1
|
Kuniholm J, Coote C, Henderson AJ. Defective HIV-1 genomes and their potential impact on HIV pathogenesis. Retrovirology 2022; 19:13. [PMID: 35764966 PMCID: PMC9238239 DOI: 10.1186/s12977-022-00601-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Defective HIV-1 proviruses represent a population of viral genomes that are selected for by immune pressures, and clonally expanded to dominate the persistent HIV-1 proviral genome landscape. There are examples of RNA and protein expression from these compromised genomes which are generated by a variety of mechanisms. Despite the evidence that these proviruses are transcribed and translated, their role in HIV pathogenesis has not been fully explored. The potential for these genomes to participate in immune stimulation is particularly relevant considering the accumulation of cells harboring these defective proviruses over the course of antiretroviral therapy in people living with HIV. The expression of defective proviruses in different cells and tissues could drive innate sensing mechanisms and inflammation. They may also alter antiviral T cell responses and myeloid cell functions that directly contribute to HIV-1 associated chronic comorbidities. Understanding the impact of these defective proviruses needs to be considered as we advance cure strategies that focus on targeting the diverse population of HIV-1 proviral genomes.
Collapse
Affiliation(s)
- Jeffrey Kuniholm
- Department of Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA
| | - Carolyn Coote
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA
| | - Andrew J Henderson
- Department of Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA.
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA.
| |
Collapse
|
2
|
Lin D, Scheller SH, Robinson MM, Izadpanah R, Alt EU, Braun SE. Increased Efficiency for Biallelic Mutations of the CCR5 Gene by CRISPR-Cas9 Using Multiple Guide RNAs As a Novel Therapeutic Option for Human Immunodeficiency Virus. CRISPR J 2021; 4:92-103. [PMID: 33616448 PMCID: PMC8713505 DOI: 10.1089/crispr.2020.0019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CCR5 is a coreceptor of human immunodeficiency virus type 1 (HIV-1). Transplantation of hematopoietic stem cells homozygous for a 32-bp deletion in CCR5 resulted in a loss of detectable HIV-1 in two patients, suggesting that genetic strategies to knockout CCR5 expression would be a promising gene therapy approach for HIV-1-infected patients. In this study, we targeted CCR5 by CRISPR-Cas9 with a single-guide (sgRNA) and observed 35% indel frequency. When we expressed hCas9 and two gRNAs, the Surveyor assay showed that Cas9-mediated cleavage was increased by 10% with two sgRNAs. Genotype analysis on individual clones showed 11 of 13 carried biallelic mutations, where 4 clones had frameshift (FS) mutations. Taken together, these results indicate that the efficiency of biallelic FS mutations and the knockout of the CCR5 necessary to prevent viral replication were significantly increased with two sgRNAs. These studies demonstrate the knockout of CCR5 and the potential for translational development.
Collapse
Affiliation(s)
- Dong Lin
- Applied Stem Cell Laboratory,
Medicine/Heart and Vascular Institute, Tulane National Primate Research Center,
New Orleans, Louisiana, USA
- Department of Surgery, Tulane University
Health Science Center, New Orleans, Louisiana, USA
| | - Stefan H. Scheller
- Applied Stem Cell Laboratory,
Medicine/Heart and Vascular Institute, Tulane National Primate Research Center,
New Orleans, Louisiana, USA
| | - Madeline M. Robinson
- Applied Stem Cell Laboratory,
Medicine/Heart and Vascular Institute, Tulane National Primate Research Center,
New Orleans, Louisiana, USA
| | - Reza Izadpanah
- Applied Stem Cell Laboratory,
Medicine/Heart and Vascular Institute, Tulane National Primate Research Center,
New Orleans, Louisiana, USA
- Department of Surgery, Tulane University
Health Science Center, New Orleans, Louisiana, USA
| | - Eckhard U. Alt
- Applied Stem Cell Laboratory,
Medicine/Heart and Vascular Institute, Tulane National Primate Research Center,
New Orleans, Louisiana, USA
- Isar Klinikum Munich, Munich,
Germany
| | - Stephen E. Braun
- Applied Stem Cell Laboratory,
Medicine/Heart and Vascular Institute, Tulane National Primate Research Center,
New Orleans, Louisiana, USA
- Department of Pharmacology, Tulane
University Health Science Center, New Orleans, Louisiana, USA
- Division of Immunology, Tulane National
Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
3
|
Elimination of infectious HIV DNA by CRISPR-Cas9. Curr Opin Virol 2019; 38:81-88. [PMID: 31450074 PMCID: PMC7050564 DOI: 10.1016/j.coviro.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022]
Abstract
Current antiretroviral drugs can efficiently block HIV replication and prevent transmission, but do not target the HIV provirus residing in cells that constitute the viral reservoir. Because drug therapy interruption will cause viral rebound from this reservoir, HIV-infected individuals face lifelong treatment. Therefore, novel therapeutic strategies are being investigated that aim to permanently inactivate the proviral DNA, which may lead to a cure. Multiple studies showed that CRISPR-Cas9 genome editing can be used to attack HIV DNA. Here, we will focus on not only how this endonuclease attack can trigger HIV provirus inactivation, but also how virus escape occurs and this can be prevented.
Collapse
|
4
|
Roychoudhury P, De Silva Feelixge H, Reeves D, Mayer BT, Stone D, Schiffer JT, Jerome KR. Viral diversity is an obligate consideration in CRISPR/Cas9 designs for targeting the HIV reservoir. BMC Biol 2018; 16:75. [PMID: 29996827 PMCID: PMC6040082 DOI: 10.1186/s12915-018-0544-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND RNA-guided CRISPR/Cas9 systems can be designed to mutate or excise the integrated HIV genome from latently infected cells and have therefore been proposed as a curative approach for HIV. However, most studies to date have focused on molecular clones with ideal target site recognition and do not account for target site variability observed within and between patients. For clinical success and broad applicability, guide RNA (gRNA) selection must account for circulating strain diversity and incorporate the within-host diversity of HIV. RESULTS We identified a set of gRNAs targeting HIV LTR, gag, and pol using publicly available sequences for these genes and ranked gRNAs according to global conservation across HIV-1 group M and within subtypes A-C. By considering paired and triplet combinations of gRNAs, we found triplet sets of target sites such that at least one of the gRNAs in the set was present in over 98% of all globally available sequences. We then selected 59 gRNAs from our list of highly conserved LTR target sites and evaluated in vitro activity using a loss-of-function LTR-GFP fusion reporter. We achieved efficient GFP knockdown with multiple gRNAs and found clustering of highly active gRNA target sites near the middle of the LTR. Using published deep-sequence data from HIV-infected patients, we found that globally conserved sites also had greater within-host target conservation. Lastly, we developed a mathematical model based on varying distributions of within-host HIV sequence diversity and enzyme efficacy. We used the model to estimate the number of doses required to deplete the latent reservoir and achieve functional cure thresholds. Our modeling results highlight the importance of within-host target site conservation. While increased doses may overcome low target cleavage efficiency, inadequate targeting of rare strains is predicted to lead to rebound upon cART cessation even with many doses. CONCLUSIONS Target site selection must account for global and within host viral genetic diversity. Globally conserved target sites are good starting points for design, but multiplexing is essential for depleting quasispecies and preventing viral load rebound upon therapy cessation.
Collapse
Affiliation(s)
| | | | - Daniel Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, USA
- Department of Medicine, University of Washington, Seattle, USA
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA.
| |
Collapse
|
5
|
Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas based antiviral strategies against HIV-1. Virus Res 2018; 244:321-332. [PMID: 28760348 DOI: 10.1016/j.virusres.2017.07.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022]
Abstract
In bacteria and archaea, the clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas) confer adaptive immunity against exogenous DNA elements. This CRISPR-Cas system has been turned into an effective tool for editing of eukaryotic DNA genomes. Pathogenic viruses that have a double-stranded DNA (dsDNA) genome or that replicate through a dsDNA intermediate can also be targeted with this DNA editing tool. Here, we review how CRISPR-Cas was used in novel therapeutic approaches against the human immunodeficiency virus type-1 (HIV-1), focusing on approaches that aim to permanently inactivate all virus genomes or to prevent viral persistence in latent reservoirs.
Collapse
Affiliation(s)
- Gang Wang
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Na Zhao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Abstract
A variety of approaches are being tested to cure HIV, but with the exception of the Berlin patient case, none has been successful. The Berlin patient, positive for both HIV and acute myeloid leukemia (AML), received two stem cell transplants from a donor homozygous for the CCR5delta32 mutation. In the 8 years since his second transplant, he has remained free of both HIV and AML. This case provides strong proof-of-principle that a cure for HIV is possible and might be achieved through gene therapy. Several technological barriers must be resolved and are discussed here, including the safe delivery of the intervention throughout the body of the infected person, increased efficiency of gene editing, and avoidance of resistance to the therapy. Delivery of a gene therapy intervention to HIV-infected people around the world will also be a considerable challenge.
Collapse
|