1
|
Chen L, Peng Z, Yang Y, He J, Lv Z, Zheng Q, Lei T, Guo W, Chen Z, Liu Y, Ran Y, Yang J. The neo-potential therapeutic strategy in preeclampsia: Downregulated miR-26a-2-3p motivates endothelial cell injury by targeting 15-LOX-1. Free Radic Biol Med 2024; 225:112-126. [PMID: 39357683 DOI: 10.1016/j.freeradbiomed.2024.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Preeclampsia (PE) poses a life-threatening risk for both mothers and babies, and its onset and progression are linked to endothelial injury. The enzyme 15-lipoxygenase-1 (15-LOX-1), critical in arachidonic acid metabolism, is implicated in various diseases, yet its specific role and precise mechanisms in PE remain largely unknown. In this study, we found that 15-LOX-1 and its main metabolite, 15-HETE, were significantly increased in both the placenta and serum of PE patients. This increase was accompanied by elevated levels of endothelial injury markers, including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). A positive correlation between 15-LOX-1 and those markers in the placenta. In Alox15-/- mice, Alox15 deficiency reduced endothelial cell injury in PE-like mice induced by L-NAME. In vitro studies showed that hypoxia-induced upregulation of 15-LOX-1 reduced the cell viability, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs), while increasing apoptosis and inflammatory cell adhesion. Mechanistically, the p38 MAPK pathway was identified as a downstream target of 15-LOX-1. Knocking down 15-LOX-1 or inhibiting p38 MAPK activation improved endothelial cell injury in hypoxia-treated HUVECs. Furthermore, downregulation of miR-26a-2-3p was found to correlate negatively and colocalize with 15-LOX-1 upregulation in the placenta of PE patients. Luciferase reporter assays further confirmed that miR-26a-2-3p directly bind to the 3'UTR of 15-LOX-1, targeting its expression. Moreover, miR-26a-2-3p agomir ameliorated the PE-like phenotype in mice through the 15-LOX-1/p38 MAPK axis, improving endothelial dysfunction. Therefore, our study provides novel insights into the pathogenesis of PE and highlight modulating the miR-26a-2-3p/15-LOX-1/p38 MAPK axis as a potential therapeutic target for PE.
Collapse
Affiliation(s)
- Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yang Yang
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jungong He
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Zongjie Lv
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qixue Zheng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wenjia Guo
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zhen Chen
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Liu
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Yajuan Ran
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Junqing Yang
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Poston RN. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab 2019; 8:51-61. [PMID: 31588428 PMCID: PMC6738649 DOI: 10.1097/xce.0000000000000172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022]
Abstract
This review proposes that the development of the atherosclerotic plaque is critically dependent on its inflammatory components forming a self-perpetuating and propagating positive feedback loop. The components involved are: (1) LDL oxidation, (2) activation of the endothelium, (3) recruitment of inflammatory monocytes, (4) macrophage accumulation, which induces LDL oxidation, and (5) macrophage generation of inflammatory mediators, which also activate the endothelium. Through these stages, the positive feedback loop is formed, which generates and promotes expansion of the atherosclerotic process. To illustrate this dynamic of lesion development, the author previously produced a computer simulation, which allowed realistic modelling. This hypothesis on atherogenesis can explain the existence and characteristic focal morphology of the atherosclerotic plaque. Each of the components contributing to the feedback loop is discussed. Many of these components also contain subsidiary positive feedback loops, which could exacerbate the overall process.
Collapse
Affiliation(s)
- Robin N. Poston
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Weiss GA, Troxler H, Klinke G, Rogler D, Braegger C, Hersberger M. High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. Lipids Health Dis 2013; 12:89. [PMID: 23767972 PMCID: PMC3698171 DOI: 10.1186/1476-511x-12-89] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023] Open
Abstract
Background The fatty acid mixture of human milk is ideal for the newborn but little is known about its composition in the first few weeks of lactation. Of special interest are the levels of long-chain PUFAs (LCPUFAs), since these are essential for the newborn’s development. Additionally, the LCPUFAs arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are precursors for lipid mediators which regulate inflammation. Methods We determined the composition of 94 human milk samples from 30 mothers over the first month of lactation for fatty acids using GC-MS and quantified lipid mediators using HPLC-MS/MS. Results Over the four weeks period, DHA levels decreased, while levels of γC18:3 and αC18:3 steadily increased. Intriguingly, we found high concentrations of lipid mediators and their hydroxy fatty acid precursors in human milk, including pro-inflammatory leukotriene B4 (LTB4) and anti-inflammatory and pro-resolving lipoxin A4 (LXA4), resolvin D1 (RvD1) and resolvin E1 (RvE1). Lipid mediator levels were stable with the exception of two direct precursors. Conclusions Elevated levels of DHA right after birth might represent higher requirements of the newborn and the high content of anti-inflammatory and pro-resolving lipid mediators and their precursors may indicate their role in neonatal immunity and may be one of the reasons for the advantage of human milk over infant formula.
Collapse
Affiliation(s)
- Gisela Adrienne Weiss
- Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
4
|
Li J, Rao J, Liu Y, Cao Y, Zhang Y, Zhang Q, Zhu D. 15-Lipoxygenase promotes chronic hypoxia-induced pulmonary artery inflammation via positive interaction with nuclear factor-κB. Arterioscler Thromb Vasc Biol 2013; 33:971-9. [PMID: 23493287 DOI: 10.1161/atvbaha.113.301335] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Our laboratory has previously demonstrated that 15-lipoxygenase (15-LO)/15-hydroxyeicosatetraenoic acid (15-HETE) is involved in hypoxic pulmonary arterial hypertension. Chronic hypoxia-induced vascular inflammation has been considered as an important stage in the development of pulmonary arterial hypertension. Here, we determined the contribution of 15-HETE in the hypoxia-induced pulmonary vascular inflammation. APPROACH AND RESULTS Chronic hypoxia-induced monocyte/macrophage infiltration and the expressions of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were analyzed in hypoxic rat model and cultured pulmonary arterial endothelium cells using immunochemistry methods. We found that monocyte/macrophage infiltration and the expressions of intercellular adhesion molecules under hypoxia were markedly inhibited by 15-HETE inhibitors or 15-LO1/2 small interfering RNA. In addition, exogenous 15-HETE enhanced the expression of both adhesion molecules in pulmonary arterial endothelium cells in a time-dependent manner. Hypoxia-induced 15-LO1/2 expression in rat pulmonary arterial endothelium cells was significantly abolished by nuclear factor-κB inhibitors. Meanwhile, nuclear factor-κB activity was enhanced prominently by the 15-LO1/2 product, 15-HETE, suggesting a positive feedback mechanism. CONCLUSIONS Taken together, our results suggest that chronic hypoxia promotes monocyte infiltration into the vasculature and adhesion molecules upregulation in pulmonary arterial endothelium cells via a positive interaction between 15-LO/15-HETE and nuclear factor-κB. Our study revealed a novel mechanism underlying hypoxia-induced pulmonary arterial inflammation and suggested new therapeutic strategies targeting 15-LO/15-HETE and nuclear factor-κB in the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jing Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Contreras GA, Raphael W, Mattmiller SA, Gandy J, Sordillo LM. Nonesterified fatty acids modify inflammatory response and eicosanoid biosynthesis in bovine endothelial cells. J Dairy Sci 2013; 95:5011-5023. [PMID: 22916905 DOI: 10.3168/jds.2012-5382] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/01/2012] [Indexed: 01/13/2023]
Abstract
Intense lipid mobilization during the transition period in dairy cows is associated with increased disease susceptibility. The potential impact of altered plasma nonesterified fatty acids (NEFA) concentrations and composition on host inflammatory responses that may contribute to disease incidence and severity are not known. The objective of this study was to evaluate if increased NEFA concentrations could modify vascular inflammatory responses in vitro by changing the expression of important inflammatory mediators that are important in the pathogenesis of infectious diseases of transition cows such as mastitis and metritis. Bovine aortic endothelial cells (BAEC) were cultured with different concentrations of a NEFA mixture that reflected the plasma NEFA composition during different stages of lactation. The expression of cytokines, adhesion molecules, and eicosanoids were measured to assess changes in BAEC inflammatory phenotype. Addition of NEFA mixtures altered the fatty acid profile of BAEC by increasing the concentration of stearic acid (C18:0) and decreasing the content of arachidonic acid (C20:4n6c) and other long-chain polyunsaturated fatty acids in the phospholipid fraction. A significant increase also occurred in mRNA expression of cytokine and adhesion molecules that are associated with increased inflammatory responses during the transition period. Expression of cyclooxygenase 2, an important enzyme associated with eicosanoid biosynthesis, was increased in a NEFA concentration-dependent manner. The production of linoleic acid-derived eicosanoids 9- and 13-hydroxyoctadecadienoic acids also was increased significantly after treatment with NEFA mixtures. This research described for the first time specific changes in vascular inflammatory response during in vitro exposure to NEFA mixtures that mimic the composition and concentration found in cows during the transition period. These findings could explain, in part, alterations in inflammatory responses observed during intense lipid mobilization stages such as in the transition period of dairy cows. Future studies should analyze specific mechanisms by which high NEFA concentrations induce a vascular proinflammatory phenotype including the effect of 9 and 13-hydroxyoctadecadienoic acids and other lipid mediators.
Collapse
Affiliation(s)
- G A Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - W Raphael
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - S A Mattmiller
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - J Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
6
|
Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 2010; 50:115-31. [PMID: 20970452 DOI: 10.1016/j.plipres.2010.10.005] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022]
Abstract
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer's disease and Parkinson's disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Anca D Dobrian
- Eastern Virginia Medical School, Department of Physiological Sciences, Lewis Hall, Room 2027, 700 W. Olney Road, Norfolk, VA 23507, United States.
| | | | | | | | | | | |
Collapse
|
7
|
Arachidonic Acid metabolites in the cardiovascular system: the role of lipoxygenase isoforms in atherogenesis with particular emphasis on vascular remodeling. J Cardiovasc Pharmacol 2008; 50:609-20. [PMID: 18091576 DOI: 10.1097/fjc.0b013e318159f177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vascular remodeling refers to lasting structural alterations in the vessel wall that are initiated in response to external and internal stimuli. These changes are distinct from acute functional responses of blood vessels when challenged by increased blood pressure, altered hemodynamics, or vasoactive mediators. In early atherogenesis, when lesion formation is starting to impact local hemodynamics, the vessel wall responds with outward vascular remodeling to maintain normal blood flow. However, inward remodeling may also occur during the time course of plaque formation, contributing to vascular stenosis. Lipoxygenases form a heterogeneous family of lipid-peroxidizing enzymes, which have been implicated in atherogenesis. Several lines of in vitro and in vivo evidence indicated their involvement in disease development, but the precise function of different lipoxygenase isoforms is still a matter of discussion. Vascular remodeling is an early response during plaque development; therefore, lipoxygenases may be involved in this process. Unfortunately, little is known about the potential role of lipoxygenase isoforms in vascular remodeling. This review will briefly summarize our knowledge of the role of lipoxygenases in vascular biology and will critically review the activities of the 3 most athero-relevant lipoxygenase isoforms in atherogenesis, with particular emphasis on vascular remodeling.
Collapse
|
8
|
Viita H, Markkanen J, Eriksson E, Nurminen M, Kinnunen K, Babu M, Heikura T, Turpeinen S, Laidinen S, Takalo T, Ylä-Herttuala S. 15-Lipoxygenase-1 Prevents Vascular Endothelial Growth Factor A– and Placental Growth Factor–Induced Angiogenic Effects in Rabbit Skeletal Muscles via Reduction in Growth Factor mRNA Levels, NO Bioactivity, and Downregulation of VEGF Receptor 2 Expression. Circ Res 2008; 102:177-84. [DOI: 10.1161/circresaha.107.155556] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human 15-lipoxygenase-1 (15-LO-1) is an oxidizing enzyme capable of producing reactive lipid hydroperoxides. 15-LO-1 and its products have been suggested to be involved in many pathological conditions, such as inflammation, atherogenesis, and carcinogenesis. We used adenovirus-mediated gene transfers to study the effects of 15-LO-1 on vascular endothelial growth factor (VEGF)-A
165
– and placental growth factor (PlGF)-induced angiogenesis in rabbit skeletal muscles. 15-LO-1 significantly decreased all angiogenic effects induced by these growth factors, including capillary perfusion, vascular permeability, vasodilatation, and an increase in capillary number. The effects are attributable to the reduction in the amount of VEGF-A
165
and PlGF transcripts by 15-LO-1, resulting in reduced protein expression. The most likely mediator of the VEGF family–induced capillary vasodilatation is nitric oxide (NO), which is produced by NO synthases. Endothelial NO synthase protein expression and NO synthase activity were significantly induced by VEGF-A
165
, and these inductions were reduced by 15-LO-1. VEGF-A
165
induces its angiogenic effects primarily via vascular endothelial growth factor receptor (VEGFR)2, and also PlGF mediates angiogenic signaling via VEGFR2, even though it binds to VEGFR1. VEGFR2 expression is induced by peroxisome proliferator-activating receptor γ. We showed by quantitative RT-PCR and immunohistochemistry that expression of endogenous rabbit peroxisome proliferator-activating receptor γ and VEGFR2 were significantly increased in the growth factor–transduced muscles, but these inductions were efficiently prevented by 15-LO-1. In conclusion, the results suggest that expression of 15-LO-1 has an efficient antiangiogenic effect in vivo via reduction in growth factor mRNA levels, NO bioactivity, and VEGFR2 expression.
Collapse
Affiliation(s)
- Helena Viita
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Johanna Markkanen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Emmi Eriksson
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Markku Nurminen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Kati Kinnunen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Mohan Babu
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Tommi Heikura
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Sanna Turpeinen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Svetlana Laidinen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Teemu Takalo
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| |
Collapse
|
9
|
Danielsson KN, Rydberg EK, Ingelsten M, Akyürek LM, Jirholt P, Ullström C, Forsberg GB, Borén J, Wiklund O, Hultén LM. 15-Lipoxygenase-2 expression in human macrophages induces chemokine secretion and T cell migration. Atherosclerosis 2007; 199:34-40. [PMID: 18067895 DOI: 10.1016/j.atherosclerosis.2007.10.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/17/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND We determined previously that hypoxia results in increased 15-lipoxygenase type 2 (15-LOX-2) expression and CXCL8 secretion in macrophages. This study sought to determine whether 15-LOX-2 expression links directly with the secretion of inflammatory molecules in macrophages and also investigated its subsequent effects on T cell migration. METHODS Adenovirus-mediated gene delivery caused overexpression of 15-LOX-2 in human macrophages. We used cytometric bead array to measure chemokine secretion, and assessed T cell migration by counting cells in chemotaxis chambers. Expression of chemokine receptors was determined by FACS analysis. Using siRNA, we reduced 15-LOX-2 expression in human macrophages. We used scrambled siRNA as control. RESULTS Macrophages that overexpress 15-LOX-2 showed increased secretion of chemokine CXCL10 after 24h incubation. In addition, preconditioned medium from 15-LOX-2-overexpressing cells increased T cell migration and surface expression of CXCR3, the CXCL10 receptor. Knockdown of 15-LOX-2 expression decreased CXCL10 secretion from hypoxic macrophages and also reduced T cell migration. CONCLUSION In macrophages, overexpression of 15-LOX-2 results in increased secretion of CXCL10 and CCL2. Products released in response to increased 15-LOX-2 activation lead to increased expression of CD69, the T cell activation marker as well as increased T cell migration. Therefore, increased expression of 15-LOX-2 induced by hypoxia may participate in T cell recruitment in diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Kristina Norén Danielsson
- Sahlgrenska Centre for Cardiovascular and Metabolic Research, Wallenberg Laboratory, The Sahlgrenska Academy, SE-413 45 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wittwer J, Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2007; 77:67-77. [PMID: 17869078 DOI: 10.1016/j.plefa.2007.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 07/12/2007] [Accepted: 08/01/2007] [Indexed: 01/02/2023]
Abstract
Chronic inflammation plays a major role in atherogenesis and understanding the role of inflammation and its resolution will offer novel approaches to interfere with atherogenesis. The 15(S)-lipoxygenase (15-LOX) plays a janus-role in inflammation with pro-inflammatory and anti-inflammatory effects in cell cultures and primary cells and even opposite effects on atherosclerosis in two different animal species. There is evidence for a pro-atherosclerotic effect of 15-LOX including the direct contribution to LDL oxidation and to the recruitment of monocytes to the vessel wall, its role in angiotensin II mediated mechanisms and in vascular smooth muscle cell proliferation. In contrast to the pro-atherosclerotic effects of 15-LOX, there is also a broad line of evidence that 15-LOX metabolites of arachidonic and linoleic acid have anti-inflammatory effects. The 15-LOX arachidonic acid metabolite 15-HETE inhibits superoxide production and polymorphonuclear neutrophil (PMN) migration across cytokine-activated endothelium and can be further metabolized to the anti-inflammatory lipoxins. These promote vasorelaxation in the aorta and counteract the action of most other pro-inflammatory factors like leukotrienes and prostanoids. Anti-atherogenic properties are also reported for the linoleic acid oxidation product 13-HODE through inhibition of adhesion of several blood cells to the endothelium. Furthermore, there is evidence that 15-LOX is involved in the metabolism of the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) leading to a family of anti-inflammatory resolvins and protectins. From these cell culture and animal studies the role of the 15-LOX in human atherosclerosis cannot be predicted. However, recent genetic studies characterized the 15-LOX haplotypes in Caucasians and discovered a functional polymorphism in the human 15-LOX promoter. This will now allow large studies to investigate an association of 15-LOX with coronary artery disease and to answer the question whether 15-LOX is pro- or anti-atherogenic in humans.
Collapse
Affiliation(s)
- Jonas Wittwer
- Institute of Clinical Chemistry, Center for Integrative Human Physiology, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | | |
Collapse
|
11
|
Aggarwal NT, Holmes BB, Cui L, Viita H, Yla-Herttuala S, Campbell WB. Adenoviral expression of 15-lipoxygenase-1 in rabbit aortic endothelium: role in arachidonic acid-induced relaxation. Am J Physiol Heart Circ Physiol 2006; 292:H1033-41. [PMID: 17040969 DOI: 10.1152/ajpheart.00624.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-dependent vasorelaxation of the rabbit aorta is mediated by either nitric oxide (NO) or arachidonic acid (AA) metabolites from cyclooxygenase (COX) and 15-lipoxygenase (15-LO) pathways. 15-LO-1 metabolites of AA, 11,12,15-trihydroxyeicosatrienoic acid (THETA), and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) cause concentration-dependent relaxation. We tested the hypothesis that in the 15-LO pathway of AA metabolism, 15-LO-1 is sufficient and is the rate-limiting step in inducing relaxations in rabbit aorta. Aorta and rabbit aortic endothelial cells were treated with adenoviruses containing human 15-LO-1 cDNA (Ad-15-LO-1) or beta-galactosidase (Ad-beta-Gal). Ad-15-LO-1-transduction increased the expression of a 75-kDa protein corresponding to 15-LO-1, detected by immunoblotting with an anti-human15-LO-1 antibody, and increased the production of HEETA and THETA from [(14)C]AA. Immunohistochemical studies on Ad-15-LO-1-transduced rabbit aorta showed the presence of 15-LO-1 in endothelial cells. Ad-15-LO-1-treated aortic rings showed enhanced relaxation to AA (max 31.7 +/- 3.2%) compared with Ad-beta-Gal-treated (max 12.7 +/- 3.2%) or control nontreated rings (max 13.1 +/- 1.6%) (P < 0.01). The relaxations in Ad-15-LO-1-treated aorta were blocked by the 15-LO inhibitor cinnamyl-3,4-dihydroxy-a-cyanocinnamate. Overexpression of 15-LO-1 in the rabbit aortic endothelium is sufficient to increase the production of the vasodilatory HEETA and THETA and enhance the relaxations to AA. This confirms the role of HEETA and THETA as endothelium-derived relaxing factors.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- Adenoviridae/genetics
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Arachidonate 15-Lipoxygenase/biosynthesis
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonic Acid/metabolism
- Arachidonic Acid/pharmacology
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Dose-Response Relationship, Drug
- Endothelial Cells/metabolism
- Genetic Vectors
- Hydroxyeicosatetraenoic Acids/metabolism
- Immunohistochemistry
- In Vitro Techniques
- Lipoxygenase Inhibitors/pharmacology
- Molecular Structure
- Rabbits
- Tandem Mass Spectrometry
- Transduction, Genetic
- Vasodilation/drug effects
- Vasodilator Agents/metabolism
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Barbier O, Villeneuve L, Bocher V, Fontaine C, Torra IP, Duhem C, Kosykh V, Fruchart JC, Guillemette C, Staels B. The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. J Biol Chem 2003; 278:13975-83. [PMID: 12582161 DOI: 10.1074/jbc.m300749200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) alpha and gamma are ligand-activated transcription factors belonging to the nuclear receptor family. PPAR alpha mediates the hypolipidemic action of the fibrates, whereas PPAR gamma is a receptor for the antidiabetic glitazones. In the present study, the UDP-glucuronosyltransferase (UGT) 1A9 enzyme is identified as a PPAR alpha and PPAR gamma target gene. UGTs catalyze the glucuronidation reaction, which is a major pathway in the catabolism and elimination of numerous endo- and xenobiotics. Among the UGT1A family enzymes, UGT1A9 metabolizes endogenous compounds, including catecholestrogens, and xenobiotics, such as fibrates and to a lesser extent troglitazone. Treatment of human hepatocytes and macrophages and murine adipocytes with activators of PPAR alpha or PPAR gamma resulted in an enhanced UGT1A9 expression and activity. In addition, disruption of the PPAR alpha gene in mice completely abolished the PPAR alpha agonist-induced UGT1A9 mRNA and activity levels. A PPAR response element was identified in the promoter of UGT1A9 at positions -719 to -706 bp by transient transfection and electromobility shift assays. Considering the role of UGT1A9 in catecholestrogen metabolism, PPAR alpha and PPAR gamma activation may contribute to the protection against genotoxic catecholestrogens by stimulating their inactivation in glucuronide derivatives. Furthermore, since UGT1A9 is involved in the catabolism of fibrates, these results suggest that PPAR alpha and PPAR gamma may control the intracellular level of active fibrates.
Collapse
Affiliation(s)
- Olivier Barbier
- UR 545 INSERM, Département d'Athérosclérose, Institut Pasteur de Lille and the Faculté de Pharmacie, Université de Lille II, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kuhn H, Walther M, Kuban RJ. Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications. Prostaglandins Other Lipid Mediat 2002; 68-69:263-90. [PMID: 12432923 DOI: 10.1016/s0090-6980(02)00035-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lipoxygenases (LOXs) constitute a heterogeneous family of lipid peroxidizing enzymes capable of oxygenating polyunsaturated fatty acids to their corresponding hydroperoxy derivatives. In mammals, LOXs are classified with respect to their positional specificity of arachidonic acid oxygenation into 5-, 8-, 12-, and 15-LOXs. Arachidonate 15-LOXs may be sub-classified into a reticulocyte-type (type-1) and an epidermis-type (type-2) enzyme. Since the leukocyte-type 12-LOXs are very similar to the reticulocyte-type 15-LOXs, these enzymes are designated 12/15-LOXs. Several LOX isoforms, in particular the reticulocyte-type 15-LOX and the human 5-LOX, are well characterized with respect to their structural and functional properties On the other hand, the biological role of most LOX-isozymes including the reticulocyte-type 15-LOC is far from clear. This review is intended to summarize the recent developments in 15-LOX research with particular emphasis to molecular enzymology and regulation of gene expression. In addition, the major hypotheses on the physiological and patho-physiological roles of 15-LOXs will be discussed briefly.
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany.
| | | | | |
Collapse
|
15
|
Rosenfeld ME. Leukocyte recruitment into developing atherosclerotic lesions: the complex interaction between multiple molecules keeps getting more complex. Arterioscler Thromb Vasc Biol 2002; 22:361-3. [PMID: 11884275 DOI: 10.1161/hq0302.104847] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
|
17
|
Abstract
Cell-cell and cell-matrix contacts are dependent on cell surface density, localization, and avidity state of surface-localized adhesion molecules. Cell adhesion represents a process that is centrally important in immune function and inflammation. This process is sensitive to various agonists including oxidants. Oxidants may directly as well as indirectly induce cell adhesion. In other cases, cytokines and related agents may induce cell adhesion by oxidant-dependent mechanisms. Various redox-sensitive sites in the signal transduction path leading to cell adhesion have been identified. Different chemical classes of nutritional antioxidants regulate cell adhesion by modulating specific signal transduction pathways. Numerous studies have confirmed that physical exercise influences the redox status of various cells and tissues. Recent evidences also show that physical exercise influences several cell adhesion related molecules. Whether such regulation has a redox component remains to be tested. Antioxidant supplementation studies testing the effect of exercise on cell adhesion should provide critical insight.
Collapse
Affiliation(s)
- C K Sen
- Departments of Surgery and Molecular and Cellular Biochemistry, Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
18
|
Brigelius-Flohé R, Maurer S, Lötzer K, Böl G, Kallionpää H, Lehtolainen P, Viita H, Ylä-Herttuala S. Overexpression of PHGPx inhibits hydroperoxide-induced oxidation, NFkappaB activation and apoptosis and affects oxLDL-mediated proliferation of rabbit aortic smooth muscle cells. Atherosclerosis 2000; 152:307-16. [PMID: 10998458 DOI: 10.1016/s0021-9150(99)00486-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rabbit abdominal aortic smooth muscle cells (SMC) were stably transfected with the cDNA of porcine phospholipid hydroperoxide glutathione peroxidase (PHGPx) by means of a retroviral gene transfer technique, to create a model for studying cellular processes relevant to atherogenesis. The transfected cells (SMC/PHGPx) had approximately 4-fold higher PHGPx activity when cultured in the presence of selenite whereas the parental cells did not show any significant increase in PHGPx or total GPx activity upon selenium supplementation. In situ functionality of PHGPx was validated by inhibition of linoleic acid hydroperoxide-induced toxicity, dihydrorhodamine oxidation, NFkappaB activation and apoptosis. SMC grown in 1% FCS responded to oxidized LDL (oxLDL) with a marked proliferation, as measured by [3H]thymidine incorporation, irrespective of selenium supplementation. In SMC/PHGPx grown with or without selenite under control conditions or exposed to native LDL, thymidine incorporation was generally depressed. Also, oxLDL-induced proliferation was lower in SMC/PHGPx compared to untransfected SMC up to 24 h of incubation. After 40 h, however, selenite supplementation restored maximum proliferation response to oxLDL in SMC/PHGPx. The results suggest a proliferative effect of endogenous hydroperoxides in SMC. They further reveal that hydroperoxy lipids of oxLDL contribute to the induction of proliferation, but also suggest involvement of hydroxy lipids in the response to oxLDL.
Collapse
Affiliation(s)
- R Brigelius-Flohé
- German Institute of Human Nutrition, University of Potsdam, Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Bergholz-Rehbrücke, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tolando R, Jovanovic A, Brigelius-Flohé R, Ursini F, Maiorino M. Reactive oxygen species and proinflammatory cytokine signaling in endothelial cells: effect of selenium supplementation. Free Radic Biol Med 2000; 28:979-86. [PMID: 10802230 DOI: 10.1016/s0891-5849(00)00183-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The release of superoxide (O(2)(*-)) and hydrogen peroxide (H(2)O(2)), induced by tumor necrosis factor-alpha (TNF-alpha) or interleukin-1beta (IL-1beta), has been studied in the endothelial cell line ECV 304 in the presence and absence of selenium (Se) supplementation. Both cytokines elicit the production of both species. Selenium supplementation, which increases Se-enzyme activity, decreases the amount of H(2)O(2) but not O(2)(*-) detectable in the extracellular medium. Inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by diphenyliodonium (DPI) or phenylarsine oxide (PAO), largely prevents O(2)(*-) production, whereas H(2)O(2) remains above the amount accounted for by disproportion of residual O(2)(*-). Thus, a fraction of H(2)O(2) found in the medium, derives from an intracellular pool, which is under control of selenium-dependent peroxidases. This is further supported by the observation that in Se-supplemented cells, the rate of intracellular glutathione (GSH) depletion induced by cytokine treatment is faster and more extensive. Because Se supplementation decreases cytokine-induced NF-kappaB activity, whereas added H(2)O(2) is inactive and catalase does not affect the activation induced by TNF-alpha, it is concluded that only intracellularly generated H(2)O(2) has a role in transcription factor activation by both TNF-alpha and IL-1beta.
Collapse
Affiliation(s)
- R Tolando
- Dipartimento di Chimica Biologica, Padova, Italy
| | | | | | | | | |
Collapse
|