicants.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA; Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shaun D McCullough
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Exposure and Protection Group, Technology Advancement and Commercialization Unit, Research Triangle Institute International, Durham, NC 27709, USA; Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Rossner P, Libalova H, Cervena T, Sima M, Simova Z, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Vimrova A, Dittrich L, Vojtisek M, Pechout M, Vojtisek-Lom M. Real-world outdoor air exposure effects in a model of the human airway epithelium - A comparison of healthy and asthmatic individuals using a mobile laboratory setting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117495. [PMID: 39647370 DOI: 10.1016/j.ecoenv.2024.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
We developed a mobile laboratory allowing field exposure of lung tissue models to ambient air at localities with various pollution sources (Background, Industrial, Traffic, Urban) in different seasons (summer/fall/winter). In samples originating from healthy and asthmatic individuals, we assessed the parameters of toxicity, lipid peroxidation and immune response; we further performed comprehensive monitoring of air pollutants at sampling sites. We measured lactate dehydrogenase (LDH) and adenylate kinase (AK) production and transepithelial electrical resistance (TEER), analyzed 15-F2t-isopostane (IsoP) and a panel of 20 cytokines/chemokines/growth factors. In the ambient air, we detected particulate matter (PM), and other relevant chemicals (benzene, benzo[a]pyrene (BaP), NOx). In the Traffic locality, we found very high concentrations of ultrafine particles and NOx and observed low TEER values in the exposed samples, indicating significant traffic-related toxicity of the ambient air. In the Urban locality, sampled in winter, we observed high PM and BaP levels. We found lower AK levels in samples from healthy individuals exposed in this locality than in the asthmatic samples. In the samples from the Industrial locality, sampled in summer, we detected higher concentrations of TNFα, MIP-1α, Eotaxin, GROα, GM-CSF, IL-6 and IL-7 than in the Urban locality samples. We hypothesize that pollen or other plant-related components of the ambient air were responsible for this response. In conclusion, our data proved the feasibility of our mobile laboratory for field measurements of the biological response of lung tissue models exposed to ambient air, reflecting not only the levels of toxic compounds, but also season-specific parameters.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic.
| | - Helena Libalova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Tereza Cervena
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Michal Sima
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Zuzana Simova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Antonin Ambroz
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Zuzana Novakova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Fatima Elzeinova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Anezka Vimrova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Lubos Dittrich
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Michal Vojtisek
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Martin Pechout
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Michal Vojtisek-Lom
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
4
|
Koceva H, Mosig A. Human-Induced Pluripotent Stem Cell-Based Alveolus-on-Chip Model to Study Influenza Virus A Infection. Methods Mol Biol 2025; 2890:225-235. [PMID: 39890730 DOI: 10.1007/978-1-0716-4326-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
This chapter introduces an alveolus-on-chip model for studying influenza virus A infection. The model represents a physiologically relevant alternative to animal models and a scalable and cost-effective approach to gaining mechanistic insights into human-related viral infection processes in vitro. We provide a comprehensive protocol for creating a human autologous model from human-induced pluripotent stem cell (hiPSC)-derived alveolar type II cells, endothelial cells, and macrophages. The protocol includes details on on-chip cell culture, microfluidic perfusion, and monitoring influenza A virus infection through immunofluorescence imaging.
Collapse
Affiliation(s)
- Hristina Koceva
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Alexander Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| |
Collapse
|
5
|
Ledwith R, Stobernack T, Bergert A, Bahl A, Pink M, Haase A, Dumit VI. Towards characterization of cell culture conditions for reliable proteomic analysis: in vitro studies on A549, differentiated THP-1, and NR8383 cell lines. Arch Toxicol 2024; 98:4021-4031. [PMID: 39264451 PMCID: PMC11496344 DOI: 10.1007/s00204-024-03858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Proteomic investigations result in high dimensional datasets, but integration or comparison of different studies is hampered by high variances due to different experimental setups. In addition, cell culture conditions can have a huge impact on the outcome. This study systematically investigates the impact of experimental parameters on the proteomic profiles of commonly used cell lines-A549, differentiated THP-1 macrophage-like cells, and NR8383-for toxicity studies. The work focuses on analyzing the influence at the proteome level of cell culture setup involving different vessels, cell passage numbers, and post-differentiation harvesting time, aiming to improve the reliability of proteomic analyses for hazard assessment. Mass-spectrometry-based proteomics was utilized for accurate protein quantification by means of a label-free approach. Our results showed that significant proteome variations occur when cells are cultivated under different setups. Further analysis of these variations revealed their association to specific cellular pathways related to protein misfolding, oxidative stress, and proteasome activity. Conversely, the influence of cell passage numbers on the proteome is minor, suggesting a reliable range for conducting reproducible biological replicates. Notable, substantial proteome alterations occur over-time post-differentiation of dTHP-1 cells, particularly impacting pathways crucial for macrophage function. This finding is key for the interpretation of experimental results. These results highlight the need for standardized culture conditions in proteomic-based evaluations of treatment effects to ensure reliable results, a prerequisite for achieving regulatory acceptance of proteomics data.
Collapse
Affiliation(s)
- Rico Ledwith
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Tobias Stobernack
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Antje Bergert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Aileen Bahl
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Mario Pink
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Verónica I Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
6
|
Kreutz A, Chang X, Hogberg HT, Wetmore BA. Advancing understanding of human variability through toxicokinetic modeling, in vitro-in vivo extrapolation, and new approach methodologies. Hum Genomics 2024; 18:129. [PMID: 39574200 PMCID: PMC11580331 DOI: 10.1186/s40246-024-00691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
The merging of physiology and toxicokinetics, or pharmacokinetics, with computational modeling to characterize dosimetry has led to major advances for both the chemical and pharmaceutical research arenas. Driven by the mutual need to estimate internal exposures where in vivo data generation was simply not possible, the application of toxicokinetic modeling has grown exponentially in the past 30 years. In toxicology the need has been the derivation of quantitative estimates of toxicokinetic and toxicodynamic variability to evaluate the suitability of the tenfold uncertainty factor employed in risk assessment decision-making. Consideration of a host of physiologic, ontogenetic, genetic, and exposure factors are all required for comprehensive characterization. Fortunately, the underlying framework of physiologically based toxicokinetic models can accommodate these inputs, in addition to being amenable to capturing time-varying dynamics. Meanwhile, international interest in advancing new approach methodologies has fueled the generation of in vitro toxicity and toxicokinetic data that can be applied in in vitro-in vivo extrapolation approaches to provide human-specific risk-based information for historically data-poor chemicals. This review will provide a brief introduction to the structure and evolution of toxicokinetic and physiologically based toxicokinetic models as they advanced to incorporate variability and a wide range of complex exposure scenarios. This will be followed by a state of the science update describing current and emerging experimental and modeling strategies for population and life-stage variability, including the increasing application of in vitro-in vivo extrapolation with physiologically based toxicokinetic models in pharmaceutical and chemical safety research. The review will conclude with case study examples demonstrating novel applications of physiologically based toxicokinetic modeling and an update on its applications for regulatory decision-making. Physiologically based toxicokinetic modeling provides a sound framework for variability evaluation in chemical risk assessment.
Collapse
Affiliation(s)
- Anna Kreutz
- Inotiv, 601 Keystone Park Drive, Suite 200, Morrisville, NC, 27560, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - Xiaoqing Chang
- Inotiv, 601 Keystone Park Drive, Suite 200, Morrisville, NC, 27560, USA
| | | | - Barbara A Wetmore
- Office of Research and Development, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
7
|
Niu Y, Zhu S, Mei X, Yang J, Gao X, Xie J, Huang L, Liu W. Integrated respiratory toxicity of municipal wastewater to human bronchial epithelial cells and 3D bronchospheres. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124802. [PMID: 39182812 DOI: 10.1016/j.envpol.2024.124802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Respiratory symptoms have been reported in wastewater treatment workers and residents living close to sewage treatment plant. However, toxicological research about the respiratory hazards of municipal wastewater is scarce. The present study aims to gain insight into the comprehensive respiratory hazards induced by the contaminant mixtures in municipal wastewater. The integrated respiratory hazards of effluents from four secondary wastewater treatment plants (SWTPs), a tertiary wastewater treatment plant (TTP), and a constructed wetland (CW) were evaluated using normal human bronchial epithelial cells (NHBE) bioassay, and toxicity reduction efficiency of various treatment techniques was analyzed. Effluents caused cytotoxicity, oxidative damage, inflammation response with the increased levels of IL-6 and CXCL8, and impaired barrier integrity with decreased expressions of ZO-1 and occludin in NHBE. Further, the effluents inhibited the development of 3D bronchospheres, increased irregular surface and cell debris, and suppressed the formation of luminal structures. TTP E effluent significantly increased the expression of MUC5AC in bronchospheres. The integrated biomarker response (IBR) of the influent was removed by 40.2% at SWTPs, 18.2% at TTP, and 36.6% at CW, respectively. The IBR of the final effluents from SWTPs, TTP, and CW were 7.2, 7.7, and 7.7, respectively. Significant correlation with toxicity biomarkers was frequently observed for stearyl alcohol, o-cresol, phenanthrene, butylated hydroxytoluene, and dimethyl phthalate. The present study provided human relevant evidence concerning the adverse respiratory effects associated with discharge. The necessity for deep water treatment, performance optimization, and the potential means were suggested for improving water quality and protecting respiratory health.
Collapse
Affiliation(s)
- Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sirui Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xili Mei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiayu Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liyin Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Haber LT, Bradley MA, Buerger AN, Behrsing H, Burla S, Clapp PW, Dotson S, Fisher C, Genco KR, Kruszewski FH, McCullough SD, Page KE, Patel V, Pechacek N, Roper C, Sharma M, Jarabek AM. New approach methodologies (NAMs) for the in vitro assessment of cleaning products for respiratory irritation: workshop report. FRONTIERS IN TOXICOLOGY 2024; 6:1431790. [PMID: 39439531 PMCID: PMC11493779 DOI: 10.3389/ftox.2024.1431790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
The use of in vitro new approach methodologies (NAMs) to assess respiratory irritation depends on several factors, including the specifics of exposure methods and cell/tissue-based test systems. This topic was examined in the context of human health risk assessment for cleaning products at a 1-day public workshop held on 2 March 2023, organized by the American Cleaning Institute® (ACI). The goals of this workshop were to (1) review in vitro NAMs for evaluation of respiratory irritation, (2) examine different perspectives on current challenges and suggested solutions, and (3) publish a manuscript of the proceedings. Targeted sessions focused on exposure methods, in vitro cell/tissue test systems, and application to human health risk assessment. The importance of characterization of assays and development of reporting standards was noted throughout the workshop. The exposure methods session emphasized that the appropriate exposure system design depends on the purpose of the assessment. This is particularly important given the many dosimetry and technical considerations affecting relevance and translation of results to human exposure scenarios. Discussion in the in vitro cell/tissue test systems session focused on the wide variety of cell systems with varying suitability for evaluating key mechanistic steps, such as molecular initiating events (MIEs) and key events (KEs) likely present in any putative respiratory irritation adverse outcome pathway (AOP). This suggests the opportunity to further develop guidance around in vitro cell/tissue test system endpoint selection, assay design, characterization and validation, and analytics that provide information about a given assay's utility. The session on applications for human health protection emphasized using mechanistic understanding to inform the choice of test systems and integration of NAMs-derived data with other data sources (e.g., physicochemical properties, exposure information, and existing in vivo data) as the basis for in vitro to in vivo extrapolation. In addition, this group noted a need to develop procedures to align NAMs-based points of departure (PODs) and uncertainty factor selection with current human health risk assessment methods, together with consideration of elements unique to in vitro data. Current approaches are described and priorities for future characterization of in vitro NAMs to assess respiratory irritation are noted.
Collapse
Affiliation(s)
- Lynne T. Haber
- Risk Science Center, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mark A. Bradley
- Risk Science Center, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | | | - Holger Behrsing
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, United States
| | | | - Phillip W. Clapp
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Scott Dotson
- Insight Exposure and Risk Sciences Group, Cincinnati, OH, United States
| | | | | | | | - Shaun D. McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Chapel Hill, NC, United States
| | | | - Vivek Patel
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, United States
| | | | - Clive Roper
- Roper Toxicology Consulting Limited, Edinburgh, United Kingdom
| | - Monita Sharma
- PETA Science Consortium International e.V, Stuttgart, Germany
| | - Annie M. Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Mallek NM, Martin EM, Dailey LA, McCullough SD. Liquid application dosing alters the physiology of air-liquid interface (ALI) primary human bronchial epithelial cell/lung fibroblast co-cultures and in vitro testing relevant endpoints. FRONTIERS IN TOXICOLOGY 2024; 5:1264331. [PMID: 38464699 PMCID: PMC10922929 DOI: 10.3389/ftox.2023.1264331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/14/2023] [Indexed: 03/12/2024] Open
Abstract
Differentiated primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.
Collapse
Affiliation(s)
- Nicholas M. Mallek
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Elizabeth M. Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, United States
| | - Lisa A. Dailey
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Chapel Hill, NC, United States
| | - Shaun D. McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Chapel Hill, NC, United States
- Exposure and Protection, RTI International, Durham, NC, United States
| |
Collapse
|
10
|
Coreas R, Li Z, Chen J, Zhong W. Low-Dose Exposure of WS 2 Nanosheets Induces Differential Apoptosis in Lung Epithelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14493-14501. [PMID: 37726893 DOI: 10.1021/acs.est.3c01843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Escalating the production and application of tungsten disulfide (WS2) nanosheets inevitably increases environmental human exposure and warrants the necessity of studies to elucidate their biological impacts. Herein, we assessed the toxicity of WS2 nanosheets and focused on the impacts of low doses (≤10 μg/mL) on normal (BEAS-2B) and tumorigenic (A549) lung epithelial cells. The low doses, which approximate real-world exposures, were found to induce cell apoptosis, while doses ≥ 50 μg/mL cause necrosis. Focused studies on low-dose exposure to WS2 nanosheets revealed more details of the impacts on both cell lines, including reduction of cell metabolic activity, induction of lipid peroxidation in cell membranes, and uncoupling of mitochondrial oxidative phosphorylation that led to the loss of ATP production. These phenomena, along with the expression situations of a few key proteins involved in apoptosis, point toward the occurrence of mitochondria-dependent apoptotic signaling in exposed cells. Substantial differences in responses to WS2 exposure between normal and tumorigenic lung epithelial cells were noticed as well. Specifically, BEAS-2B cells experienced more adverse effects and took up more nanosheets than A549 cells. Our results highlight the importance of dose and cell model selection in the assessment of nanotoxicity. By using doses consistent with real-world exposures and comparing normal and diseased cells, we can gain knowledge to guide the development of safety precautions for mitigating the adverse impacts of nanomaterial exposure on human health.
Collapse
Affiliation(s)
- Roxana Coreas
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| | - Zongbo Li
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Junyi Chen
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
11
|
Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Kåredal M, Mudway I, Larsson-Callerfelt AK, Shaw M. Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221426. [PMID: 37063998 PMCID: PMC10090883 DOI: 10.1098/rsos.221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Camilla Dondi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nilofar Faruqui
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nazia S. Siddiqui
- Faculty of Medical Sciences, University College London, London, UK
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, UK
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Rissler
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Monica Kåredal
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Michael Shaw
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
12
|
Mallek NM, Martin EM, Dailey LA, McCullough SD. Liquid Application Dosing Alters the Physiology of Air-Liquid Interface Primary Bronchial Epithelial Cultures and In vitro Testing Relevant Endpoints. RESEARCH SQUARE 2023:rs.3.rs-2570280. [PMID: 36865279 PMCID: PMC9980280 DOI: 10.21203/rs.3.rs-2570280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Differentiated Primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.
Collapse
|
13
|
Bessa MJ, Brandão F, Rosário F, Moreira L, Reis AT, Valdiglesias V, Laffon B, Fraga S, Teixeira JP. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:67-96. [PMID: 36692141 DOI: 10.1080/10937404.2023.2166638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted to address the potential adverse health risks attributed to exposure to nanoscale materials. While in vivo studies are fundamental for identifying the relationship between dose and occurrence of adverse effects, in vitro model systems provide important information regarding the mechanism(s) of action at the molecular level. With a special focus on exposure to inhaled (nano)particulate material toxicity assessment, this review provides an overview of the available human respiratory models and exposure systems for in vitro testing, advantages, limitations, and existing investigations using models of different complexity. A brief overview of the human respiratory system, pathway and fate of inhaled (nano)particles is also presented.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fernanda Rosário
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Luciana Moreira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Ana Teresa Reis
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Departamento de Psicología, Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
14
|
Hutter V, Hopper S, Skamarauskas J, Hoffman E. High content analysis of in vitro alveolar macrophage responses can provide mechanistic insight for inhaled product safety assessment. Toxicol In Vitro 2023; 86:105506. [PMID: 36330929 DOI: 10.1016/j.tiv.2022.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Assessing the safety of inhaled substances in the alveolar region of the lung requires an understanding of how the respired material interacts with both physical and immunological barriers. Human alveolar-like macrophages in vitro provide a platform to assess the immunological response in the airways and may better inform the understanding of a response to an inhaled challenge being adaptive or adverse. The aim of this study was to determine if a morphometric phenotyping approach could discriminate between different inhaled nicotine products and indicate the potential mechanism of toxicity of a substance. Cigarette smoke (CS) and e-liquids extracted into cell culture medium were applied to human alveolar-like macrophages in mono-culture (ImmuONE™) and co-culture (ImmuLUNG™) to test the hypothesis. Phenotype profiling of cell responses was highly reproducible and clearly distinguished the different responses to CS and e-liquids. Whilst the phenotypes of untreated macrophages were similar regardless of culture condition, macrophages cultured in the presence of epithelial cells were more sensitive to CS-induced changes related to cell size and vacuolation processes. This technique demonstrated phenotypical observations typical for CS exposure and indicative of the established mechanisms of toxicity. The technique provides a rapid screening approach to determine detailed immunological responses in the airways which can be linked to potentially adverse pathways and support inhalation safety assessment.
Collapse
Affiliation(s)
- V Hutter
- ImmuONE Ltd, Science Building, College Lane, Hatfield, Herts AL10 9AB, UK; Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, College Lane Campus, Hatfield, Herts AL10 9AB, UK.
| | - S Hopper
- Thornton & Ross Ltd, Linthwaite, Huddersfield HD7 5QH, UK; School of Clinical and Applied Sciences, Leeds Becket University, City Campus, Woodhouse Lane, Leeds LS1 3HE, UK
| | - J Skamarauskas
- Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, College Lane Campus, Hatfield, Herts AL10 9AB, UK
| | - E Hoffman
- ImmuONE Ltd, Science Building, College Lane, Hatfield, Herts AL10 9AB, UK
| |
Collapse
|
15
|
Rothen-Rutishauser B, Gibb M, He R, Petri-Fink A, Sayes CM. Human lung cell models to study aerosol delivery - considerations for model design and development. Eur J Pharm Sci 2023; 180:106337. [PMID: 36410570 DOI: 10.1016/j.ejps.2022.106337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Human lung tissue models range from simple monolayer cultures to more advanced three-dimensional co-cultures. Each model system can address the interactions of different types of aerosols and the choice of the model and the mode of aerosol exposure depends on the relevant scenario, such as adverse outcomes and endpoints of interest. This review focuses on the functional, as well as structural, aspects of lung tissue from the upper airway to the distal alveolar compartments as this information is relevant for the design of a model as well as how the aerosol properties determine the interfacial properties with the respiratory wall. The most important aspects on how to design lung models are summarized with a focus on (i) choice of appropriate scaffold, (ii) selection of cell types for healthy and diseased lung models, (iii) use of culture condition and assembly, (iv) aerosol exposure methods, and (v) endpoints and verification process. Finally, remaining challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland.
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Ruiwen He
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA.
| |
Collapse
|
16
|
Farcas MT, McKinney W, Coyle J, Orandle M, Mandler WK, Stefaniak AB, Bowers L, Battelli L, Richardson D, Hammer MA, Friend SA, Service S, Kashon M, Qi C, Hammond DR, Thomas TA, Matheson J, Qian Y. Evaluation of Pulmonary Effects of 3-D Printer Emissions From Acrylonitrile Butadiene Styrene Using an Air-Liquid Interface Model of Primary Normal Human-Derived Bronchial Epithelial Cells. Int J Toxicol 2022; 41:312-328. [PMID: 35586871 DOI: 10.1177/10915818221093605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 μg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jayme Coyle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - W Kyle Mandler
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B Stefaniak
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lauren Bowers
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lori Battelli
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary A Hammer
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samantha Service
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yong Qian
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
17
|
Nof E, Zidan H, Artzy-Schnirman A, Mouhadeb O, Beckerman M, Bhardwaj S, Elias-Kirma S, Gur D, Beth-Din A, Levenberg S, Korin N, Ordentlich A, Sznitman J. Human Multi-Compartment Airways-on-Chip Platform for Emulating Respiratory Airborne Transmission: From Nose to Pulmonary Acini. Front Physiol 2022; 13:853317. [PMID: 35350687 PMCID: PMC8957966 DOI: 10.3389/fphys.2022.853317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.
Collapse
Affiliation(s)
- Eliram Nof
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hikaia Zidan
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Odelia Mouhadeb
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Margarita Beckerman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Saurabh Bhardwaj
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Shani Elias-Kirma
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Didi Gur
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arie Ordentlich
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Albano GD, Montalbano AM, Gagliardo R, Anzalone G, Profita M. Impact of Air Pollution in Airway Diseases: Role of the Epithelial Cells (Cell Models and Biomarkers). Int J Mol Sci 2022; 23:2799. [PMID: 35269941 PMCID: PMC8911203 DOI: 10.3390/ijms23052799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Biomedical research is multidisciplinary and often uses integrated approaches performing different experimental models with complementary functions. This approach is important to understand the pathogenetic mechanisms concerning the effects of environmental pollution on human health. The biological activity of the substances is investigated at least to three levels using molecular, cellular, and human tissue models. Each of these is able to give specific answers to experimental problems. A scientific approach, using biological methods (wet lab), cell cultures (cell lines or primary), isolated organs (three-dimensional cell cultures of primary epithelial cells), and animal organisms, including the human body, aimed to understand the effects of air pollution on the onset of diseases of the respiratory system. Biological methods are divided into three complementary models: in vitro, ex vivo, and in vivo. In vitro experiments do not require the use of whole organisms (in vivo study), while ex vivo experiments use isolated organs or parts of organs. The concept of complementarity and the informatic support are useful tools to organize, analyze, and interpret experimental data, with the aim of discussing scientific notions with objectivity and rationality in biology and medicine. In this scenario, the integrated and complementary use of different experimental models is important to obtain useful and global information that allows us to identify the effect of inhaled pollutants on the incidence of respiratory diseases in the exposed population. In this review, we focused our attention on the impact of air pollution in airway diseases with a rapid and descriptive analysis on the role of epithelium and on the experimental cell models useful to study the effect of toxicants on epithelial cells.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Angela Marina Montalbano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Rosalia Gagliardo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Giulia Anzalone
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Mirella Profita
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| |
Collapse
|
19
|
Cerimi K, Jäckel U, Meyer V, Daher U, Reinert J, Klar S. In Vitro Systems for Toxicity Evaluation of Microbial Volatile Organic Compounds on Humans: Current Status and Trends. J Fungi (Basel) 2022; 8:75. [PMID: 35050015 PMCID: PMC8780961 DOI: 10.3390/jof8010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans. Although a link between mVOCs and respiratory health symptoms in humans has been demonstrated by numerous studies, standardized test systems for evaluating the toxicity of mVOCs are currently not available. Also, mVOCs are not considered systematically at regulatory level. We therefore performed a literature survey of existing in vitro exposure systems and lung models in order to summarize the state-of-the-art and discuss their suitability for understanding the potential toxic effects of mVOCs on human health. We present a review of submerged cultivation, air-liquid-interface (ALI), spheroids and organoids as well as multi-organ approaches and compare their advantages and disadvantages. Furthermore, we discuss the limitations of mVOC fingerprinting. However, given the most recent developments in the field, we expect that there will soon be adequate models of the human respiratory tract and its response to mVOCs.
Collapse
Affiliation(s)
- Kustrim Cerimi
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Udo Jäckel
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Ugarit Daher
- BIH Center for Regenerative Therapies (BCRT), BIH Stem Cell Core Facility, Berlin Institute of Health, Charité—Universitätsmedizin, 13353 Berlin, Germany;
| | - Jessica Reinert
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Stefanie Klar
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| |
Collapse
|
20
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
21
|
Bedford R, Perkins E, Clements J, Hollings M. Recent advancements and application of in vitro models for predicting inhalation toxicity in humans. Toxicol In Vitro 2021; 79:105299. [PMID: 34920082 DOI: 10.1016/j.tiv.2021.105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/20/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022]
Abstract
Animals have been indispensable in testing chemicals that can pose a risk to human health, including those delivered by inhalation. In recent years, the combination of societal debate on the use of animals in research and testing, the drive to continually enhance testing methodologies, and technology advancements have prompted a range of initiatives to develop non-animal alternative approaches for toxicity testing. In this review, we discuss emerging in vitro techniques being developed for the testing of inhaled compounds. Advanced tissue models that are able to recreate the human response to toxic exposures alongside examples of their ability to complement in vivo techniques are described. Furthermore, technology being developed that can provide multi-organ toxicity assessments are discussed.
Collapse
Affiliation(s)
- R Bedford
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - E Perkins
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - J Clements
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - M Hollings
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| |
Collapse
|
22
|
Yaqub N, Wayne G, Birchall M, Song W. Recent advances in human respiratory epithelium models for drug discovery. Biotechnol Adv 2021; 54:107832. [PMID: 34481894 DOI: 10.1016/j.biotechadv.2021.107832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
The respiratory epithelium is intimately associated with the pathophysiologies of highly infectious viral contagions and chronic illnesses such as chronic obstructive pulmonary disorder, presently the third leading cause of death worldwide with a projected economic burden of £1.7 trillion by 2030. Preclinical studies of respiratory physiology have almost exclusively utilised non-humanised animal models, alongside reductionistic cell line-based models, and primary epithelial cell models cultured at an air-liquid interface (ALI). Despite their utility, these model systems have been limited by their poor correlation to the human condition. This has undermined the ability to identify novel therapeutics, evidenced by a 15% chance of success for medicinal respiratory compounds entering clinical trials in 2018. Consequently, preclinical studies require new translational efficacy models to address the problem of respiratory drug attrition. This review describes the utility of the current in vivo (rodent), ex vivo (isolated perfused lungs and precision cut lung slices), two-dimensional in vitro cell-line (A549, BEAS-2B, Calu-3) and three-dimensional in vitro ALI (gold-standard and co-culture) and organoid respiratory epithelium models. The limitations to the application of these model systems in drug discovery research are discussed, in addition to perspectives of the future innovations required to facilitate the next generation of human-relevant respiratory models.
Collapse
Affiliation(s)
- Naheem Yaqub
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Gareth Wayne
- Novel Human Genetics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Martin Birchall
- The Ear Institute, Faculty of Brain Sciences, University College London, London WC1X 8EE, UK.
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| |
Collapse
|
23
|
Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021; 176:113901. [PMID: 34331989 PMCID: PMC7611797 DOI: 10.1016/j.addr.2021.113901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Sivan Arber Raviv
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Jeny Shklover
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Adi Gross
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Avi Schroeder
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
24
|
Singh AV, Romeo A, Scott K, Wagener S, Leibrock L, Laux P, Luch A, Kerkar P, Balakrishnan S, Dakua SP, Park B. Emerging Technologies for In Vitro Inhalation Toxicology. Adv Healthc Mater 2021; 10:e2100633. [PMID: 34292676 PMCID: PMC11468957 DOI: 10.1002/adhm.202100633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Respiratory toxicology remains a major research area in the 21st century since current scenario of airborne viral infection transmission and pollutant inhalation is expected to raise the annual morbidity beyond 2 million. Clinical and epidemiological research connecting human exposure to air contaminants to understand adverse pulmonary health outcomes is, therefore, an immediate subject of human health assessment. Important observations in defining systemic effects of environmental contaminants on inhalation metabolic dysfunction, liver health, and gastrointestinal tract have been well explored with in vivo models. In this review, a framework is provided, a paradigm is established about inhalation toxicity testing in vitro, and a brief overview of breathing Lungs-on-Chip (LoC) as design concepts is given. The optimized bioengineering approaches and microfluidics with their fundamental pros, and cons are presented. There are different strategies that researchers apply to inhalation toxicity studies to assess a variety of inhalable substances and relevant LoC approaches. A case study from published literature and frame arguments about reproducibility as well as in vitro/in vivo correlations are discussed. Finally, the opportunities and challenges in soft robotics, systems inhalation toxicology approach integrating bioengineering, machine learning, and artificial intelligence to address a multitude model for future toxicology are discussed.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product SafetyGerman Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Strasse 8‐10Berlin10589Germany
| | - Anthony Romeo
- Department of Chemical EngineeringRayen School of EngineeringYoungstown State UniversityYoungstownOH44555USA
| | - Kassandra Scott
- Department of Chemical EngineeringRayen School of EngineeringYoungstown State UniversityYoungstownOH44555USA
| | - Sandra Wagener
- Department of Chemical and Product SafetyGerman Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Strasse 8‐10Berlin10589Germany
| | - Lars Leibrock
- Department of Chemical and Product SafetyGerman Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Strasse 8‐10Berlin10589Germany
| | - Peter Laux
- Department of Chemical and Product SafetyGerman Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Strasse 8‐10Berlin10589Germany
| | - Andreas Luch
- Department of Chemical and Product SafetyGerman Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Strasse 8‐10Berlin10589Germany
| | - Pranali Kerkar
- ICMR – National AIDS Research Institute (NARI)PuneMaharashtra411026India
| | | | | | - Byung‐Wook Park
- Department of Chemical EngineeringRayen School of EngineeringYoungstown State UniversityYoungstownOH44555USA
| |
Collapse
|
25
|
Schiefermeier-Mach N, Perkhofer S, Heinrich L, Haller T. Stimulation of surfactant exocytosis in primary alveolar type II cells by A. fumigatus. Med Mycol 2021; 59:168-179. [PMID: 32459847 DOI: 10.1093/mmy/myaa042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/06/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen with small airborne spores (conidia) that may escape clearance by upper airways and directly impact the alveolar epithelium. Consequently, innate alveolar defense mechanisms are being activated, including professional phagocytosis by alveolar macrophages, recruitment of circulating neutrophils and probably enhanced secretion of pulmonary surfactant by the alveolar type II (AT II) cells. However, no data are available in support of the latter hypothesis. We therefore used a coculture model of GFP-Aspergillus conidia with primary rat AT II cells and studied fungal growth, cellular Ca2+ homeostasis, and pulmonary surfactant exocytosis by live cell video microscopy. We observed all stages of fungal development, including reversible attachment, binding and internalization of conidia as well as conidial swelling, formation of germ tubes and outgrowth of hyphae. In contrast to resting conidia, which did not provoke immediate cellular effects, metabolically active conidia, fungal cellular extracts (CE) and fungal culture filtrates (CF) prepared from swollen conidia caused a Ca2+-independent exocytosis. Ca2+ signals of greatly varying delays, durations and amplitudes were observed by applying CE or CF obtained from hyphae of A. fumigatus, suggesting compounds secreted by filamentous A. fumigatus that severely interfere with AT II cell Ca2+ homeostasis. The mechanisms underlying the stimulatory effects, with respect to exocytosis and Ca2+ signaling, are unclear and need to be identified.
Collapse
Affiliation(s)
| | - Susanne Perkhofer
- FH Gesundheit, Health University of Applied Sciences Tyrol, Innrain 98, A-6020 Innsbruck, Austria
| | - Lea Heinrich
- FH Gesundheit, Health University of Applied Sciences Tyrol, Innrain 98, A-6020 Innsbruck, Austria.,Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| | - Thomas Haller
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| |
Collapse
|
26
|
Emerging Approaches to Understanding Microvascular Endothelial Heterogeneity: A Roadmap for Developing Anti-Inflammatory Therapeutics. Int J Mol Sci 2021; 22:ijms22157770. [PMID: 34360536 PMCID: PMC8346165 DOI: 10.3390/ijms22157770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
The endothelium is the inner layer of all blood vessels and it regulates hemostasis. It also plays an active role in the regulation of the systemic inflammatory response. Systemic inflammatory disease often results in alterations in vascular endothelium barrier function, increased permeability, excessive leukocyte trafficking, and reactive oxygen species production, leading to organ damage. Therapeutics targeting endothelium inflammation are urgently needed, but strong concerns regarding the level of phenotypic heterogeneity of microvascular endothelial cells between different organs and species have been expressed. Microvascular endothelial cell heterogeneity in different organs and organ-specific variations in endothelial cell structure and function are regulated by intrinsic signals that are differentially expressed across organs and species; a result of this is that neutrophil recruitment to discrete organs may be regulated differently. In this review, we will discuss the morphological and functional variations in differently originated microvascular endothelia and discuss how these variances affect systemic function in response to inflammation. We will review emerging in vivo and in vitro models and techniques, including microphysiological devices, proteomics, and RNA sequencing used to study the cellular and molecular heterogeneity of endothelia from different organs. A better understanding of microvascular endothelial cell heterogeneity will provide a roadmap for developing novel therapeutics to target the endothelium.
Collapse
|
27
|
Soriano L, Khalid T, O’Brien FJ, O’Leary C, Cryan SA. A Tissue-Engineered Tracheobronchial In Vitro Co-Culture Model for Determining Epithelial Toxicological and Inflammatory Responses. Biomedicines 2021; 9:631. [PMID: 34199462 PMCID: PMC8226664 DOI: 10.3390/biomedicines9060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Translation of novel inhalable therapies for respiratory diseases is hampered due to the lack of in vitro cell models that reflect the complexity of native tissue, resulting in many novel drugs and formulations failing to progress beyond preclinical assessments. The development of physiologically-representative tracheobronchial tissue analogues has the potential to improve the translation of new treatments by more accurately reflecting in vivo respiratory pharmacological and toxicological responses. Herein, advanced tissue-engineered collagen hyaluronic acid bilayered scaffolds (CHyA-B) previously developed within our group were used to evaluate bacterial and drug-induced toxicity and inflammation for the first time. Calu-3 bronchial epithelial cells and Wi38 lung fibroblasts were grown on either CHyA-B scaffolds (3D) or Transwell® inserts (2D) under air liquid interface (ALI) conditions. Toxicological and inflammatory responses from epithelial monocultures and co-cultures grown in 2D or 3D were compared, using lipopolysaccharide (LPS) and bleomycin challenges to induce bacterial and drug responses in vitro. The 3D in vitro model exhibited significant epithelial barrier formation that was maintained upon introduction of co-culture conditions. Barrier integrity showed differential recovery in CHyA-B and Transwell® epithelial cultures. Basolateral secretion of pro-inflammatory cytokines to bacterial challenge was found to be higher from cells grown in 3D compared to 2D. In addition, higher cytotoxicity and increased basolateral levels of cytokines were detected when epithelial cultures grown in 3D were challenged with bleomycin. CHyA-B scaffolds support the growth and differentiation of bronchial epithelial cells in a 3D co-culture model with different transepithelial resistance in comparison to the same co-cultures grown on Transwell® inserts. Epithelial cultures in an extracellular matrix like environment show distinct responses in cytokine release and metabolic activity compared to 2D polarised models, which better mimic in vivo response to toxic and inflammatory stimuli offering an innovative in vitro platform for respiratory drug development.
Collapse
Affiliation(s)
- Luis Soriano
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
28
|
Singh B, Abdelgawad ME, Ali Z, Bailey J, Budyn E, Civita P, Clift MJD, Connelly JT, Constant S, Hittinger M, Kandarova H, Kearns VR, Kiuru T, Kostrzewski T, Kress S, Durban VM, Lehr CM, McMillan H, Metz JK, Monteban V, Movia D, Neto C, Owen C, Paasonen L, Palmer KA, Pilkington GJ, Pilkington K, Prina-Mello A, Roper C, Sheard J, Smith S, Turner JE, Roy I, Tutty MA, Velliou E, Wilkinson JM. Towards More Predictive, Physiological and Animal-free In Vitro Models: Advances in Cell and Tissue Culture 2020 Conference Proceedings. Altern Lab Anim 2021; 49:93-110. [PMID: 34225465 DOI: 10.1177/02611929211025006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental systems that faithfully replicate human physiology at cellular, tissue and organ level are crucial to the development of efficacious and safe therapies with high success rates and low cost. The development of such systems is challenging and requires skills, expertise and inputs from a diverse range of experts, such as biologists, physicists, engineers, clinicians and regulatory bodies. Kirkstall Limited, a biotechnology company based in York, UK, organised the annual conference, Advances in Cell and Tissue Culture (ACTC), which brought together people having a variety of expertise and interests, to present and discuss the latest developments in the field of cell and tissue culture and in vitro modelling. The conference has also been influential in engaging animal welfare organisations in the promotion of research, collaborative projects and funding opportunities. This report describes the proceedings of the latest ACTC conference, which was held virtually on 30th September and 1st October 2020, and included sessions on in vitro models in the following areas: advanced skin and respiratory models, neurological disease, cancer research, advanced models including 3-D, fluid flow and co-cultures, diabetes and other age-related disorders, and animal-free research. The roundtable session on the second day was very interactive and drew huge interest, with intriguing discussion taking place among all participants on the theme of replacement of animal models of disease.
Collapse
Affiliation(s)
| | - Mohamed Essameldin Abdelgawad
- Cellular, Molecular & Industrial Biotechnology and Cellular & Molecular Immunobiology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Zulfiqur Ali
- Healthcare Innovation Centre, School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Jarrod Bailey
- Center for Contemporary Sciences, Gaithersburg, MD, USA
| | - Elisa Budyn
- CNRS Laboratory of Mechanics and Technology, Ecole Normale Superieure Paris-Saclay, University Paris-Saclay, Gif-sur-Yvette, France
| | - Prospero Civita
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - John T Connelly
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Victoria Rosalind Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Tony Kiuru
- UPM-Kymmene Corporation, Helsinki, Finland
| | | | - Sebastian Kress
- Department of Biotechnology, Institute for Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), and Saarland University, Saarbrücken, Germany
| | - Hayley McMillan
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Julia Katharina Metz
- Pharmbiotec Research and Development GmbH, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | | | - Dania Movia
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Catia Neto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | - Kerri Anne Palmer
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Karen Pilkington
- School of Health and Social Care Professions, Faculty of Health and Science, University of Portsmouth, Portsmouth, UK
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Clive Roper
- Roper Toxicology Consulting Limited, Edinburgh, UK
| | | | - Sheree Smith
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | | | - Ipsita Roy
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Melissa Anne Tutty
- Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science-UCL, London, UK
| | | |
Collapse
|
29
|
Halappanavar S, Nymark P, Krug HF, Clift MJD, Rothen-Rutishauser B, Vogel U. Non-Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007628. [PMID: 33559363 DOI: 10.1002/smll.202007628] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Faster, cheaper, sensitive, and mechanisms-based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM-induced lung fibrosis, are proposed.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, K1N6N5, Canada
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, Stockholm, 17177, Sweden
| | - Harald F Krug
- NanoCASE GmbH, St. Gallerstr. 58, Engelburg, 9032, Switzerland
| | - Martin J D Clift
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
- DTU Health Tech, Technical University of Denmark, Lyngby, DK-2800 Kgs., Denmark
| |
Collapse
|
30
|
Bessa MJ, Brandão F, Fokkens P, Cassee FR, Salmatonidis A, Viana M, Vulpoi A, Simon S, Monfort E, Teixeira JP, Fraga S. Toxicity assessment of industrial engineered and airborne process-generated nanoparticles in a 3D human airway epithelial in vitro model. Nanotoxicology 2021; 15:542-557. [PMID: 33734024 DOI: 10.1080/17435390.2021.1897698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The advanced ceramic technology has been pointed out as a potentially relevant case of occupational exposure to nanoparticles (NP). Not only when nanoscale powders are being used for production, but also in the high-temperature processing of ceramic materials there is also a high potential for NP release into the workplace environment. In vitro toxicity of engineered NP (ENP) [antimony tin oxide (Sb2O3•SnO2; ATO); zirconium oxide (ZrO2)], as well as process-generated NP (PGNP), and fine particles (PGFP), was assessed in MucilAir™ cultures at air-liquid interface (ALI). Cultures were exposed during three consecutive days to varying doses of the aerosolized NP. General cytotoxicity [lactate dehydrogenase (LDH) release, WST-1 metabolization], (oxidative) DNA damage, and the levels of pro-inflammatory mediators (IL-8 and MCP-1) were assessed. Data revealed that ENP (5.56 µg ATO/cm2 and 10.98 µg ZrO2/cm2) only caused mild cytotoxicity at early timepoints (24 h), whereas cells seemed to recover quickly since no significant changes in cytotoxicity were observed at late timepoints (72 h). No meaningful effects of the ENP were observed regarding DNA damage and cytokine levels. PGFP affected cell viability at dose levels as low as ∼9 µg/cm2, which was not seen for PGNP. However, exposure to PGNP (∼4.5 µg/cm2) caused an increase in oxidative DNA damage. These results indicated that PGFP and PGNP exhibit higher toxicity potential than ENP in mass per area unit. However, the presence of a mucociliary apparatus, as it occurs in vivo as a defense mechanism, seems to considerably attenuate the observed toxic effects. Our findings highlight the potential hazard associated with exposure to incidental NP in industrial settings.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Paul Fokkens
- National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht, The Netherlands
| | - Apostolos Salmatonidis
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDAEA-CSIC), Barcelona, Spain.,LEITAT Technological Center, Barcelona, Spain
| | - Mar Viana
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Simion Simon
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Eliseo Monfort
- Institute of Ceramic Technology (ITC), Universitat Jaume I, Castellón, Spain
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Jeong MH, Han Y, Oh IS, Kim DM, Son DW, Jung MS, Yang H, Lee K, Shin JY, Kim HR, Chung KH. Pre-validation of a Calu-3 epithelium cytotoxicity assay for predicting acute inhalation toxicity of chemicals. Toxicol In Vitro 2021; 75:105136. [PMID: 33675894 DOI: 10.1016/j.tiv.2021.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Although in vivo inhalation toxicity tests have been widely conducted, the testing of many chemicals is limited for economic and ethical reasons. Therefore, we previously developed an in vitro acute inhalation toxicity test method. The goal of the present pre-validation study was to evaluate the transferability, reproducibility, and predictive capacity of this method. After confirming the transferability of the Calu-3 epithelium cytotoxicity assay, reproducibility was evaluated using 20 test substances at three independent institutions. Cytotoxicity data were analyzed using statistical methods, including the intra-class correlation coefficient and Bland-Altman plots for within- and between-laboratory reproducibility. The assay for the 20 test substances showed excellent agreement within and between laboratories. To evaluate the predictive capacity, 77 test substances were analyzed for acute inhalation toxicity. Accuracy was measured using a cutoff of 40%, and the relevance was analyzed as a receiver-operating characteristic (ROC) curve. An accuracy of 72.73% was obtained, and the area under the ROC curve was 0.77, indicating moderate performance. In this study, we found that the in vitro acute inhalation toxicity test method demonstrated good reliability and relevance for predicting the acute toxicity of inhalable chemicals. Hence, this assay has potential as an alternative test for screening acutely toxic inhalants.
Collapse
Affiliation(s)
- Mi Ho Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yubin Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - In-Sun Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong Min Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Won Son
- Biotoxtech, 53, Cheongju, Chungcheongbuk-do 28115, Republic of Korea
| | - Mi-Sook Jung
- Biotoxtech, 53, Cheongju, Chungcheongbuk-do 28115, Republic of Korea
| | - Hyoseon Yang
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongsangbuk-do 38430, Republic of Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
32
|
Toropov AA, Toropova AP, Selvestrel G, Baderna D, Benfenati E. Prediction of No Observed Adverse Effect Concentration for inhalation toxicity using Monte Carlo approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:1-12. [PMID: 33179981 DOI: 10.1080/1062936x.2020.1841827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Ideal correlation is one variable model based on so-called optimal descriptors calculated with simplified molecular input-line entry systems (SMILES). The optimal descriptor is calculated according to the index of ideality of correlation, a new criterion of predictive potential of quantitative structure-property/activity relationships (QSPRs/QSARs). The aim of the present study was the building and estimation of models for inhalation toxicity as No Observed Adverse Effect Concentration (NOAEC) based on the OECD guidelines 413. Three random distributions into the training set and validation set were examined. In practice, a structured training set that contains active training set, passive training set and calibration set is used as the training set. The statistical characteristics of the best model for negative logarithm of NOAEC (pNOAEC) are for training set n = 108, average r 2 = 0.52 + 0.62 + 0.76/3 = 0.63 and for validation set n = 35, r 2 = 0.73.
Collapse
Affiliation(s)
- A A Toropov
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - A P Toropova
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - G Selvestrel
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - D Baderna
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - E Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| |
Collapse
|
33
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma? Cells 2020; 9:cells9071694. [PMID: 32679790 PMCID: PMC7408556 DOI: 10.3390/cells9071694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
As the lung develops, epithelial-mesenchymal crosstalk is essential for the developmental processes that drive cell proliferation, differentiation, and extracellular matrix (ECM) production within the lung epithelial-mesenchymal trophic unit (EMTU). In asthma, a number of the lung EMTU developmental signals have been associated with airway inflammation and remodeling, which has led to the hypothesis that aberrant activation of the asthmatic EMTU may lead to disease pathogenesis. Monoculture studies have aided in the understanding of the altered phenotype of airway epithelial and mesenchymal cells and their contribution to the pathogenesis of asthma. However, 3-dimensional (3D) co-culture models are needed to enable the study of epithelial-mesenchymal crosstalk in the setting of the in vivo environment. In this review, we summarize studies using 3D co-culture models to assess how defective epithelial-mesenchymal communication contributes to chronic airway inflammation and remodeling within the asthmatic EMTU.
Collapse
|
35
|
Montalbano AM, Albano GD, Anzalone G, Moscato M, Gagliardo R, Di Sano C, Bonanno A, Ruggieri S, Cibella F, Profita M. Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells. CHEMOSPHERE 2020; 245:125600. [PMID: 31864052 DOI: 10.1016/j.chemosphere.2019.125600] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread as flame-retardants in different types of consumer products. PBDEs present in the air or dust and their inhalation can damage human health by influencing the respiratory system. We evaluated the effects of environment relevant concentrations (0.01-1 μM) of PBDE-47, PBDE-99 and PBDE-209 on the mechanism of oxidative stress, dysregulation of cell proliferation, apoptosis, and DNA damage and repair (in term of H2AX phosphorylation ser139) in an in-vitro/ex-vivo model of bronchial epithelial cells. PBDEs (-47, -99 and -209) at the environment relevant concentrations (0.01 and 1 μM) induce oxidative stress (in term of NOX-4 expression as well as ROS and JC-1 production), activate the mechanism of DNA-damage and repair affecting Olive Tail length (comet assay) production and H2AX phosphorylation (ser139) in normal human bronchial epithelial cells. Furthermore PBDEs, although do not affect cell viability, induce cell apoptosis and single cell capacity to grow into a colony (like a cancer phenotype) in bronchial epithelial cells. Finally, PBDE-47 had a greater effect than -99 and -209. PBDE-47, -99 and -209 congeners exert cytotoxic and genotoxic effects, and play a critical role in the dysregulation of oxidative stress, damaging DNA and the related gene expression in bronchial epithelial cells. Our findings might suggest that PBDEs inhalation might have adverse effect on human health regarding pulmonary diseases in the areas of environmental pollution.
Collapse
Affiliation(s)
- Angela Marina Montalbano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giusy Daniela Albano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giulia Anzalone
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Moscato
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Caterina Di Sano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Anna Bonanno
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Silvia Ruggieri
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Mirella Profita
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
36
|
Artzy-Schnirman A, Lehr CM, Sznitman J. Advancing human in vitro pulmonary disease models in preclinical research: opportunities for lung-on-chips. Expert Opin Drug Deliv 2020; 17:621-625. [DOI: 10.1080/17425247.2020.1738380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Gohlsch K, Mückter H, Steinritz D, Aufderheide M, Hoffmann S, Gudermann T, Breit A. Exposure of 19 substances to lung A549 cells at the air liquid interface or under submerged conditions reveals high correlation between cytotoxicity in vitro and CLP classifications for acute lung toxicity. Toxicol Lett 2019; 316:119-126. [DOI: 10.1016/j.toxlet.2019.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
|
38
|
Tsoutsoulopoulos A, Gohlsch K, Möhle N, Breit A, Hoffmann S, Krischenowski O, Mückter H, Gudermann T, Thiermann H, Aufderheide M, Steinritz D. Validation of the CULTEX® Radial Flow System for the assessment of the acute inhalation toxicity of airborne particles. Toxicol In Vitro 2019; 58:245-255. [PMID: 30890356 DOI: 10.1016/j.tiv.2019.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
The CULTEX® Radial Flow System (RFS) is a modular in vitro system for the homogenous exposure of cells to airborne particles at the air-liquid interface (ALI). A former pre-validation study successfully demonstrated the general applicability of the CULTEX® RFS and its transferability, stability and reproducibility. Based on these results, the methodology was optimized, validated and prediction models for acute inhalation hazards were established. Cell viability of A549 cells after ALI exposure to 20 pre-selected test substances was assessed in three independent laboratories. Cytotoxicity of test substances was compared to the respective incubator controls and used as an indicator of toxicity. Substances were considered to exert an acute inhalation hazard when viability decreased below 50% (prediction model (PM) 50%) or 75% (PM 75%) at any of three exposure doses (25, 50 or 100 μg/cm2). Results were then compared to existing in vivo data and revealed an overall concordance of 85%, with a specificity of 83% and a sensitivity of 88%. Depending on the applied PM, the within-laboratory and between-laboratory reproducibility ranged from 90 to 100%. In summary, the CULTEX® RFS was proven as a transferable, reproducible and well predictive screening method for the qualitative assessment of the acute pulmonary cytotoxicity of airborne particles.
Collapse
Affiliation(s)
| | - Katrin Gohlsch
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Andreas Breit
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Olaf Krischenowski
- Cultex® Laboratories GmbH, Hannover, Germany; Cultex® Technology GmbH (formerly Cultex® Laboratories GmbH), Hannover, Germany
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Michaela Aufderheide
- Cultex® Laboratories GmbH, Hannover, Germany; Cultex® Technology GmbH (formerly Cultex® Laboratories GmbH), Hannover, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|