1
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tissue engineered heart repair from preclinical models to first-in-patient studies. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
3
|
Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasché P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res 2019; 115:488-500. [PMID: 30657875 PMCID: PMC6383054 DOI: 10.1093/cvr/cvz010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommendations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and survival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue engineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials (e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might enhance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materials, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac repair in the clinical settings of IHD and HF.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Hans Erik Botker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
- University of Pisa, Pisa University Hospital, Pisa, Italy
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Muscle Research Center Erlangen, MURCE
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Francesco Fernandez-Aviles
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Jean-Sebastien Hulot
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- Paris Cardiovascular Research Center (PARCC), INSERM UMRS 970, Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Sandrine Lecour
- Hatter Cardiovascular Research Institute, University of Cape Town, South Africa
| | - Jonathan Leor
- Tamman and Neufeld Cardiovascular Research Institutes, Sackler Faculty of Medicine, Tel-Aviv University and Sheba Medical Center, Tel-Hashomer, Israel
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 970, Paris, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, INSERM, CNRS, Université d’Angers, Service de Cardiologie, CHU Angers, Angers, France
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT, The Arctic University of Norway, Norway
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, III-V Floor, H-1089 Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX Utrecht, the Netherlands
| |
Collapse
|
4
|
Tian J, Wang R, Hou Q, Li M, Chen L, Deng X, Zhu Z, Zhao Y, He W, Fu X. Optimization and enrichment of induced cardiomyocytes derived from mouse fibroblasts by reprogramming with cardiac transcription factors. Mol Med Rep 2017; 17:3912-3920. [PMID: 29257325 DOI: 10.3892/mmr.2017.8285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 11/05/2022] Open
Abstract
Ischemic heart disease within developed countries has been associated with high rates of morbidity and mortality. Cell‑based cardiac repair is an emerging therapy for the treatment of cardiac diseases; however, a limited source of the optimal type of donor cell, such as an autologous cardiomyocyte, restricts clinical application. The novel therapeutic use of induced pluripotent stem cells (iPSCs) may serve as a unique and unlimited source of cardiomyocytes; however, iPSC contamination has been associated with teratoma formation following transplantation. The present study investigated whether cardiomyocytes from mouse fibroblasts may be reprogrammed in vitro with four cardiac transcription factors, including GATA binding protein 4, myocyte‑specific enhancer factor 2C, T‑box transcription factor 5, and heart‑ and neural crest derivatives‑expressed protein 2 (GMTH). Cardiac‑specific markers, including α‑myosin heavy chain (α‑MHC), β‑MHC, atrial natriuretic factor, NK2 homeobox 5 and cardiac troponin T were observed within mouse fibroblasts reprogrammed with GMTH, which was reported to be more effective than GMT. In addition, Percoll density centrifugation enriched a population of ~72.4±5.5% α‑MHC+ induced cardiomyocytes, which retained the expression profile of cardiomyocyte markers and were similar to natural neonatal cardiomyocytes in well‑defined sarcomeric structures. The findings of the present study provided a potential solution to myocardial repair via a cell therapy applying tissue engineering with minimized risks of immune rejection and tumor formation.
Collapse
Affiliation(s)
- Jiaxin Tian
- Centre for Medical Device Evaluation, China Food and Drug Administration, Beijing 100044, P.R. China
| | - Rong Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery of PLA, Beijing 100853, P.R. China
| | - Qian Hou
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Meirong Li
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Li Chen
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiangdong Deng
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Ziying Zhu
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yali Zhao
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenjun He
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaobing Fu
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
5
|
Lao S, Xu J, Liu Y, Cai S, Lin L, Zhang J, Cai D, Yin S. A comparative study of the influence of two types of PHEMA stents on the differentiation of ASCs to myocardial cells. Mol Med Rep 2017; 16:507-514. [PMID: 28586071 PMCID: PMC5482065 DOI: 10.3892/mmr.2017.6680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
In the present study, subcutaneous fat was obtained from adult women that had undergone conventional liposuction surgery. A comparative study was performed to investigate the effect of transparent and white poly-β-hydroxyethyl methacrylate (PHEMA) stents, which have different surface and cross-sectional morphological characteristics, on the differentiation of adipose-derived stem cells (ASCs) into myocardial cells. The cell counting kit-8 assay revealed that cell growth increased at varying rates among the different treatment groups. The absorbance of the experimental transparent PHEMA treated group increased in a time-dependent manner with the duration of incubation. The highest levels of proliferation were observed in the transparent PHEMA group. In addition, the transparent PHEMA treated group exhibited the strongest cell adhesion ability, which was significantly different to that of the white PHEMA group (P<0.01 and P<0.05 for Matrigel and fibronectin assay, respectively). Comparisons between the two stent materials with the inducer control group revealed statistically significant differences in the rate of ASC differentiation (P<0.05). The level of differentiation was the greatest in the transparent PHEMA group, and was significantly different to the white PHEMA group (P<0.05) and the blank control group (P<0.01). The results suggest that the inducers 5-aza-2-deoxycytidin and laminin, and material microstructure stents effectively promote the proliferation, growth and adhesion of ASCs. However, the transparent material microstructure may be a more suitable candidate for ASC-associated injections. The present study provides further evidence that a PHEMA stent structure, comprised of a high number of matrixes and a low water content, induces a high level of ASC differentiation to myocardial cells.
Collapse
Affiliation(s)
- Shen Lao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jing Xu
- Department of Ultrasonography, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yunqi Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Songwang Cai
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Lin
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Junhang Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dongmei Cai
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shengli Yin
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
6
|
Wang X, Chang J, Tian T, Ma B. Preparation of calcium silicate/decellularized porcine myocardial matrix crosslinked by procyanidins for cardiac tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra02947g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CS-incorporated myocardial ECM scaffolds release functional ions gradually, which stimulate expression of the proangiogenic factors in endothelia cells.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Tian Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
7
|
He WJ, Hou Q, Han QW, Han WD, Fu XB. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:304-13. [PMID: 24063625 DOI: 10.1089/ten.teb.2013.0393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is a leading cause of death in industrialized countries. Scientists are trying to generate cardiomyocytes in vitro and in vivo to repair damaged heart tissue. Pluripotent reprogramming brings an alternative source of embryonic-like stem cells, and the possibility of regenerating mammalian tissues by first reverting somatic cells to induced pluripotent stem cells, followed by redifferentiating these cells into cardiomyocytes. More recently, lineage reprogramming of fibroblasts directly into functional cardiomyocytes has been reported. The procedure does not involve reverting cells back to a pluripotent stage, and, thus, would presumably reduce tumorigenic potential. Interestingly, lineage reprogramming could be used for in situ conversion of cell fate. Moreover, zebrafish-like regenerative mechanism in mammalian heart tissue, which was observed in mice within the first week of postpartum, should be further addressed. Here, we review the landmark progresses of the two major reprogramming strategies, compare their pros and cons in cardiovascular regeneration, and forecast the future directions of cardiac repair.
Collapse
Affiliation(s)
- Wen-Jun He
- 1 Tissue Repair and Regeneration Laboratory, College of Life Science, Chinese PLA General Hospital , Beijing, China
| | | | | | | | | |
Collapse
|
8
|
Schulte JB, Simionescu A, Simionescu DT. The acellular myocardial flap: a novel extracellular matrix scaffold enriched with patent microvascular networks and biocompatible cell niches. Tissue Eng Part C Methods 2013; 19:518-30. [PMID: 23151037 DOI: 10.1089/ten.tec.2012.0536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is a great need for acellular, fully vascularized, and biocompatible myocardial scaffolds that provide agreeable biological, nutritional, and biomechanical niches for reseeded cells for in vitro and in vivo applications. We generated myocardial flap scaffolds comprising porcine left-anterior ventricular myocardium and its associated coronary arteries and veins and investigated the combinatorial effects of sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) perfusion on both the myocardial extracellular matrix (ECM) and the vascular ECM. Results showed that all scaffolds displayed a fully intact and patent vasculature, with arterial burst pressures indistinguishable from native coronary arteries and perfusion to the level of capillaries. Scaffolds were free of cellular proteins and retained collagen and elastin ECM components, exhibited excellent mechanical properties, and were cytocompatible toward relevant seeded cells. SDS perfusion preserved collagen IV, laminin, and fibronectin well, but only reduced DNA content by 33%; however, this was further improved by post-SDS nuclease treatments. By comparison, NaOH was very effective in removing cells and eliminated more than 95% of tissue DNA, but also significantly reduced levels of laminin and fibronectin. Such constructs can be readily trimmed to match the size of the infarct and might be able to functionally integrate within host myocardium and be nourished by direct anastomotic connection with the host's own vasculature; they might also be useful as physiologically accurate models for in vitro studies of cardiac physiology and pathology.
Collapse
Affiliation(s)
- Jason B Schulte
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|
9
|
Bowers SLK, Baudino TA. Cardiac Myocyte–Fibroblast Interactions and the Coronary Vasculature. J Cardiovasc Transl Res 2012; 5:783-93. [DOI: 10.1007/s12265-012-9407-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
10
|
Myocardial restoration: is it the cell or the architecture or both? Cardiol Res Pract 2012; 2012:240497. [PMID: 22400122 PMCID: PMC3286902 DOI: 10.1155/2012/240497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023] Open
Abstract
Myocardial infarction is the leading cause of death in developed countries. Cardiac cell therapy has been introduced to clinical trials for more than ten years but its results are still controversial. Tissue engineering has addressed some limitations of cell therapy and appears to be a promising solution for cardiac regeneration. In this review, we would like to summarize the current understanding about the therapeutic effect of cell therapy and tissue engineering under purview of functional and structural aspects, highlighting actual roles of each therapy towards clinical application.
Collapse
|
11
|
Martinez EC, Wang J, Lilyanna S, Ling LH, Gan SU, Singh R, Lee CN, Kofidis T. Post-ischaemic angiogenic therapy using in vivo prevascularized ascorbic acid-enriched myocardial artificial grafts improves heart function in a rat model. J Tissue Eng Regen Med 2011; 7:203-12. [PMID: 22034461 DOI: 10.1002/term.512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/23/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022]
Abstract
Angiogenesis plays a key role in post-ischaemic myocardial repair. We hypothesized that epicardial implantation of an ascorbic acid (AA)-enriched myocardial artificial graft (MAG), which has been prevascularized in the recipients' own body, promotes restoration of the ischaemic heart. Gelatin patches were seeded with GFP-luciferase-expressing rat cardiomyoblasts and enriched with 5 μm AA. Grafts were prevascularized in vivo for 3 days, using a renal pouch model in rats. The MAG patch was then implanted into the same rat's ischaemic heart following myocardial infarction (MI). MAG-treated animals (MAG group, n = 6) were compared to untreated infarcted animals as injury controls (MI group, n = 6) and sham-operated rats as healthy controls (healthy group, n = 7). In vivo bioluminescence imaging indicated a decrease in donor cell survival by 83% during the first week post-implantation. Echocardiographic and haemodynamic assessment 4 weeks after MI revealed that MAG treatment attenuated left ventricular (LV) remodelling (LV end-systolic volume, 0.31 ± 0.13 vs 0.81 ± 0.01 ml, p < 0.05; LV end-diastolic volume 0.79 ± 0.33 vs 1.83 ± 0.26 ml, p < 0.076) and preserved LV wall thickness (0.21 ± 0.03 vs 0.09 ± 0.005 cm, p < 0.05) compared to the MI group. Cardiac output was higher in MAG than MI (51.59 ± 6.5 vs 25.06 ± 4.24 ml/min, p < 0.01) and comparable to healthy rats (47.08 ± 1.9 ml/min). Histology showed decreased fibrosis, and a seven-fold increase in blood vessel density in the scar area of MAG compared to MI group (15.3 ± 1.1 vs 2.1 ± 0.3 blood vessels/hpf, p < 0.0001). Implantation of AA-enriched prevascularized grafts enhanced vascularity in ischaemic rat hearts, attenuated LV remodelling and preserved LV function.
Collapse
Affiliation(s)
- Eliana C Martinez
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pereira MJN, Carvalho IF, Karp JM, Ferreira LS. Sensing the cardiac environment: exploiting cues for regeneration. J Cardiovasc Transl Res 2011; 4:616-30. [PMID: 21735303 PMCID: PMC3334359 DOI: 10.1007/s12265-011-9299-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/20/2011] [Indexed: 12/11/2022]
Abstract
Recent pre-clinical and clinical studies indicate that certain exogenous stem cells and biomaterials can preserve cardiac tissue after myocardial infarction. Regarding stem cells, a growing body of data suggests that the short-term positive outcomes are mainly attributed to paracrine signaling mechanisms. The release of such factors is due to the cell's ability to sense cardiac environmentally derived cues, though the exact feedback loops are still poorly understood. However, given the limited engraftment and survival of transplanted cells in the ischemic environment, the long-term clinical benefits of these therapies have not yet been realized. To overcome this, the long-term controlled delivery of bioactive factors using biomaterials is a promising approach. A major challenge has been the ability to develop timely and spatially controlled gradients of different cues, pivotal for the development and regeneration of tissues. In addition, given the complexity of the remodeling process after myocardial infarction, multiple factors may be required at distinct disease stages to maximize therapeutic outcomes. Therefore, novel smart materials that can sense the surrounding environment and generate cues through on demand mechanisms will be of major importance in the translation of these promising advanced therapies. This article reviews how the cardiac environment can mediate the release profiles of bioactive cues from cells and biomaterials and how the controlled delivery impacts heart regeneration.
Collapse
Affiliation(s)
- Maria José Nunes Pereira
- Center of Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-417 Coimbra, Portugal. Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA. Harvard Stem Cell Institute, Harvard University, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | | | - Jeffrey M. Karp
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA. Harvard Stem Cell Institute, Harvard University, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Lino S. Ferreira
- Center of Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-417 Coimbra, Portugal. Biocant- Center of Biotechnology Innovation Center, 3060-197 Cantanhede, Portugal
| |
Collapse
|
13
|
Simionescu A, Schulte JB, Fercana G, Simionescu DT. Inflammation in cardiovascular tissue engineering: the challenge to a promise: a minireview. Int J Inflam 2011; 2011:958247. [PMID: 21755031 PMCID: PMC3132660 DOI: 10.4061/2011/958247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/10/2011] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering employs scaffolds, cells, and stimuli brought together in such a way as to mimic the functional architecture of the target tissue or organ. Exhilarating advances in tissue engineering and regenerative medicine allow us to envision in vitro creation or in vivo regeneration of cardiovascular tissues. Such accomplishments have the potential to revolutionize medicine and greatly improve our standard of life. However, enthusiasm has been hampered in recent years because of abnormal reactions at the implant-host interface, including cell proliferation, fibrosis, calcification and degeneration, as compared to the highly desired healing and remodeling. Animal and clinical studies have highlighted uncontrolled chronic inflammation as the main cause of these processes. In this minireview, we present three case studies highlighting the importance of inflammation in tissue engineering heart valves, vascular grafts, and myocardium and propose to focus on the endothelial barrier, the “final frontier” endowed with the natural potential and ability to regulate inflammatory signals.
Collapse
Affiliation(s)
- Agneta Simionescu
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, 304 Rhodes Center, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
14
|
Zhu Y, Liu T, Ye H, Song K, Ma X, Cui Z. Enhancement of adipose-derived stem cell differentiation in scaffolds with IGF-I gene impregnation under dynamic microenvironment. Stem Cells Dev 2011; 19:1547-56. [PMID: 20408758 DOI: 10.1089/scd.2010.0054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biochemical and mechanical signals enabling cardiac regeneration can be elucidated by using in vitro tissue engineering models. We hypothesized that human insulin-like growth factor-I (IGF-I) and 3-dimensional (3D) dynamic microenvironment could enhance the survival and differentiation of adipose tissue-derived stem cells (ADSCs). In this study, ADSCs were cultured on 3D porous scaffolds with or without plasmid DNA PIRES2-IGF-I in cardiac media, in static culture dishes, and in a spinning flask bioreactor, respectively. Cell viability, formation of cardiac-like structure, expression of functional proteins, and gene expressions were tested in the cultured constructs on day 14. The results showed that dynamic microenvironment enhanced the release of plasmid DNA; the ADSCs can be transfected by the released plasmid DNA PIRES2-IGF-I in scaffold. IGF-I showed beneficial effects on cellular viability and increase of total protein and also increased the expressions of cardiac-specific proteins and genes in the grafts. It was also demonstrated that dynamic stirring environment could promote the proliferation of ADSCs. Therefore, IGF-I, expressed by ADSCs transfected by DNA PIRES2-IGF-I incorporated into scaffold, and hydrodynamic microenvironment can independently and interactively increase cellular viability and interactively increase the expression of cardiac-specific proteins and genes in the grafts. The results would be useful for developing tissue-engineered grafts for myocardial repair.
Collapse
Affiliation(s)
- Yanxia Zhu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | | | | | | | | | | |
Collapse
|
15
|
Zimmermann WH. Embryonic and embryonic-like stem cells in heart muscle engineering. J Mol Cell Cardiol 2010; 50:320-6. [PMID: 21040727 DOI: 10.1016/j.yjmcc.2010.10.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 11/28/2022]
Abstract
Cardiac muscle engineering is evolving rapidly and may ultimately be exploited to (1) model cardiac development, physiology, and pathology; (2) identify and validate drug targets; (3) assess drug safety and efficacy; and (4) provide therapeutic substitute myocardium. The ultimate success in any of these envisioned applications depends on the utility of human cells and their assembly into myocardial equivalents with structural and functional properties of mature heart muscle. Embryonic stem cells appear as a promising cell source in this respect, because they can be cultured reliably and differentiated robustly into cardiomyocytes. Despite their unambiguous cardiogenicity, data on advanced maturation and seamless myocardial integration of embryonic stem cell-derived cardiomyocytes in vivo are sparse. Additional concerns relate to the limited control over cardiomyogenic specification and cardiomyocyte maturation in vitro as well as the risk of teratocarcinoma formation and immune rejection of stem cell implants in vivo. Through the invent of embryonic-like stem cells - such as parthenogenetic stem cells, male germline stem cells, and induced pluripotent stem cells - some but certainly not all of these issues may be addressed, albeit at the expense of additional concerns. This review will discuss the applicability of embryonic and embryonic-like stem cells in myocardial tissue engineering and address issues that require particular attention before the potential of stem cell-based heart muscle engineering may be fully exploited. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Wolfram-Hubertus Zimmermann
- Department of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Goettingen, Germany.
| |
Collapse
|
16
|
Martinez EC, Wang J, Gan SU, Singh R, Lee CN, Kofidis T. Ascorbic acid improves embryonic cardiomyoblast cell survival and promotes vascularization in potential myocardial grafts in vivo. Tissue Eng Part A 2010; 16:1349-61. [PMID: 19908964 DOI: 10.1089/ten.tea.2009.0399] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Organ restoration via cell therapy and tissue transplantation is limited by impaired graft survival. We tested the hypothesis that ascorbic acid (AA) reduces cell death in myocardial grafts both in vitro and in vivo and introduced a new model of autologous graft vascularization for later transplantation. Luciferase (Fluc)- and green fluorescent protein (GFP)-expressing H9C2 cardiomyoblasts were seeded in gelatin scaffolds to form myocardial artificial grafts (MAGs). MAGs were supplemented with AA (5 or 50 mumol/L) or plain growth medium. Bioluminescence imaging showed increased cell photon emission from day 1 to 5 in grafts supplemented with 5 mumol/L (p < 0.001) and 50 mumol/L (p < 0.01) AA. The amount of apoptotic cells in plain MAGs was significantly higher than in AA-enriched grafts. In our in vitro model, AA also enhanced H9C2 cell myogenic differentiation. For in vivo studies, MAGs containing H9C2-GFP-Fluc cells and enriched with AA (n = 10) or phosphate-buffered saline (n = 10) were implanted in the renal pouch of Wistar rats. At day 6, postimplantation bioluminescence signals decreased by 74% of baseline in plain MAGs versus 36% in AA-enriched MAGs (p < 0.0001). AA grafts contained significantly higher amounts of blood vessels, GFP(+) donor cells, and endothelial cells. In this study, we identified AA as a potent supplement that improves cardiomyoblast survival and promotes neovascularization in bioartificial grafts.
Collapse
|
17
|
Martinez EC, Kofidis T. Myocardial tissue engineering: the quest for the ideal myocardial substitute. Expert Rev Cardiovasc Ther 2009; 7:921-8. [PMID: 19673670 DOI: 10.1586/erc.09.81] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There has been an intense and competitive quest to manufacture bioartificial heart muscle in the last decade. Numerous biocompatible scaffolds and scaffold-free systems, enriched with various cell types, have been used to fabricate 3D grafts for myocardial repair. In spite of the impressive achievements in the myocardial tissue-engineering field, many issues remain to be addressed before clinical application of this strategy becomes feasible. This is largely due to the uniqueness of the heart's structure and function. This review provides a survey upon the reported strategies, and indicates caveats and perspectives in the field of myocardial tissue engineering.
Collapse
Affiliation(s)
- Eliana C Martinez
- Department of Surgery, National University of Singapore, 5 Lower Kent Ridge Road, level 2, 119074, Singapore
| | | |
Collapse
|
18
|
Freund C, Mummery CL. Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. J Cell Biochem 2009; 107:592-9. [PMID: 19449339 DOI: 10.1002/jcb.22164] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The derivation of embryonic stem cells (hESC) from human embryos a decade ago started a new era in perspectives for cell therapy as well as understanding human development and disease. More recently, reprogramming of somatic cells to an embryonic stem cell-like state (induced pluripotent stem cells, iPS) presented a new milestone in this area, making it possible to derive all cells types from any patients bearing specific genetic mutations. With the development of efficient differentiation protocols we are now able to use the derivatives of pluripotent stem cells to study mechanisms of disease and as human models for drug and toxicology testing. In addition derivatives of pluripotent stem cells are now close to be used in clinical practice although for the heart, specific additional challenges have been identified that preclude short-term application in cell therapy. Here we review techniques presently used to induce differentiation of pluripotent stem cells into cardiomyocytes and the potential these cells have as disease models and for therapy.
Collapse
Affiliation(s)
- Christian Freund
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | | |
Collapse
|