1
|
Jin Z, Xu H, Zhao W, Zhang K, Wu S, Shu C, Zhu L, Wang Y, Wang L, Zhang H, Yan B. Macrophage ATF6 accelerates corticotomy-assisted orthodontic tooth movement through promoting Tnfα transcription. Int J Oral Sci 2025; 17:28. [PMID: 40164575 PMCID: PMC11958779 DOI: 10.1038/s41368-025-00359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon (RAP). Despite its therapeutic effects, the surgical risk and unclear mechanism hamper the clinical application. Numerous evidences support macrophages as the key immune cells during bone remodeling. Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2; R26GFP lineage tracing system. Fluorescence staining, flow cytometry analysis, and western blot determined the significantly enhanced expression of binding immunoglobulin protein (BiP) and emphasized the activation of sensor activating transcription factor 6 (ATF6) in macrophages. Then, we verified that macrophage specific ATF6 deletion (ATF6f/f; CX3CR1CreERT2 mice) decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy. In contrast, macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement. In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6. At the mechanism level, RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfα promotor and augmenting its transcription. Additionally, molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element (ERSE). Taken together, ATF6 may aggravate orthodontic bone remodeling by promoting Tnfα transcription in macrophages, suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
Collapse
Affiliation(s)
- Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Weiye Zhao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shengnan Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
2
|
Mohamed AF, El-Gammal MA, El-Yamany MF, Khodeir AE. Sigma-1 receptor modulation by fluvoxamine ameliorates valproic acid-induced autistic behavior in rats: Involvement of chronic ER stress modulation, enhanced autophagy and M1/M2 microglia polarization. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111192. [PMID: 39510157 DOI: 10.1016/j.pnpbp.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. While, fluvoxamine (FVX) is an antidepressant and widely prescribed to ASD patients, clinical results are inconclusive and the mechanism of FVX in the management of ASD is unclear. This study determined the potential therapeutic impact of FVX, a sigma-1 receptor (S1R) agonist, against the valproic acid (VPA)-induced model of autism. On gestational day 12.5, Wistar pregnant rats were given a single intraperitoneal (i.p.) injection of either VPA (600 mg/kg) or normal saline (10 mL/kg, vehicle-control). Starting on postnatal day (PND) 21 to PND 50, FVX (30 mg/kg, P·O. daily) and NE-100, (S1R) antagonist, (1 mg/kg, i.p. daily) were given to male pups. Behavior tests and histopathological changes were identified at the end of the experiment. In addition, the cerebellum biomarkers of endoplasmic reticulum (ER) stress and autophagy were assessed. Microglial cell polarization to M1 and M2 phenotypes was also assessed. FVX effectively mitigated the histopathological alterations in the cerebellum caused by VPA. FVX enhanced sociability and stereotypic behaviors in addition to its noteworthy impact on autophagy enhancement, ER stress deterioration, and controlling microglial cell polarization. The current investigation confirmed that the S1R agonist, FVX, can lessen behavioral and neurochemical alterations in the VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza 11562, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.
| | - Mohamad A El-Gammal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza 11562, Egypt.
| | - Ahmed E Khodeir
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| |
Collapse
|
3
|
Chen K, Guo D, Yan J, Zhang H, He Z, Wang C, Tang W, Chen J, Xu Z, Ma Y, Chen M. Transcription factor GmAlfin09 regulates endoplasmic reticulum stress in soybean via peroxidase GmPRDX6. PLANT PHYSIOLOGY 2024; 196:592-607. [PMID: 38829837 DOI: 10.1093/plphys/kiae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Soybean (Glycine max [L.] Merr.) is a valuable oil crop but is also highly susceptible to environmental stress. Thus, developing approaches to enhance soybean stress resistance is vital to soybean yield improvement. In previous studies, transcription factor Alfin has been shown to serve as an epigenetic regulator of plant growth and development. However, no studies on Alfin have yet been reported in soybean. In this study, the endoplasmic reticulum (ER) stress- and reactive oxygen species (ROS)-related GmAlfin09 was identified. Screening of genes co-expressed with GmAlfin09 unexpectedly led to the identification of soybean peroxidase 6 (GmPRDX6). Further analyses revealed that both GmAlfin09 and GmPRDX6 were responsive to ER stress, with GmPRDX6 localizing to the ER under stress. Promoter binding experiments confirmed the ability of GmAlfin09 to bind to the GmPRDX6 promoter directly. When GmAlfin09 and GmPRDX6 were overexpressed in soybean, enhanced ER stress resistance and decreased ROS levels were observed. Together, these findings suggest that GmAlfin09 promotes the upregulation of GmPRDX6, and GmPRDX6 subsequently localizes to the ER, reduces ROS levels, promotes ER homeostasis, and ensures the normal growth of soybean even under ER stress. This study highlights a vital target gene for future molecular breeding of stress-resistant soybean lines.
Collapse
Affiliation(s)
- Kai Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongdong Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiji Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huijuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang He
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunxiao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensi Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaoshi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youzhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Bidooki SH, Barranquero C, Sánchez-Marco J, Martínez-Beamonte R, Rodríguez-Yoldi MJ, Navarro MA, Fernandes SCM, Osada J. TXNDC5 Plays a Crucial Role in Regulating Endoplasmic Reticulum Activity through Different ER Stress Signaling Pathways in Hepatic Cells. Int J Mol Sci 2024; 25:7128. [PMID: 39000233 PMCID: PMC11241358 DOI: 10.3390/ijms25137128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Cristina Barranquero
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María J. Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
5
|
Ayaz A, Jalal A, Zhang X, Khan KA, Hu C, Li Y, Hou X. In-Depth Characterization of bZIP Genes in the Context of Endoplasmic Reticulum (ER) Stress in Brassica campestris ssp. chinensis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1160. [PMID: 38674568 PMCID: PMC11053814 DOI: 10.3390/plants13081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Numerous studies have been conducted to investigate the genomic characterization of bZIP genes and their involvement in the cellular response to endoplasmic reticulum (ER) stress. These studies have provided valuable insights into the coordinated cellular response to ER stress, which is mediated by bZIP transcription factors (TFs). However, a comprehensive and systematic investigations regarding the role of bZIP genes and their involvement in ER stress response in pak choi is currently lacking in the existing literature. To address this knowledge gap, the current study was initiated to elucidate the genomic characteristics of bZIP genes, gain insight into their expression patterns during ER stress in pak choi, and investigate the protein-to-protein interaction of bZIP genes with the ER chaperone BiP. In total, 112 members of the BcbZIP genes were identified through a comprehensive genome-wide analysis. Based on an analysis of sequence similarity, gene structure, conserved domains, and responsive motifs, the identified BcbZIP genes were categorized into 10 distinct subfamilies through phylogenetic analysis. Chromosomal location and duplication events provided insight into their genomic context and evolutionary history. Divergence analysis estimated their evolutionary history with a predicted divergence time ranging from 0.73 to 80.71 million years ago (MYA). Promoter regions of the BcbZIP genes were discovered to exhibit a wide variety of cis-elements, including light, hormone, and stress-responsive elements. GO enrichment analysis further confirmed their roles in the ER unfolded protein response (UPR), while co-expression network analysis showed a strong relationship of BcbZIP genes with ER-stress-responsive genes. Moreover, gene expression profiles and protein-protein interaction with ER chaperone BiP further confirmed their roles and capacity to respond to ER stress in pak choi.
Collapse
Affiliation(s)
- Aliya Ayaz
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdul Jalal
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and Its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Chunmei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
He J, Zhou Y, Sun L. Emerging mechanisms of the unfolded protein response in therapeutic resistance: from chemotherapy to Immunotherapy. Cell Commun Signal 2024; 22:89. [PMID: 38297380 PMCID: PMC10832166 DOI: 10.1186/s12964-023-01438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR). As an adaptive cellular response to hostile microenvironments, such as hypoxia, nutrient deprivation, oxidative stress, and chemotherapeutic drugs, the UPR is activated in diverse cancer types and functions as a dynamic tumour promoter in cancer development; this role of the UPR indicates that regulation of the UPR can be utilized as a target for tumour treatment. T-cell exhaustion mainly refers to effector T cells losing their effector functions and expressing inhibitory receptors, leading to tumour immune evasion and the loss of tumour control. Emerging evidence suggests that the UPR plays a crucial role in T-cell exhaustion, immune evasion, and resistance to immunotherapy. In this review, we summarize the molecular basis of UPR activation, the effect of the UPR on immune evasion, the emerging mechanisms of the UPR in chemotherapy and immunotherapy resistance, and agents that target the UPR for tumour therapeutics. An understanding of the role of the UPR in immune evasion and therapeutic resistance will be helpful to identify new therapeutic modalities for cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Jiang He
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Huan, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central, South University, Xiangya Hospital, Changsha, 410008, China.
| | - You Zhou
- Department of Pathology, Tongji Medical College Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Huan, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central, South University, Xiangya Hospital, Changsha, 410008, China.
| |
Collapse
|
7
|
Zhan S, Qiu M, Wei X, Wei J, Qin L, Jiang B, Wen Q, Chen P, Lin Q, Wei X, Zhou Z, Jiang Y, Liang X, Li R, Liu Y, Yu H. Potentially functional genetic variants in ferroptosis-related CREB3 and GALNT14 genes predict survival of hepatitis B virus-related hepatocellular carcinoma. Cancer Med 2024; 13:e6848. [PMID: 38151984 PMCID: PMC10807646 DOI: 10.1002/cam4.6848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Ferroptosis is a known crucial player in the development of cancers. However, the effect of single nucleotide polymorphisms (SNPs) in ferroptosis-related genes on survival in hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) patients remains unknown. METHODS We used two-stage multivariable Cox proportional hazards regression analyses to estimate the associations between 48,774 SNPs in 480 ferroptosis-related genes and overall survival (OS) of 866 HBV-HCC patients. RESULTS We identified that two potentially functional SNPs (CREB3 rs10814274 C > T and GALNT14 rs17010547 T > C) were significantly independently associated with the OS of HBV-HCC patients (CT + TT verse CC, hazards ratio (HR) = 0.77, 95% confidence interval (CI) = 0.67-0.89, p < 0.001 for rs10814274 and TC + CC verse TT, HR = 0.66, 95% CI = 0.53-0.82, p < 0.001 for rs17010547, respectively). Additional joint assessment of protective genotypes of these two SNPs showed that patients with 1-2 protective genotypes had a significantly better OS compared with those carrying 0 protective genotypes (HR = 0.56, 95% CI = 0.45-0.70, p < 0.001). Moreover, the expression quantitative trait loci (eQTL) analysis revealed that the survival-associated SNP rs10814274 T allele was significantly correlated with reduced CREB3 transcript levels in both normal liver tissues and whole blood cells, while the GALNT14 rs17010547 C allele had a significant correlation with increased GALNT14 transcript levels in whole blood cells. CONCLUSION These results suggest that genetic variants of CREB3 and GALNT14 may affect the survival of HBV-HCC patients, likely via transcriptional regulation of respective genes. However, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Shicheng Zhan
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Moqin Qiu
- Department of Respiratory OncologyGuangxi Medical University Cancer HospitalNanningChina
| | - Xueyan Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Junjie Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Liming Qin
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Binbin Jiang
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuping Wen
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Peiqin Chen
- Editorial Department of Chinese Journal of Oncology Prevention and TreatmentGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuling Lin
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Xiaoxia Wei
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Zihan Zhou
- Department of Cancer Prevention and ControlGuangxi Medical University Cancer HospitalNanningChina
| | - Yanji Jiang
- Scientific Research DepartmentGuangxi Medical University Cancer HospitalNanningChina
| | - Xiumei Liang
- Department of Disease Process ManagementGuangxi Medical University Cancer HospitalNanningChina
| | - Runwei Li
- Department of Civil Engineering, College of EngineeringNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Yingchun Liu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
| | - Hongping Yu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
8
|
Yuxiong W, Faping L, Bin L, Yanghe Z, Yao L, Yunkuo L, Yishu W, Honglan Z. Regulatory mechanisms of the cAMP-responsive element binding protein 3 (CREB3) family in cancers. Biomed Pharmacother 2023; 166:115335. [PMID: 37595431 DOI: 10.1016/j.biopha.2023.115335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
The CREB3 family of proteins, encompassing CREB3 and its four homologs (CREB3L1, CREB3L2, CREB3L3, and CREB3L4), exerts pivotal control over cellular protein metabolism in response to unfolded protein reactions. Under conditions of endoplasmic reticulum stress, activation of the CREB3 family occurs through regulated intramembrane proteolysis within the endoplasmic reticulum membrane. Perturbations in the function and expression of the CREB3 family have been closely associated with the development of diverse diseases, with a particular emphasis on cancer. Recent investigations have shed light on the indispensable role played by CREB3 family members in modulating the onset and progression of various human cancers. This comprehensive review endeavors to provide an in-depth examination of the involvement of CREB3 family members in distinct human cancer types, accentuating their significance in the pathogenesis of cancer and the manifestation of malignant phenotypes.
Collapse
Affiliation(s)
- Wang Yuxiong
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Li Faping
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Liu Bin
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Zhang Yanghe
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yunkuo
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Wang Yishu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China.
| | - Zhou Honglan
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China,.
| |
Collapse
|
9
|
Ma B, Zhang L, Li J, Xing T, Jiang Y, Gao F. Dietary taurine supplementation ameliorates muscle loss in chronic heat stressed broilers via suppressing the perk signaling and reversing endoplasmic reticulum-stress-induced apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2125-2134. [PMID: 32978773 DOI: 10.1002/jsfa.10835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Heat stress seriously affects animal health and induces enormous financial losses in poultry production. Exploring the appropriate means for ameliorating unfavorable effects caused by heat stress is essential. We investigated whether taurine supplementation could attenuate breast muscle loss in chronic heat-stressed broilers, as well as its mechanism. We designed three groups: a normal control group (22 °C), a heat stress group (32 °C) and a taurine treatment group (32 °C, basal diet + 5 g·kg-1 taurine). RESULTS We found that taurine significantly moderated the decreases of breast muscle mass and yield, as well as the increases of serum aspartate aminotransferase activity and serum urine acid level in chronic heat-stressed broilers. Additionally, supplementary taurine significantly alleviated elevations of the cytoplasm Ca2+ concentration, protein expressions of GRP78 and p-PERK, mRNA expressions of Ca2+ channels (RyR1, IP3R3) and endoplasmic reticulum (ER) stress factors (GRP78, GRP94, PERK, EIF2α, ATF4, IRE1, XBP1, ATF6 and CHOP), apoptosis (Caspase-3 and TUNEL), protein catabolism, and the reduction of taurine transporter (TauT) mRNA expression in the breast muscle induced by chronic heat stress. CONCLUSION Supplementary taurine could attenuate chronic heat stress-induced breast muscle loss via reversing ER stress-induced apoptosis and suppressing protein catabolism. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Amino Acids in Endoplasmic Reticulum Stress and Redox Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:35-49. [PMID: 34251637 DOI: 10.1007/978-3-030-74180-8_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteins are the chains of amino acids linked via peptide bonds. In cells, newly synthesized proteins are modified and folded in the endoplasmic reticulum (ER) and matured to be functional proteins before they are transported to other tissues or organs. In addition to protein synthesis, the ER is also a stress-sensing organelle for diverse biological functions, such as calcium storage, lipid synthesis, and cellular metabolism. Nutrient deprivation, accumulation of reactive oxygen species, and other intracellular insults can activate ER stress and unfolded protein response (UPR) to restore homeostasis. Dysfunction of the ER influences cellular physiology and metabolism, and contributes to the pathogenesis of various diseases. Amino acids are the building blocks for proteins of eukaryotic organisms. Both in vivo and in vitro studies have found that amino acids can function as signaling molecules to regulate gene expression, cell proliferation and apoptosis, immune response, and antioxidant capacity in numerous biological processes. Importantly, several lines of studies have indicated that amino acids regulate the abundances of proteins implicated in UPR and the redox state, therefore restoring the intracellular homeostasis. Amino acids play an important role in regulating ER stress and redox homeostasis in animal cells for their survival, growth, and development.
Collapse
|
11
|
Aghaei M, Dastghaib S, Aftabi S, Aghanoori MR, Alizadeh J, Mokarram P, Mehrbod P, Ashrafizadeh M, Zarrabi A, McAlinden KD, Eapen MS, Sohal SS, Sharma P, Zeki AA, Ghavami S. The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Life (Basel) 2020; 11:1. [PMID: 33374938 PMCID: PMC7821926 DOI: 10.3390/life11010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented.
Collapse
Affiliation(s)
- Mahmoud Aghaei
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Sanaz Dastghaib
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Sajjad Aftabi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Medical Physics Department, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Pawan Sharma
- Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Davis School of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, UC Davis Lung Center, University of California, Davis, CA 95616, USA;
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
12
|
Guo K, Zhang X, Hou Y, Liu J, Feng Q, Wang K, Xu L, Zhang Y. A novel PCV2 ORF5-interacting host factor YWHAB inhibits virus replication and alleviates PCV2-induced cellular response. Vet Microbiol 2020; 251:108893. [PMID: 33096469 PMCID: PMC7568206 DOI: 10.1016/j.vetmic.2020.108893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
YWHAB is a PCV2 ORF5-interacting host factor. YWHAB expression is activated by PCV2 infection and ORF5 transfection. YWHAB inhibits PCV2 replication. YWHAB alleviates PCV2 infection induced ERS, autophagy, ROS production and apoptosis.
Porcine circovirus type 2 (PCV2) infection causes porcine circovirus associated diseases (PCVAD) worldwide. Identification of host factors that interact with viral proteins is a fundamental step to understand the pathogenesis of PCV2. Our previous study reported that ORF5, a newly identified PCV2 viral protein supports PCV2 replication and interacts with multiple host factors. Here, we showed that a host factor YWHAB is an ORF5-interacting protein and plays essential roles during PCV2 infection. By using protein-protein interaction assays, we confirmed that YWHAB directly interacts with PCV2-ORF5 protein. We further showed that YWHAB expression was potently induced upon ORF5 overexpression and PCV2 infection. Remarkably, we found that the YWHAB strongly inhibited PCV2 replication, suggesting its role in defending PCV2 infection. By using the ectopic overexpression and gene knockdown approaches, we revealed that YWHAB inhibits PCV2-induced endoplasmic reticulum stress (ERS), autophagy, reactive oxygen species (ROS) production and apoptosis, suggesting its vital role in alleviating PCV2-induced cellular damage. Together, this study demonstrated that an ORF5-interacting host factor YWHAB affects PCV2 infection and PCV2-induced cellular response, which expands the current understanding of YWHAB biological function and might serves as a new therapeutic target to manage PCV2 infection-associated diseases.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Intestinal Immune Homeostasis and Inflammatory Bowel Disease: A Perspective on Intracellular Response Mechanisms. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) involves perturbation of intestinal immune homeostasis in genetically susceptible individuals. A mutual interplay between intestinal epithelial cells (IECs) and gut resident microbes maintains a homeostatic environment across the gut. An idiopathic gastrointestinal (GI) complication triggers aberrant physiological stress in the epithelium and peripheral myeloid cells, leading to a chronic inflammatory condition. Indeed, events in the endoplasmic reticulum (ER) and mitochondria contribute to orchestrating intracellular mechanisms such as the unfolded protein response (UPR) and oxidative stress, respectively, to resolve aberrant cellular stress. This review highlights the signaling cascades encrypted within ER and mitochondria in IECs and/or myeloid cells to dissipate chronic stress in maintaining intestinal homeostasis.
Collapse
|
14
|
Inhibitors of Ceramide- and Sphingosine-Metabolizing Enzymes as Sensitizers in Radiotherapy and Chemotherapy for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12082062. [PMID: 32722626 PMCID: PMC7463798 DOI: 10.3390/cancers12082062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the treatment of advanced head and neck squamous cell carcinoma (HNSCC), including oral SCC, radiotherapy is a commonly performed therapeutic modality. The combined use of radiotherapy with chemotherapy improves therapeutic effects, but it also increases adverse events. Ceramide, a central molecule in sphingolipid metabolism and signaling pathways, mediates antiproliferative responses, and its level increases in response to radiotherapy and chemotherapy. However, when ceramide is metabolized, prosurvival factors, such as sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glucosylceramide, are produced, reducing the antitumor effects of ceramide. The activities of ceramide- and sphingosine-metabolizing enzymes are also associated with radio- and chemo-resistance. Ceramide analogs and low molecular-weight compounds targeting these enzymes exert anticancer effects. Synthetic ceramides and a therapeutic approach using ultrasound have also been developed. Inhibitors of ceramide- and sphingosine-metabolizing enzymes and synthetic ceramides can function as sensitizers of radiotherapy and chemotherapy for HNSCC.
Collapse
|
15
|
Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020; 21:421-438. [PMID: 32457508 DOI: 10.1038/s41580-020-0250-z] [Citation(s) in RCA: 1548] [Impact Index Per Article: 309.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,FONDAP Center for Geroscience Brain Health and Metabolism (GERO), Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
17
|
Sledgehammer to Scalpel: Broad Challenges to the Heart and Other Tissues Yield Specific Cellular Responses via Transcriptional Regulation of the ER-Stress Master Regulator ATF6α. Int J Mol Sci 2020; 21:ijms21031134. [PMID: 32046286 PMCID: PMC7037772 DOI: 10.3390/ijms21031134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/28/2022] Open
Abstract
There are more than 2000 transcription factors in eukaryotes, many of which are subject to complex mechanisms fine-tuning their activity and their transcriptional programs to meet the vast array of conditions under which cells must adapt to thrive and survive. For example, conditions that impair protein folding in the endoplasmic reticulum (ER), sometimes called ER stress, elicit the relocation of the ER-transmembrane protein, activating transcription factor 6α (ATF6α), to the Golgi, where it is proteolytically cleaved. This generates a fragment of ATF6α that translocates to the nucleus, where it regulates numerous genes that restore ER protein-folding capacity but is degraded soon after. Thus, upon ER stress, ATF6α is converted from a stable, transmembrane protein, to a rapidly degraded, nuclear protein that is a potent transcription factor. This review focuses on the molecular mechanisms governing ATF6α location, activity, and stability, as well as the transcriptional programs ATF6α regulates, whether canonical genes that restore ER protein-folding or unexpected, non-canonical genes affecting cellular functions beyond the ER. Moreover, we will review fascinating roles for an ATF6α isoform, ATF6β, which has a similar mode of activation but, unlike ATF6α, is a long-lived, weak transcription factor that may moderate the genetic effects of ATF6α.
Collapse
|
18
|
Kim JI, Kaufman RJ, Back SH, Moon JY. Development of a Reporter System Monitoring Regulated Intramembrane Proteolysis of the Transmembrane bZIP Transcription Factor ATF6α. Mol Cells 2019; 42:783-793. [PMID: 31707777 PMCID: PMC6883980 DOI: 10.14348/molcells.2019.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
When endoplasmic reticulum (ER) functions are perturbed, the ER induces several signaling pathways called unfolded protein response to reestablish ER homeostasis through three ER transmembrane proteins: inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Although it is important to measure the activity of ATF6 that can indicate the status of the ER, no specific cell-based reporter assay is currently available. Here, we report a new cell-based method for monitoring ER stress based on the cleavage of ATF6α by sequential actions of proteases at the Golgi apparatus during ER stress. A new expressing vector was constructed by using fusion gene of GAL4 DNA binding domain (GAL4DBD) and activation domain derived from herpes simplex virus VP16 protein (VP16AD) followed by a human ATF6α N-terminal deletion variant. During ER stress, the GAL4DBD-VP16AD(GV)-hATF6α deletion variant was cleaved to liberate active transcription activator encompassing GV-hATF6α fragment which could translocate into the nucleus. The translocated GV-hATF6α fragment strongly induced the expression of firefly luciferase in HeLa Luciferase Reporter cell line containing a stably integrated 5X GAL4 site-luciferase gene. The established double stable reporter cell line HLR-GV-hATF6α(333) represents an innovative tool to investigate regulated intramembrane proteolysis of ATF6α. It can substitute active pATF6(N) binding motif-based reporter cell lines.
Collapse
Affiliation(s)
- Jin-Ik Kim
- Department of Biochemistry & Health Sciences, Changwon National University, Changwon 51140,
Korea
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037,
USA
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Ja-Young Moon
- Department of Biochemistry & Health Sciences, Changwon National University, Changwon 51140,
Korea
| |
Collapse
|
19
|
Rodríguez-López J, López AH, Estrada-Navarrete G, Sánchez F, Díaz-Camino C. The Noncanonical Heat Shock Protein PvNod22 Is Essential for Infection Thread Progression During Rhizobial Endosymbiosis in Common Bean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:939-948. [PMID: 30893001 DOI: 10.1094/mpmi-02-19-0041-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the establishment of plant-rhizobial symbiosis, the plant hosts express nodulin proteins during root nodule organogenesis. A limited number of nodulins have been characterized, and these perform essential functions in root nodule development and metabolism. Most nodulins are expressed in the nodule and at lower levels in other plant tissues. Previously, we isolated Nodulin 22 (PvNod22) from a common bean (Phaseolus vulgaris L.) cDNA library derived from Rhizobium-infected roots. PvNod22 is a noncanonical, endoplasmic reticulum (ER)-localized, small heat shock protein that confers protection against oxidative stress when overexpressed in Escherichia coli. Virus-induced gene silencing of PvNod22 resulted in necrotic lesions in the aerial organs of P. vulgaris plants cultivated under optimal conditions, activation of the ER-unfolded protein response (UPR), and, finally, plant death. Here, we examined the expression of PvNod22 in common bean plants during the establishment of rhizobial endosymbiosis and its relationship with two cellular processes associated with plant immunity, the UPR and autophagy. In the RNA interference lines, numerous infection threads stopped their progression before reaching the cortex cell layer of the root, and nodules contained fewer nitrogen-fixing bacteroids. Collectively, our results suggest that PvNod22 has a nonredundant function during legume-rhizobia symbiosis associated with infection thread elongation, likely by sustaining protein homeostasis in the ER.
Collapse
Affiliation(s)
- Jonathan Rodríguez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alejandrina Hernández López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
20
|
Sampieri L, Di Giusto P, Alvarez C. CREB3 Transcription Factors: ER-Golgi Stress Transducers as Hubs for Cellular Homeostasis. Front Cell Dev Biol 2019; 7:123. [PMID: 31334233 PMCID: PMC6616197 DOI: 10.3389/fcell.2019.00123] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
CREB3 family of transcription factors are ER localized proteins that belong to the bZIP family. They are transported from the ER to the Golgi, cleaved by S1P and S2P proteases and the released N-terminal domains act as transcription factors. CREB3 family members regulate the expression of a large variety of genes and according to their tissue-specific expression profiles they play, among others, roles in acute phase response, lipid metabolism, development, survival, differentiation, organelle autoregulation, and protein secretion. They have been implicated in the ER and Golgi stress responses as regulators of the cell secretory capacity and cell specific cargos. In this review we provide an overview of the diverse functions of each member of the family (CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4) with special focus on their role in the central nervous system.
Collapse
Affiliation(s)
- Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Di Giusto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
21
|
Chawsheen HA, Jiang H, Ying Q, Ding N, Thapa P, Wei Q. The redox regulator sulfiredoxin forms a complex with thioredoxin domain-containing 5 protein in response to ER stress in lung cancer cells. J Biol Chem 2019; 294:8991-9006. [PMID: 31000628 DOI: 10.1074/jbc.ra118.005804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/12/2019] [Indexed: 11/06/2022] Open
Abstract
Sulfiredoxin (Srx) reduces hyperoxidized 2-cysteine-containing peroxiredoxins (Prxs) and protects cells against oxidative stress. Previous studies have shown that Srx is highly expressed in primary specimens of lung cancer patients and plays a pivotal role in lung tumorigenesis and cancer progression. However, the oncogenic mechanisms of Srx in cancer are incompletely understood. In this study, we found that Srx knockdown sensitizes lung cancer cells to endoplasmic reticulum (ER) stress-induced cell death. Through MS analysis, we determined that Srx forms a complex with the ER-resident protein thioredoxin domain-containing protein 5 (TXNDC5). Using reciprocal co-immunoprecipitation, immunofluorescence imaging, subcellular fractionation, and domain-mapping assays with site-specific mutagenesis and purified recombinant proteins, we further characterized the Srx-TXNDC5 interaction. In response to ER stress but not to oxidative stress, Srx exhibits an increased association with TXNDC5, facilitating the retention of Srx in the ER. Of note, TXNDC5 knockdown in lung cancer cells inhibited cell proliferation and repressed anchorage-independent colony formation and migration, but increased cell invasion and activation of mitogen-activated protein kinases. Using immunohistochemical staining, we demonstrate that TXNDC5 is highly expressed in patient-derived lung cancer specimens. Bioinformatics analysis of publicly available data sets revealed that those with high Srx levels have significantly shorter survival and that those with high TXNDC5 levels have longer survival. We conclude that the cellular levels of Srx and TXNDC5 may be useful as biomarkers to predict the survival of individuals with lung cancer.
Collapse
Affiliation(s)
| | - Hong Jiang
- From the Department of Toxicology and Cancer Biology and
| | - Qi Ying
- From the Department of Toxicology and Cancer Biology and
| | - Na Ding
- From the Department of Toxicology and Cancer Biology and
| | - Pratik Thapa
- From the Department of Toxicology and Cancer Biology and
| | - Qiou Wei
- From the Department of Toxicology and Cancer Biology and .,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
22
|
Maamoun H, Abdelsalam SS, Zeidan A, Korashy HM, Agouni A. Endoplasmic Reticulum Stress: A Critical Molecular Driver of Endothelial Dysfunction and Cardiovascular Disturbances Associated with Diabetes. Int J Mol Sci 2019; 20:ijms20071658. [PMID: 30987118 PMCID: PMC6480154 DOI: 10.3390/ijms20071658] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Physical inactivity and sedentary lifestyle contribute to the widespread epidemic of obesity among both adults and children leading to rising cases of diabetes. Cardiovascular disease complications associated with obesity and diabetes are closely linked to insulin resistance and its complex implications on vascular cells particularly endothelial cells. Endoplasmic reticulum (ER) stress is activated following disruption in post-translational protein folding and maturation within the ER in metabolic conditions characterized by heavy demand on protein synthesis, such as obesity and diabetes. ER stress has gained much interest as a key bridging and converging molecular link between insulin resistance, oxidative stress, and endothelial cell dysfunction and, hence, represents an interesting drug target for diabetes and its cardiovascular complications. We reviewed here the role of ER stress in endothelial cell dysfunction, the primary step in the onset of atherosclerosis and cardiovascular disease. We specifically focused on the contribution of oxidative stress, insulin resistance, endothelial cell death, and cellular inflammation caused by ER stress in endothelial cell dysfunction and the process of atherogenesis.
Collapse
Affiliation(s)
- Hatem Maamoun
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbaseyya, Cairo 11566, Egypt.
| | - Shahenda S Abdelsalam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
23
|
Martinez A, Lopez N, Gonzalez C, Hetz C. Targeting of the unfolded protein response (UPR) as therapy for Parkinson's disease. Biol Cell 2019; 111:161-168. [PMID: 30860281 DOI: 10.1111/boc.201800068] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, leading to the progressive decline of motor control due to the loss of dopaminergic neurons in the substantia nigra pars compacta. At the molecular level, Parkinson's disease share common molecular signatures with most neurodegenerative diseases including the accumulation of misfolded proteins in the brain. Alteration in the buffering capacity of the proteostasis network during aging is proposed as one of the triggering steps leading to abnormal protein aggregation in this disease, highlighting disturbances in the function of the endoplasmic reticulum (ER). The ER is the main subcellular compartment involved in protein folding and quality control. ER stress triggers a signalling reaction known as the unfolded protein response (UPR), which aims restoring proteostasis through the induction of adaptive programs or the activation of cell death pathways when damage is chronic and cannot be repaired. Here, we overview most evidence linking ER stress to Parkinson's disease. Strategies to alleviate ER stress by targeting specific components of the UPR using small molecules and gene therapy are highlighted.
Collapse
Affiliation(s)
- Alexis Martinez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Nelida Lopez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Constanza Gonzalez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, 94945, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
24
|
Endoplasmic Reticulum Stress Markers and Their Possible Implications in Leprosy's Pathogenesis. DISEASE MARKERS 2018; 2018:7067961. [PMID: 30647798 PMCID: PMC6311872 DOI: 10.1155/2018/7067961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Mycobacterium leprae causes leprosy, a dermatoneurological disease which affects the skin and peripheral nerves. One of several cellular structures affected during M. leprae infection is the endoplasmic reticulum (ER). Infection by microorganisms can result in ER stress and lead to the accumulation of unfolded or poorly folded proteins. To restore homeostasis in the cell, the cell induces a series of signaling cascades known as the unfolded protein response called UPR (unfolded protein response). The present work is aimed at investigating the in situ expression of these markers in cutaneous lesions of clinical forms of leprosy and establish possible correlation expression patterns and types of lesion. A total of 43 samples from leprosy patients were analyzed by immunohistochemistry with monoclonal antibodies against GRP78/BiP, PERK, IRE1α, and ATF6. A statistically significant difference between the indeterminate, tuberculoid, and lepromatous clinical forms was detected, with high expression of GRP78/BiP, PERK, IRE1α, and ATF6 in tuberculoid forms (TT) when compared to lepromatous leprosy (LL) and indeterminate (I) leprosy. These results represent the first evidence of ER stress in samples of skin lesions from leprosy patients. We believe that they will provide better understanding of the complex pathogenesis of the disease and facilitate further characterization of the cascade of molecular events elicited during infection.
Collapse
|
25
|
Hillary RF, FitzGerald U. A lifetime of stress: ATF6 in development and homeostasis. J Biomed Sci 2018; 25:48. [PMID: 29801500 PMCID: PMC5968583 DOI: 10.1186/s12929-018-0453-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Activating transcription factor 6 (ATF6) is an endoplasmic reticulum (ER)-localised protein and member of the leucine zipper family of transcription factors. Best known for its role in transducing signals linked to stress to the endoplasmic reticulum, the 50 kDa activated form of ATF6 is now emerging as a major regulator of organogenesis and tissue homeostasis. Responsible for the correct folding, secretion and membrane insertion of a third of the proteome in eukaryotic cells, the ER encompasses a dynamic, labyrinthine network of regulators, chaperones, foldases and cofactors. Such structures are crucial to the extensive protein synthesis required to undergo normal development and maintenance of tissue homeostasis. When an additional protein synthesis burden is placed on the ER, ATF6, in tandem with ER stress transducers inositol requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), slows the pace of protein translation and induces the production of stress-reducing chaperones and foldases. MAIN TEXT In the context of development and tissue homeostasis, however, distinct cellular impacts have been attributed to ATF6. Drawing on data published from human, rodent, fish, goat and bovine research, this review first focuses on ATF6-mediated regulation of osteo- and chondrogenesis, ocular development as well as neuro- and myelinogenesis. The purported role of ATF6 in development of the muscular and reproductive systems as well as adipo- and lipogenesis is then described. With relevance to cardiac disease, cancer and brain disorders, the importance of ATF6 in maintaining tissue homeostasis is the subject of the final section. CONCLUSION In conclusion, the review encourages further elucidation of ATF6 regulatory operations during organogenesis and tissue homeostasis, to spawn the development of ATF6-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Robert F Hillary
- Galway Neuroscience Centre, Cúram Centre for Research in Medical Devices, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, Cúram Centre for Research in Medical Devices, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
García IA, Torres Demichelis V, Viale DL, Di Giusto P, Ezhova Y, Polishchuk RS, Sampieri L, Martinez H, Sztul E, Alvarez C. CREB3L1-mediated functional and structural adaptation of the secretory pathway in hormone-stimulated thyroid cells. J Cell Sci 2017; 130:4155-4167. [PMID: 29093023 DOI: 10.1242/jcs.211102] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 01/22/2023] Open
Abstract
Many secretory cells increase the synthesis and secretion of cargo proteins in response to specific stimuli. How cells couple increased cargo load with a coordinate rise in secretory capacity to ensure efficient transport is not well understood. We used thyroid cells stimulated with thyrotropin (TSH) to demonstrate a coordinate increase in the production of thyroid-specific cargo proteins and ER-Golgi transport factors, and a parallel expansion of the Golgi complex. TSH also increased expression of the CREB3L1 transcription factor, which alone caused amplified transport factor levels and Golgi enlargement. Furthermore, CREB3L1 potentiated the TSH-induced increase in Golgi volume. A dominant-negative CREB3L1 construct hampered the ability of TSH to induce Golgi expansion, implying that this transcription factor contributes to Golgi expansion. Our findings support a model in which CREB3L1 acts as a downstream effector of TSH to regulate the expression of cargo proteins, and simultaneously increases the synthesis of transport factors and the expansion of the Golgi to synchronize the rise in cargo load with the amplified capacity of the secretory pathway.
Collapse
Affiliation(s)
- Iris A García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Vanina Torres Demichelis
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Diego L Viale
- Laboratorio de Neuro y Citogenetica Molecular, Centro de Estudios en Salud y Medio Ambiente, Escuela de Ciencia y Tecnologi-Universidad Nacional de San Martiń-CONICET, Buenos Aires, B1650 WAB, Argentina
| | - Pablo Di Giusto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli (NA), Italy
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli (NA), Italy
| | - Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Hernán Martinez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233-2008, USA
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
27
|
Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang Y, Tso P, Wu G, Wu Z. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review. Front Immunol 2017; 8:1271. [PMID: 29118753 PMCID: PMC5660968 DOI: 10.3389/fimmu.2017.01271] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER) function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR) in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD). Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Bastida-Ruiz D, Aguilar E, Ditisheim A, Yart L, Cohen M. Endoplasmic reticulum stress responses in placentation - A true balancing act. Placenta 2017; 57:163-169. [PMID: 28864006 DOI: 10.1016/j.placenta.2017.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
The unfolded protein response (UPR) is recognized as a key mechanism to promote protein folding and processing in eukaryotes when endoplasmic reticulum stress (ERS) occurs. Some conditions such as hypoxia or glucose deprivation are factors that may elicit ERS response. Recent literature collectively proposes that ERS response is crucial for mammalian reproduction by allowing decidualization and placentation to occur. However, prolonged ERS and activation of UPR pathways can lead to apoptosis and autophagy, which in turn could pose adverse effects on pregnancy outcomes and placentation. ERS associated pregnancy pathologies include intrauterine growth restriction and early-onset preeclampsia. Given these findings, evidence suggests that overactivation of UPR may lead to harmful reproductive circumstances, whereas physiological regulation of ERS response is essential for mammalian reproduction and placental function. In this review, we discuss the dual role of UPR activation with respect to its contribution to placental development as well as pathologies caused by pathway overactivation. In addition, we suggest potential protein markers associated with the UPR, as circulating C-terminal GRP78 or anti-GRP78 autoantibodies which may prove to be of clinical interest.
Collapse
Affiliation(s)
- Daniel Bastida-Ruiz
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Elizabeth Aguilar
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Agnès Ditisheim
- Department of Internal Medicine Specialities, HUG, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| | - Lucile Yart
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Marie Cohen
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland.
| |
Collapse
|
29
|
Wang X, Mi Y, Zhong B, Mao H, Wan Y, Zhang T, Wang H, Hu C. Identification of grass carp (Ctenopharyngodon idella) XBP1S as a primary member in ER stress. FISH & SHELLFISH IMMUNOLOGY 2017; 64:84-92. [PMID: 28215742 DOI: 10.1016/j.fsi.2017.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/21/2017] [Accepted: 02/11/2017] [Indexed: 06/06/2023]
Abstract
X-box binding protein 1 (XBP1), a vital basic leucine zipper transcription factor for the related gene transcription in endoplasmic reticulum (ER) stress, belongs to the CREB/ATF family. In mammals, XBP1S is the activated one of XBP1 isoform. In order to study the role of fish XBP1S, we cloned and identified the XBP1S (KU509247) from grass carp (Ctenopharyngodon idella) (named CiXBP1S) by homologous cloning and RACE technique. The full length of CiXBP1S is 1694 bp along with 124 bp of 5' UTR, 418 bp of 3' UTR and the longest open reading frame (1152 bp) encoding a polypeptide of 383 amino acids with a well conserved DNA binding domain (BRLZ domain). CiXBP1S shares significant homology to zebrafish XBP1S (∼90%) at amino acid level. RT-PCR showed that the expression of CiXBP1S was ubiquitous in all tested grass carp tissues and was significantly up-regulated under the stimulation with tunicamycin (Tm) in CIK (C. idellus kidney) cells. To study the molecular mechanism of transcriptional regulation for XBP1 signaling pathway in fish, we cloned grass carp XBP1 promoter sequence. Its promoter is 1036 bp in length and divided into two distinct regions in which an ER stress response element (ERSE) exists in the proximal region. Meanwhile, grass carp ATF6 (CiATF6N) and CiXBP1S were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. Gel mobility shift assay showed that CiATF6N and CiXBP1S had the high affinity with CiXBP1 promoter sequence in vitro. Co-transfection of pcDNA3.1-CiATF6 (or pcDNA3.1-CiXBP1S respectively) with pGL3-CiXBP1P2 (or pGL3-CiXBP1P1 respectively) into epithelioma papulosum cyprini (EPC) cells showed that CiATF6 and CiXBP1S played a positive role in CiXBP1S transcription. CiXBP1S also had high affinity with CiGRP78 and CiGRP94 promoter sequences. In addition, recombinant plasmids of pGL3-CiGRP78P and pGL3-CiGRP94P were constructed and transiently co-transfected with pcDNA3.1-CiXBP1S (pcDN3.1-CiXBP1S-nBRLZ, respectively) into EPC cells. The result showed that CiXBP1S can activate CiGRP78 and CiGRP94 promoters.
Collapse
Affiliation(s)
- Xiangqin Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Yichuan Mi
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Bin Zhong
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Yiqi Wan
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Tao Zhang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
30
|
Barbosa S, Carreira S, O'Hare P. GSK-3-mediated phosphorylation couples ER-Golgi transport and nuclear stabilization of the CREB-H transcription factor to mediate apolipoprotein secretion. Mol Biol Cell 2017; 28:1565-1579. [PMID: 28381424 PMCID: PMC5449154 DOI: 10.1091/mbc.e17-01-0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
CREB-H plays a key role in regulating secretion in metabolic pathways, particularly triglyceride homeostasis. Phosphorylation at a conserved serine motif, the P-motif, provides an integrated control mechanism of CREB-H function, coupling intercompartmental transport in the cytoplasm with stabilization of the active form in the nucleus. CREB-H, an ER-anchored transcription factor, plays a key role in regulating secretion in metabolic pathways, particularly triglyceride homeostasis. It controls the production both of secretory pathway components and cargoes, including apolipoproteins ApoA-IV and ApoC-II, contributing to VLDL/HDL distribution and lipolysis. The key mechanism controlling CREB-H activity involves its ER retention and forward transport to the Golgi, where it is cleaved by Golgi-resident proteases, releasing the N-terminal product, which traffics to the nucleus to effect transcriptional responses. Here we show that a serine-rich motif termed the P-motif, located in the N-terminus between serines 73 and 90, controls release of the precursor transmembrane form from the ER and its forward transport to the Golgi. This motif is subject to GSK-3 phosphorylation, promoting ER retention, while mutation of target serines and drug inhibition of GSK-3 activity coordinately induce both forward transport of the precursor and cleavage, resulting in nuclear import. We previously showed that for the nuclear product, the P-motif is subject to multiple phosphorylations, which regulate stability by targeting the protein to the SCFFbw1a E3 ubiquitin ligase. Thus phosphorylation at the P-motif provides integrated control of CREB-H function, coupling intercompartmental transport in the cytoplasm with stabilization of the active form in the nucleus.
Collapse
Affiliation(s)
- Sónia Barbosa
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Suzanne Carreira
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Peter O'Hare
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| |
Collapse
|
31
|
Luman contributes to brefeldin A-induced prion protein gene expression by interacting with the ERSE26 element. Sci Rep 2017; 7:42285. [PMID: 28205568 PMCID: PMC5304227 DOI: 10.1038/srep42285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023] Open
Abstract
The cellular prion protein (PrP) is essential for transmissible prion diseases, but its exact physiological function remains unclear. Better understanding the regulation of the human prion protein gene (PRNP) expression can provide insight into this elusive function. Spliced XBP1 (sXBP1) was recently shown to mediate endoplasmic reticulum (ER) stress-induced PRNP expression. In this manuscript, we identify Luman, a ubiquitous, non-canonical unfolded protein response (UPR), as a novel regulator of ER stress-induced PRNP expression. Luman activity was transcriptionally and proteolytically activated by the ER stressing drug brefeldin A (BFA) in human neurons, astrocytes, and breast cancer MCF-7 cells. Over-expression of active cleaved Luman (ΔLuman) increased PrP levels, while siRNA-mediated Luman silencing decreased BFA-induced PRNP expression. Site-directed mutagenesis and chromatin immunoprecipitation demonstrated that ΔLuman regulates PRNP expression by interacting with the ER stress response element 26 (ERSE26). Co-over-expression and siRNA-mediated silencing experiments showed that sXBP1 and ΔLuman both up-regulate ER stress-induced PRNP expression. Attempts to understand the function of PRNP up-regulation by Luman excluded a role in atorvastatin-induced neuritogenesis, ER-associated degradation, or proteasomal inhibition-induced cell death. Overall, these results refine our understanding of ER stress-induced PRNP expression and function.
Collapse
|
32
|
The Unfolded Protein Response in the Immune Cell Development: Putting the Caretaker in the Driving Seat. Curr Top Microbiol Immunol 2017; 414:45-72. [PMID: 28702709 DOI: 10.1007/82_2017_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is the primary site for the folding of proteins destined for the membranous compartment and the extracellular space. This elaborate function is coordinated by the unfolded protein response (UPR), a stress-activated cellular program that governs proteostasis. In multicellular organisms, cells have adopted specialized functions, which required functional adaptations of the ER and its UPR. Recently, it has become clear that in immune cells, the UPR has acquired functions that stretch far beyond its original scope. In this review, we will discuss the role of the UPR in the immune system and highlight the plasticity of this signaling cascade throughout immune cell development .
Collapse
|
33
|
The androgen-induced protein AIbZIP facilitates proliferation of prostate cancer cells through downregulation of p21 expression. Sci Rep 2016; 6:37310. [PMID: 27853318 PMCID: PMC5112536 DOI: 10.1038/srep37310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023] Open
Abstract
Androgen-Induced bZIP (AIbZIP) is structurally a bZIP transmembrane transcription factor belonging to the CREB/ATF family. This molecule is highly expressed in androgen-sensitive prostate cancer cells and is transcriptionally upregulated by androgen treatment. Here, we investigated molecular mechanism of androgen-dependent expression of AIbZIP and its physiological function in prostate cancer cells. Our data showed that SAM pointed domain-containing ETS transcription factor (SPDEF), which is upregulated by androgen treatment, directly activates transcription of AIbZIP. Knockdown of AIbZIP caused a significant reduction in the proliferation of androgen-sensitive prostate cancer cells with robust expression of p21. Mechanistically, we demonstrated that AIbZIP interacts with old astrocyte specifically induced substance (OASIS), which is a CREB/ATF family transcription factor, and prevents OASIS from promoting transcription of its target gene p21. These findings showed that AIbZIP induced by the androgen receptor (AR) axis plays a crucial role in the proliferation of androgen-sensitive prostate cancer cells, and could be a novel target of therapy for prostate cancer.
Collapse
|
34
|
Rizvi SHM, Parveen A, Ahmad I, Ahmad I, Verma AK, Arshad M, Mahdi AA. Aluminum Activates PERK-EIF2α Signaling and Inflammatory Proteins in Human Neuroblastoma SH-SY5Y Cells. Biol Trace Elem Res 2016; 172:108-119. [PMID: 26546554 DOI: 10.1007/s12011-015-0553-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Aluminum is the third most abundant element present in the earth's crust and human exposure to it is possible due to industrialization, utensils, medicines, antiperspirants, etc. Evidences suggest involvement of aluminum in a variety of neurodegenerative disorders including Alzheimer's disease. Endoplasmic reticulum (ER) stress has been implicated in various neurological disorders. ER stress may be a result of impaired calcium homeostasis due to perturbed redox balance and is known to elicit inflammation through the activation of unfolded protein response (UPR). In the present study, we aimed to investigate the role of aluminum in ER stress-mediated activation of inflammatory responses in neuroblastoma cells. Lactate dehydrogenase (LDH) release assay revealed that aluminum compromised the membrane integrity of neuroblastoma cells, probably due to membrane damage, as indicated by enhanced levels of lipid peroxidation (LPO). Besides this, our results clearly demonstrated elevated reactive oxygen species (ROS) levels and a weakened antioxidant defence system manifested by decrease in catalase (CAT) activity and cellular glutathione (GSH). Moreover, we studied the expression of key apoptosis-related proteins, ER stress-mediated activation of UPR, and its downstream inflammatory pathway. It was observed that aluminum potentially enhanced protein levels of PERK, EIF2α, caspase 9, caspase 3, and inflammatory markers like NF-κB, NLRP3, HMGB1, and nitric oxide (NO). Furthermore, aluminum altered TNFα, IL1β, IL6, and IL10 mRNA levels as well. The overall findings indicated that aluminum mediates UPR activation through ER stress, which results in induction of inflammatory pathway and apoptotic proteins in neuronal cells.
Collapse
Affiliation(s)
- Syed Husain Mustafa Rizvi
- Department of Biochemistry and Forensic Medicine & Toxicology, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Arshiya Parveen
- Department of Biochemistry and Forensic Medicine & Toxicology, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Israr Ahmad
- Department of Biochemistry and Forensic Medicine & Toxicology, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Iqbal Ahmad
- Fibre Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Anoop K Verma
- Department of Biochemistry and Forensic Medicine & Toxicology, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Md Arshad
- Department of Zoology, Lucknow University, Lucknow, 226001, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry and Forensic Medicine & Toxicology, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
35
|
Cheng Y, Gao WW, Tang HMV, Deng JJ, Wong CM, Chan CP, Jin DY. β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H. Sci Rep 2016; 6:23938. [PMID: 27029215 PMCID: PMC4814919 DOI: 10.1038/srep23938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
CREB-H is an endoplasmic reticulum-resident bZIP transcription factor which critically regulates lipid homeostasis and gluconeogenesis in the liver. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminally truncated form known as CREB-H-ΔTC, which translocates to the nucleus to activate target gene expression. CREB-H-ΔTC is a fast turnover protein but the mechanism governing its destruction was not well understood. In this study, we report on β-TrCP-dependent ubiquitination and proteasomal degradation of CREB-H-ΔTC. The degradation of CREB-H-ΔTC was mediated by lysine 48-linked polyubiquitination and could be inhibited by proteasome inhibitor. CREB-H-ΔTC physically interacted with β-TrCP, a substrate recognition subunit of the SCFβ-TrCP E3 ubiquitin ligase. Forced expression of β-TrCP increased the polyubiquitination and decreased the stability of CREB-H-ΔTC, whereas knockdown of β-TrCP had the opposite effect. An evolutionarily conserved sequence, SDSGIS, was identified in CREB-H-ΔTC, which functioned as the β-TrCP-binding motif. CREB-H-ΔTC lacking this motif was stabilized and resistant to β-TrCP-induced polyubiquitination. This motif was a phosphodegron and its phosphorylation was required for β-TrCP recognition. Furthermore, two inhibitory phosphorylation sites close to the phosphodegron were identified. Taken together, our work revealed a new intracellular signaling pathway that controls ubiquitination and degradation of the active form of CREB-H transcription factor.
Collapse
Affiliation(s)
- Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei-Wei Gao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hei-Man Vincent Tang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Jian-Jun Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Food Science and Engineering, College of Chemical Engineering, Northwestern University, Xi'an 710069, China
| | - Chi-Ming Wong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China.,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
36
|
Zeeshan HMA, Lee GH, Kim HR, Chae HJ. Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci 2016; 17:327. [PMID: 26950115 PMCID: PMC4813189 DOI: 10.3390/ijms17030327] [Citation(s) in RCA: 652] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.
Collapse
Affiliation(s)
- Hafiz Maher Ali Zeeshan
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Geum Hwa Lee
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-749, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| |
Collapse
|
37
|
WANG MIN, ZHAO SHUIPING, TAN MINGYUE. bZIP transmembrane transcription factor CREBH: Potential role in non-alcoholic fatty liver disease (Review). Mol Med Rep 2015; 13:1455-62. [DOI: 10.3892/mmr.2015.4749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
|
38
|
Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic Res 2015. [PMID: 26223319 DOI: 10.3109/10715762.2015.1078461] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. The underlying causes of the disease progression in NAFLD are unclear. Recent evidences suggest endoplasmic reticulum stress in the development of lipid droplets (steatosis) and subsequent generation of reactive oxygen species (ROS) in the progression to non-alcoholic steatohepatitis (NASH). The signalling pathway activated by disruption of endoplasmic reticulum (ER) homoeostasis, called as unfolded protein response, is linked with membrane biosynthesis, insulin action, inflammation and apoptosis. ROS are important mediators of inflammation. Protein folding in ER is linked to ROS. Therefore understanding the basic mechanisms that lead to ER stress and ROS in NAFLD have become the topics of immense interest. The present review focuses on the role of ER stress and ROS in the pathogenesis of NAFLD. We also highlight the cross talk between ER stress and oxidative stress which suggest and encourage the development of therapeutics for NAFLD. Further we have reviewed various strategies used for the management of NAFLD/NASH and limitations of such strategies. Our review therefore highlights the need for newer strategies with regards to ER stress and oxidative stress.
Collapse
Affiliation(s)
- N U Ashraf
- a Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,b PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu Tawi , Jammu and Kashmir , India
| | - T A Sheikh
- a Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,b PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu Tawi , Jammu and Kashmir , India
| |
Collapse
|
39
|
Barbosa S, Carreira S, Bailey D, Abaitua F, O'Hare P. Phosphorylation and SCF-mediated degradation regulate CREB-H transcription of metabolic targets. Mol Biol Cell 2015; 26:2939-54. [PMID: 26108621 PMCID: PMC4571331 DOI: 10.1091/mbc.e15-04-0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
CREB‑H, an endoplasmic reticulum-anchored transcription factor, plays a key role in regulating secretion and in metabolic and inflammatory pathways, but how its activity is modulated remains unclear. We examined processing of the nuclear active form and identified a motif around S87-S90 with homology to DSG-type phosphodegrons. We show that this region is subject to multiple phosphorylations, which regulate CREB-H stability by targeting it to the SCF(Fbw1a) E3 ubiquitin ligase. Data from phosphatase treatment, use of phosophospecific antibody, and substitution of serine residues demonstrate phosphorylation of candidate serines in the region, with the core S87/S90 motif representing a critical determinant promoting proteasome-mediated degradation. Candidate kinases CKII and GSK-3b phosphorylate CREB-H in vitro with specificities for different serines. Prior phosphorylation with GSK-3 at one or more of the adjacent serines substantially increases S87/S90-dependent phosphorylation by CKII. In vivo expression of a dominant-negative Cul1 enhances steady-state levels of CREB‑H, an effect augmented by Fbw1a. CREB-H directly interacts with Fbw1a in a phosphorylation-dependent manner. Finally, mutations within the phosphodegron, when incorporated into the full-length protein, result in increased levels of constitutively cleaved nuclear protein and increased transcription and secretion of a key endogenous target gene, apolipoprotein A IV.
Collapse
Affiliation(s)
- Sónia Barbosa
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Suzanne Carreira
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Daniel Bailey
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Fernando Abaitua
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Peter O'Hare
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| |
Collapse
|
40
|
Activation of hepatic CREBH and Insig signaling in the anti-hypertriglyceridemic mechanism of R-α-lipoic acid. J Nutr Biochem 2015; 26:921-8. [PMID: 26007286 DOI: 10.1016/j.jnutbio.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/15/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
The activation of sterol regulatory element binding proteins (SREBPs) is regulated by insulin-induced genes 1 and 2 (Insig-1 and Insig-2) and SCAP. We previously reported that feeding R-α-lipoic acid (LA) to Zucker diabetic fatty (ZDF) rats improves severe hypertriglyceridemia. In this study, we investigated the role of cyclic AMP-responsive element binding protein H (CREBH) in the lipid-lowering mechanism of LA and its involvement in the SREBP-1c and Insig pathway. Incubation of McA cells with LA (0.2 mM) or glucose (6 mM) stimulated activation of CREBH. LA treatment further induced mRNA expression of Insig-1 and Insig-2a, but not Insig-2b, in glucose-treated cells. In vivo, feeding LA to obesity-induced hyperlipidemic ZDF rats activated hepatic CREBH and stimulated transcription and translation of Insig-1 and Insig-2a. Activation of CREBH and Insigs induced by LA suppressed processing of SREBP-1c precursor into nuclear SREBP-1c, which subsequently inhibited expression of genes involved in fatty acid synthesis, including FASN, ACC and SCD-1, and reduced triglyceride (TG) contents in both glucose-treated cells and ZDF rat livers. Additionally, LA treatment also decreased abundances of very low density lipoprotein (VLDL)-associated apolipoproteins, apoB100 and apoE, in glucose-treated cells and livers of ZDF rats, leading to decreased secretion of VLDL and improvement of hypertriglyceridemia. This study unveils a novel molecular mechanism whereby LA lowers TG via activation of hepatic CREBH and increased expression of Insig-1 and Insig-2a to inhibit de novo lipogenesis and VLDL secretion. These findings provide novel insight into the therapeutic potential of LA as an anti-hypertriglyceridemia dietary molecule.
Collapse
|
41
|
Identification of small molecules that protect pancreatic β cells against endoplasmic reticulum stress-induced cell death. ACS Chem Biol 2014; 9:2796-806. [PMID: 25279668 PMCID: PMC4273981 DOI: 10.1021/cb500740d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Endoplasmic
reticulum (ER) stress plays an important role in the
decline in pancreatic β cell function and mass observed in type
2 diabetes. Here, we developed a novel β cell-based high-throughput
screening assay to identify small molecules that protect β cells
against ER stress-induced cell death. Mouse βTC6 cells were
treated with the ER stressor tunicamycin to induce ER stress, and
cell death was measured as a reduction in cellular ATP. A collection
of 17600 compounds was screened for molecules that promote β
cell survival. Of the approximately 80 positive hits, two selected
compounds were able to increase the survival of human primary β
cells and rodent β cell lines subjected to ER stressors including
palmitate, a free fatty acid of pathological relevance to diabetes.
These compounds also restored ER stress-impaired glucose-stimulated
insulin secretion responses. We show that the compounds promote β
cell survival by reducing the expression of key genes of the unfolded
protein response and apoptosis, thus alleviating ER stress. Identification
of small molecules that prevent ER stress-induced β cell dysfunction
and death may provide a new modality for the treatment of diabetes.
Collapse
|
42
|
Abstract
Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.
Collapse
Affiliation(s)
- Sarah E Bettigole
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065; ,
| | | |
Collapse
|
43
|
Fox RM, Andrew DJ. Transcriptional regulation of secretory capacity by bZip transcription factors. ACTA ACUST UNITED AC 2014; 10:28-51. [PMID: 25821458 PMCID: PMC4374484 DOI: 10.1007/s11515-014-1338-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells of specialized secretory organs expand their secretory pathways to accommodate the increased protein load necessary for their function. The endoplasmic reticulum (ER), the Golgi apparatus and the secretory vesicles, expand not only the membrane components but also the protein machinery required for increased protein production and transport. Increased protein load causes an ER stress response akin to the Unfolded Protein Response (UPR). Recent work has implicated several bZip transcription factors in the regulation of protein components of the early secretory pathway necessary to alleviate this stress. Here, we highlight eight bZip transcription factors in regulating secretory pathway component genes. These include components of the three canonical branches of the UPR-ATF4, XBP1, and ATF6, as well as the five members of the Creb3 family of transcription factors.We review findings from both invertebrate and vertebrate model systems suggesting that all of these proteins increase secretory capacity in response to increased protein load. Finally, we propose that the Creb3 family of factors may have a dual role in secretory cell differentiation by also regulating the pathways necessary for cell cycle exit during terminal differentiation.
Collapse
Affiliation(s)
- Rebecca M Fox
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Chaudhari N, Talwar P, Parimisetty A, Lefebvre d'Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 2014; 8:213. [PMID: 25120434 PMCID: PMC4114208 DOI: 10.3389/fncel.2014.00213] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
Collapse
Affiliation(s)
- Namrata Chaudhari
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Priti Talwar
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Avinash Parimisetty
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Christian Lefebvre d'Hellencourt
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Palaniyandi Ravanan
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| |
Collapse
|
45
|
Smith JA. A new paradigm: innate immune sensing of viruses via the unfolded protein response. Front Microbiol 2014; 5:222. [PMID: 24904537 PMCID: PMC4032990 DOI: 10.3389/fmicb.2014.00222] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/27/2014] [Indexed: 12/17/2022] Open
Abstract
The immune system depends upon combinations of signals to mount appropriate responses: pathogen specific signals in the context of co-stimulatory “danger” signals drive immune strength and accuracy. Viral infections trigger anti-viral type I interferon (IFN) responses by stimulating endosomal and cytosolic pattern recognition receptors (PRRs). However, viruses have also evolved many strategies to counteract IFN responses. Are there intracellular danger signals that enhance immune responses to viruses? During infection, viruses place a heavy demand on the protein folding machinery of the host endoplasmic reticulum (ER). To survive ER stress, host cells mount an unfolded protein response (UPR) to decrease ER protein load and enhance protein-folding capacity. Viruses also directly elicit the UPR to enhance their replication. Increasing evidence supports an intersection between the host UPR and inflammation, in particular the production of pro-inflammatory cytokines and type I IFN. The UPR directly activates pro-inflammatory cytokine transcription factors and dramatically enhances cytokine production in response to viral PRR engagement. Additionally, viral PRR engagement may stimulate specific pathways within the UPR to enhance cytokine production. Through these mechanisms, viral detection via the UPR and inflammatory cytokine production are intertwined. Consequently, the UPR response is perfectly poised to act as an infection-triggered “danger” signal. The UPR may serve as an internal “co-stimulatory” signal that (1) provides specificity and (2) critically augments responses to overcome viral subterfuge. Further work is needed to test this hypothesis during viral infections.
Collapse
Affiliation(s)
- Judith A Smith
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| |
Collapse
|
46
|
Zeng XS, Jia JJ, Kwon Y, Wang SD, Bai J. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radic Biol Med 2014; 67:10-18. [PMID: 24140863 DOI: 10.1016/j.freeradbiomed.2013.10.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported that thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed that 1-methyl-4-phenylpyridinium ion (MPP(+)) induced ER stress by activating glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in PC12 cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of the above molecules induced by MPP(+). In contrast, overexpression of Trx-1 attenuated the ER stress and repressed the expression of the above molecules induced by MPP(+). More importantly, the overexpression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of these molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of endoplasmic reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation of GRP78, IRE1α, TRAF2, JNK, caspase-12, and CHOP.
Collapse
Affiliation(s)
- Xian-Si Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jin-Jing Jia
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongwon Kwon
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sheng-Dong Wang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
47
|
Physiological functions of endoplasmic reticulum stress transducer OASIS in central nervous system. Anat Sci Int 2013; 89:11-20. [PMID: 24242870 PMCID: PMC3889286 DOI: 10.1007/s12565-013-0214-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/27/2013] [Indexed: 02/02/2023]
Abstract
Eukaryotic cells can adapt to endoplasmic reticulum (ER) dysfunction by producing diverse signals from the ER to the cytosol or nucleus. These signaling pathways are collectively known as the unfolded protein response (UPR). The canonical branches of the UPR are mediated by three ER membrane-bound proteins: double-stranded RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme-1 (IRE1) and activating transcription factor 6 (ATF6). These ER stress transducers basically play important roles in cell survival after ER stress. Recently, novel types of ER stress transducers that share a region of high sequence similarity with ATF6 have been identified. They have a transmembrane domain, which allows them to associate with the ER, and possess a transcription-activation domain and a basic leucine zipper (bZIP) domain. These membrane-bound bZIP transcription factors include OASIS, BBF2H7 CREBH, CREB4 and Luman, and are collectively referred to as OASIS family members. Despite their structural similarities with ATF6, differences in activating stimuli and tissue distribution indicate specialized functions of each member on regulating UPR signaling in specific organs and tissues. One of them, OASIS, is expressed preferentially in astrocytes in the central nervous system (CNS). OASIS temporally regulates the differentiation from neural precursor cells into astrocytes to promote the expression of Glial Cell Missing 1 through dynamic interactions among OASIS family members followed by accelerating demethylation of the Gfap promoter. This review is a summary of our current understanding of the physiological functions of OASIS in the CNS.
Collapse
|
48
|
Li Z, Park Y, Marcotte EM. A Bacteriophage tailspike domain promotes self-cleavage of a human membrane-bound transcription factor, the myelin regulatory factor MYRF. PLoS Biol 2013; 11:e1001624. [PMID: 23966832 PMCID: PMC3742443 DOI: 10.1371/journal.pbio.1001624] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/05/2013] [Indexed: 11/29/2022] Open
Abstract
Myelination of the central nervous system (CNS) is critical to vertebrate nervous systems for efficient neural signaling. CNS myelination occurs as oligodendrocytes terminally differentiate, a process regulated in part by the myelin regulatory factor, MYRF. Using bioinformatics and extensive biochemical and functional assays, we find that MYRF is generated as an integral membrane protein that must be processed to release its transcription factor domain from the membrane. In contrast to most membrane-bound transcription factors, MYRF proteolysis seems constitutive and independent of cell- and tissue-type, as we demonstrate by reconstitution in E. coli and yeast. The apparent absence of physiological cues raises the question as to how and why MYRF is processed. By using computational methods capable of recognizing extremely divergent sequence homology, we identified a MYRF protein domain distantly related to bacteriophage tailspike proteins. Although occurring in otherwise unrelated proteins, the phage domains are known to chaperone the tailspike proteins' trimerization and auto-cleavage, raising the hypothesis that the MYRF domain might contribute to a novel activation method for a membrane-bound transcription factor. We find that the MYRF domain indeed serves as an intramolecular chaperone that facilitates MYRF trimerization and proteolysis. Functional assays confirm that the chaperone domain-mediated auto-proteolysis is essential both for MYRF's transcriptional activity and its ability to promote oligodendrocyte maturation. This work thus reveals a previously unknown key step in CNS myelination. These data also reconcile conflicting observations of this protein family, different members of which have been identified as transmembrane or nuclear proteins. Finally, our data illustrate a remarkable evolutionary repurposing between bacteriophages and eukaryotes, with a chaperone domain capable of catalyzing trimerization-dependent auto-proteolysis in two entirely distinct protein and cellular contexts, in one case participating in bacteriophage tailspike maturation and in the other activating a key transcription factor for CNS myelination. Membrane-bound transcription factors are synthesized as integral membrane proteins, but are proteolytically cleaved in response to relevant cues, untethering their transcription factor domains from the membrane to control gene expression in the nucleus. Here, we find that the myelin regulatory factor MYRF, a major transcriptional regulator of oligodendrocyte differentiation and central nervous system myelination, is also a membrane-bound transcription factor. In marked contrast to most well-known membrane-bound transcription factors, cleavage of MYRF appears to be unconditional. Surprisingly, this processing is performed by a protein domain shared with bacteriophages in otherwise unrelated proteins, where the domain is critical to the folding and proteolytic maturation of virus tailspikes. In addition to revealing a previously unknown key step in central nervous system myelination, this work also illustrates a remarkable example of evolutionary repurposing between bacteriophages and eukaryotes, with the same protein domain capable of catalyzing trimerization-dependent auto-proteolysis in two completely distinct protein and cellular contexts.
Collapse
Affiliation(s)
- Zhihua Li
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yungki Park
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (YP); (EMM)
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (YP); (EMM)
| |
Collapse
|
49
|
Sano R, Reed JC. ER stress-induced cell death mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3460-3470. [PMID: 23850759 DOI: 10.1016/j.bbamcr.2013.06.028] [Citation(s) in RCA: 1527] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023]
Abstract
The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Renata Sano
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA
| | - John C Reed
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
50
|
Transcriptional regulators of hepatic gluconeogenesis. Arch Pharm Res 2013; 36:189-200. [PMID: 23361586 DOI: 10.1007/s12272-013-0018-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/26/2012] [Indexed: 12/27/2022]
Abstract
Glucose is a primary fuel for generating energy in basic daily activities. Thus, glucose homeostasis is tightly regulated by counter-regulatory hormones such as glucagon, cortisol, and insulin, which affect key organs including liver, skeletal muscle, pancreas, and adipocytes. Among metabolic tissues, liver plays a critical role in controlling glucose production under various hormonal and metabolic cues. Under fasting, acute activation of both glycogenolysis and gluconeogenesis is achieved by post-translational modification or allosteric activation of key rate-limiting enzymes, thereby enabling enhanced glucose production from the liver to maintain glucose homeostasis. More prolonged fasting or starvation leads to the chronic activation of gluconeogenesis that requires increased expression of key enzymes in the pathway, which is turned off under feeding conditions by the molecular events that are initiated by insulin. This process is normally achieved by the regulation of gene expression at the level of transcription. Recently, the transcriptional regulators of hepatic gluconeogenesis are considered as potential therapeutic targets for the treatment of type 2 diabetes. In this review, we would like to discuss the current knowledge regarding the key transcriptional activators and inhibitors of hepatic gluconeogenic program to provide the better insight into the control of glycemia in the disease status.
Collapse
|