1
|
Rowland RRR, Brandariz-Nuñez A. Role of CD163 in PRRSV infection. Virology 2024; 600:110262. [PMID: 39423600 DOI: 10.1016/j.virol.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious agent that poses a significant economic threat to the global swine industry. Efficient viral entry relies on interactions with cellular receptors, with CD163-a cysteine-rich scavenger receptor found on porcine alveolar macrophages (PAMs)-playing a critical role. Extensive evidence supports CD163's essential function in PRRSV infection. This review synthesizes current knowledge about CD163's role, examining its structure-function relationship and identifying specific regions crucial for viral entry. We evaluate the established role of CD163 in PRRSV pathogenesis and highlight areas requiring further investigation, along with the potential for targeted therapeutic interventions. Understanding the molecular determinants of CD163's function is vital for developing effective strategies to control PRRSV infection and mitigate its economic impact on swine production. Further research into the PRRSV-CD163 interactions will be crucial for creating novel antiviral strategies.
Collapse
MESH Headings
- Porcine respiratory and reproductive syndrome virus/physiology
- Porcine respiratory and reproductive syndrome virus/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Animals
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Swine
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Porcine Reproductive and Respiratory Syndrome/virology
- Porcine Reproductive and Respiratory Syndrome/metabolism
- Porcine Reproductive and Respiratory Syndrome/immunology
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Virus Internalization
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Host-Pathogen Interactions
- CD163 Antigen
Collapse
Affiliation(s)
- Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
2
|
Arnett MC, Costalonga M, Chanthavisouk P, Evans MD, Paulson DR. Effect of scaling and root planing with and without minocycline hydrochloride microspheres on serum biomarkers and acute phase reactants: A randomized clinical trial and 9- and 12-month follow-up. JADA FOUNDATIONAL SCIENCE 2024; 3:100040. [PMID: 40206298 PMCID: PMC11981608 DOI: 10.1016/j.jfscie.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Background This study tests the effects of scaling and root planing (SRP) vs SRP with minocycline hydrochloride microspheres (MMs) (SRP with MM) on serum biomarkers interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and matrix metalloproteinase-8 and acute phase reactants hemoglobin A1c (HbA1c), high-sensitivity C-reactive proteins and haptoglobin (Hp) in patients with stage II-IV grade B periodontitis. Methods Seventy participants were randomized to receive SRP (n = 35) or SRP+MM (n = 35). Serum was collected at baseline (before SRP), 1-month reevaluation visit, and 3- and 6-month periodontal maintenance visits. MMs were delivered to pockets 5 mm or larger immediately after SRP and immediately after the 3-month periodontal maintenance visit. Serum for acute phase reactants only was collected at the 9- and 12-month posttreatment follow-up. All outcomes were summarized using estimated marginal means back-transformed to the original response scale with 95% CIs. Results At 6 months, no statistical significance was yielded in either group for IL-6 (P = .91), tumor necrosis factor-α (P = .34), or matrix metalloproteinase-8 (P = .34). IL-1β (P = .06) was slightly higher in the SRP-alone group, suggesting a clinical impact with the addition of MM. Acute phase reactants were not statistically significant for high-sensitivity C-reactive proteins (P = .59), HbA1c (P = .46), or haptoglobin (P = .22) for either group. These outcomes continued at the 9- and 12-month posttreatment follow-up. Conclusions SRP alone and SRP+MM minimally reduced levels of cytokine biomarkers and acute phase reactants in self-reported systemically healthy patients with advanced stages of periodontitis. Thresholds for resolution of local clinical inflammation may not have been achieved in this study to result in a reduction of systemic inflammation.
Collapse
Affiliation(s)
- Michelle C Arnett
- Division of Dental Hygiene, Department of Primary Dental Care, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Phonsuda Chanthavisouk
- Division of Dental Therapy, Department of Primary Dental Care, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael D Evans
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN
| | - Danna R Paulson
- Division of Dental Hygiene, Department of Primary Dental Care, School of Dentistry, University of Minnesota, Minneapolis, MN
| |
Collapse
|
3
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
4
|
Freisem D, Rodriguez-Alfonso AA, Lawrenz J, Zhou Z, Monecke T, Preising N, Endres S, Wiese S, Ständker L, Kuan SL, Thal DR, Weil T, Niessing D, Barth H, Kirchhoff F, Harms M, Münch J, Sparrer KMJ. A naturally occurring 22-amino acid fragment of human hemoglobin A inhibits autophagy and HIV-1. Cell Mol Life Sci 2024; 81:409. [PMID: 39289189 PMCID: PMC11408460 DOI: 10.1007/s00018-024-05447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Autophagy is an evolutionarily ancient catabolic pathway and has recently emerged as an integral part of the innate immune system. While the core machinery of autophagy is well defined, the physiological regulation of autophagy is less understood. Here, we identify a C-terminal fragment of human hemoglobin A (HBA1, amino acids 111-132) in human bone marrow as a fast-acting non-inflammatory inhibitor of autophagy initiation. It is proteolytically released from full-length HBA1 by cathepsin E, trypsin or pepsin. Biochemical characterization revealed that HBA1(111-132) has an in vitro stability of 52 min in human plasma and adopts a flexible monomeric conformation in solution. Structure-activity relationship studies revealed that the C-terminal 13 amino acids of HBA1(120-132) are sufficient to inhibit autophagy, two charged amino acids (D127, K128) mediate solubility, and two serines (S125, S132) are required for function. Successful viruses like human immunodeficiency virus 1 (HIV-1) evolved strategies to subvert autophagy for virion production. Our results show that HBA1(120-132) reduced virus yields of lab-adapted and primary HIV-1. Summarizing, our data identifies naturally occurring HBA1(111-132) as a physiological, non-inflammatory antagonist of autophagy. Optimized derivatives of HBA1(111-132) may offer perspectives to restrict autophagy-dependent viruses.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Armando A Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
| | - Sascha Endres
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
| | - Seah-Ling Kuan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dietmar R Thal
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Capaccia C, Ciancabilla F, Porcellato I, Brachelente C, Zerani M, Maranesi M, Guelfi G. The Molecular Signature Related to Local Inflammatory and Immune Response in Canine Cutaneous Hypersensitivity Reactions: A Preliminary Study. Curr Issues Mol Biol 2024; 46:9162-9178. [PMID: 39194759 DOI: 10.3390/cimb46080542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Cutaneous hypersensitivity reactions (CHRs) are complex inflammatory skin disorders that affect humans and dogs. This study examined the inflammatory and immune responses leading to skin damage, inflammation, and irritation by investigating gene expression through quantitative PCR (qPCR) and protein localization through the immunohistochemistry (IHC) of specific receptors and molecules involved in CHRs. Formalin-fixed paraffin-embedded (FFPE) samples from canine CHR skin (n = 20) and healthy dog skin (n = 3) were analyzed for expression levels of eight genes, including members of the pattern recognition receptor (PRR) family, CD209 and CLEC4G, the Regakine-1-like chemokine, and acute phase proteins (APPs), LBP-like and Hp-like genes. Additionally, we examined the local involvement of IL-6, Janus Kinase 1 (JAK1), and the signal transducer activator of transcription 3 (STAT3) in the CHR cases. The study demonstrated statistically significant increases in the expression levels of CD209, Hp-like (p < 0.01), LBP-like, Regakine-1-like, and CLEC4G (p < 0.05) genes in CHRs compared to healthy controls. Conversely, IL-6, JAK1, and STAT3 showed no significant difference between the two groups (p > 0.05). Protein analysis revealed JAK1 and STAT3 expression in CHR hyperplastic epithelial cells, dermal fibroblasts, and endothelial cells of small capillaries, indicating a possible involvement in the JAK/STAT pathway in local inflammatory response regulation. Our findings suggest that the skin plays a role in the development of CHRs.
Collapse
Affiliation(s)
- Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
6
|
Grujcic M, Milovanovic M, Nedeljkovic J, Jovanovic D, Arsenijevic D, Solovjova N, Stankovic V, Tanaskovic I, Arsenijevic A, Milovanovic J. The Possible Effects of Galectin-3 on Mechanisms of Renal and Hepatocellular Injury Induced by Intravascular Hemolysis. Int J Mol Sci 2024; 25:8129. [PMID: 39125698 PMCID: PMC11311984 DOI: 10.3390/ijms25158129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Intravascular hemolysis is a central feature of congenital and acquired hemolytic anemias, complement disorders, infectious diseases, and toxemias. Massive and/or chronic hemolysis is followed by the induction of inflammation, very often with severe damage of organs, which enhances the morbidity and mortality of hemolytic diseases. Galectin-3 (Gal-3) is a β-galactoside-binding lectin that modulates the functions of many immune cells, thus affecting inflammatory processes. Gal-3 is also one of the main regulators of fibrosis. The role of Gal-3 in the development of different kidney and liver diseases and the potential of therapeutic Gal-3 inhibition have been demonstrated. Therefore, the objective of this review is to discuss the possible effects of Gal-3 on the process of kidney and liver damage induced by intravascular hemolysis, as well as to shed light on the potential therapeutic targeting of Gal-3 in intravascular hemolysis.
Collapse
Affiliation(s)
- Mirjana Grujcic
- Institute for Transfusiology and Hemobiology of Military Medical Academy, 11000 Belgrade, Serbia;
| | - Marija Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jelena Nedeljkovic
- Department of Medical Statistics and Informatics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Danijela Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Dragana Arsenijevic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Natalija Solovjova
- Academy of Applied Studies Belgrade, The College of Health Science, Cara Dušana 254, 11080 Belgrade, Serbia;
| | - Vesna Stankovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Irena Tanaskovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
7
|
Pavitra E, Acharya RK, Gupta VK, Verma HK, Kang H, Lee JH, Sahu T, Bhaskar L, Raju GSR, Huh YS. Impacts of oxidative stress and anti-oxidants on the development, pathogenesis, and therapy of sickle cell disease: A comprehensive review. Biomed Pharmacother 2024; 176:116849. [PMID: 38823275 DOI: 10.1016/j.biopha.2024.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
Sickle cell disease (SCD) is the most severe monogenic hemoglobinopathy caused by a single genetic mutation that leads to repeated polymerization and depolymerization of hemoglobin resulting in intravascular hemolysis, cell adhesion, vascular occlusion, and ischemia-reperfusion injury. Hemolysis causes oxidative damage indirectly by generating reactive oxygen species through various pathophysiological mechanisms, which include hemoglobin autoxidation, endothelial nitric oxide synthase uncoupling, reduced nitric oxide bioavailability, and elevated levels of asymmetric dimethylarginine. Red blood cells have a built-in anti-oxidant system that includes enzymes like sodium dismutase, catalase, and glutathione peroxidase, along with free radical scavenging molecules, such as vitamin C, vitamin E, and glutathione, which help them to fight oxidative damage. However, these anti-oxidants may not be sufficient to prevent the effects of oxidative stress in SCD patients. Therefore, in line with a recent FDA request that the focus to be placed on the development of innovative therapies for SCD that address the root cause of the disease, there is a need for therapies that target oxidative stress and restore redox balance in SCD patients. This review summarizes the current state of knowledge regarding the role of oxidative stress in SCD and the potential benefits of anti-oxidant therapies. It also discusses the challenges and limitations of these therapies and suggests future directions for research and development.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, Munich 85764, Germany
| | - Haneul Kang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Tarun Sahu
- Department of Physiology, All Indian Institute of Medical Science, Raipur, Chhattisgarh, India
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
8
|
Adkins BD, Noland DK, Slone T, Sadanand A. Therapeutic plasma exchange as an intervention for gemtuzumab ozogamicin impaired hemoglobin scavenging: A case and systematic review. J Clin Apher 2024; 39:e22116. [PMID: 38647036 DOI: 10.1002/jca.22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Gemtuzumab ozogamicin (GO) is a CD33 monoclonal antibody-drug conjugate currently in use to treat myeloid malignancies. A unique adverse effect of this medication is destruction of CD33 positive macrophages resulting in reduced clearance of free hemoglobin leading to grossly red plasma. This build-up of free hemoglobin can potentially lead to end organ damage and prevent performance of clinically necessary laboratory evaluation. We present a case of a pediatric patient who developed this adverse effect and was successfully treated with therapeutic plasma exchange (TPE). We also present results from a systematic review of the medical literature and share data from a query of the United States Food and Drug Administration (FDA) Adverse Event Reporting system for GO-related hemoglobin scavenging impairment. Among reported cases, patients undergoing TPE and those receiving steroids had improved outcomes. Practitioners should be aware of this rare drug side-effect and the potential utility of TPE for these patients.
Collapse
Affiliation(s)
- Brian D Adkins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Children's Health System, Dallas, Texas, USA
| | - Daniel K Noland
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Children's Health System, Dallas, Texas, USA
| | - Tamra Slone
- Children's Health System, Dallas, Texas, USA
- Division of Hematology and Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Arhanti Sadanand
- Children's Health System, Dallas, Texas, USA
- Division of Hematology and Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Dicenta V, Pelzer A, Laspa Z, Castor T, Gawaz MP, Rohlfing AK. The subtilisin-like protease furin regulates hemin-induced CD63 surface expression on platelets. Biochem Biophys Res Commun 2024; 701:149629. [PMID: 38330730 DOI: 10.1016/j.bbrc.2024.149629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.
Collapse
Affiliation(s)
- Valerie Dicenta
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andreas Pelzer
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Ross JT, Robles AJ, Mazer MB, Studer AC, Remy KE, Callcut RA. Cell-Free Hemoglobin in the Pathophysiology of Trauma: A Scoping Review. Crit Care Explor 2024; 6:e1052. [PMID: 38352942 PMCID: PMC10863949 DOI: 10.1097/cce.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVES Cell-free hemoglobin (CFH) is a potent mediator of endothelial dysfunction, organ injury, coagulopathy, and immunomodulation in hemolysis. These mechanisms have been demonstrated in patients with sepsis, hemoglobinopathies, and those receiving transfusions. However, less is known about the role of CFH in the pathophysiology of trauma, despite the release of equivalent levels of free hemoglobin. DATA SOURCES Ovid MEDLINE, Embase, Web of Science Core Collection, and BIOSIS Previews were searched up to January 21, 2023, using key terms related to free hemoglobin and trauma. DATA EXTRACTION Two independent reviewers selected studies focused on hemolysis in trauma patients, hemoglobin breakdown products, hemoglobin-mediated injury in trauma, transfusion, sepsis, or therapeutics. DATA SYNTHESIS Data from the selected studies and their references were synthesized into a narrative review. CONCLUSIONS Free hemoglobin likely plays a role in endothelial dysfunction, organ injury, coagulopathy, and immune dysfunction in polytrauma. This is a compelling area of investigation as multiple existing therapeutics effectively block these pathways.
Collapse
Affiliation(s)
- James T Ross
- Department of Surgery, University of California Davis, Sacramento, CA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
| | - Anamaria J Robles
- Department of Surgery, University of California Davis, Sacramento, CA
| | - Monty B Mazer
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, UH Rainbow Babies and Children's Hospital, Cleveland, OH
| | - Amy C Studer
- Blaisdell Medical Library, University of California Davis, Sacramento, CA
| | - Kenneth E Remy
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
- Division of Pulmonary Critical Care Medicine, Department of Medicine, University Hospitals of Cleveland, Case Western Reserve School of Medicine, Cleveland, OH
| | - Rachael A Callcut
- Department of Surgery, University of California Davis, Sacramento, CA
| |
Collapse
|
11
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
12
|
Sakamoto A, Suwa K, Kawakami R, Finn AV, Maekawa Y, Virmani R, Finn AV. Significance of Intra-plaque Hemorrhage for the Development of High-Risk Vulnerable Plaque: Current Understanding from Basic to Clinical Points of View. Int J Mol Sci 2023; 24:13298. [PMID: 37686106 PMCID: PMC10487895 DOI: 10.3390/ijms241713298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Acute coronary syndromes due to atherosclerotic coronary artery disease are a leading cause of morbidity and mortality worldwide. Intra-plaque hemorrhage (IPH), caused by disruption of intra-plaque leaky microvessels, is one of the major contributors of plaque progression, causing a sudden increase in plaque volume and eventually plaque destabilization. IPH and its healing processes are highly complex biological events that involve interactions between multiple types of cells in the plaque, including erythrocyte, macrophages, vascular endothelial cells and vascular smooth muscle cells. Recent investigations have unveiled detailed molecular mechanisms by which IPH leads the development of high-risk "vulnerable" plaque. Current advances in clinical diagnostic imaging modalities, such as magnetic resonance image and intra-coronary optical coherence tomography, increasingly allow us to identify IPH in vivo. To date, retrospective and prospective clinical trials have revealed the significance of IPH as detected by various imaging modalities as a reliable prognostic indicator of high-risk plaque. In this review article, we discuss recent advances in our understanding for the significance of IPH on the development of high-risk plaque from basic to clinical points of view.
Collapse
Affiliation(s)
- Atsushi Sakamoto
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan; (K.S.); (Y.M.)
| | - Kenichiro Suwa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan; (K.S.); (Y.M.)
| | - Rika Kawakami
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
| | - Alexandra V. Finn
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan; (K.S.); (Y.M.)
| | - Renu Virmani
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
| | - Aloke V. Finn
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
| |
Collapse
|
13
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
14
|
Fink A, Rohlfing AK, Dicenta V, Schaale D, Kremser M, Laspa Z, Sigle M, Fu X, Pelzer A, Fischer M, Münzer P, Castor T, Müller KAL, Borst O, Lämmerhofer M, Gawaz MP. The Subtilisin-Like Protease Furin Regulates Hemin-Dependent Ectodomain Shedding of Glycoprotein VI. Thromb Haemost 2023. [PMID: 37037200 DOI: 10.1055/s-0043-1768057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Hemolysis results in release of free hemoglobin and hemin liberation from erythrocytes. Hemin has been described to induce platelet activation and to trigger thrombosis. METHODS We evaluated the effect of hemin on platelet function and surface expression of the platelet collagen receptor glycoprotein VI (GPVI). Isolated platelets were stimulated with increasing concentrations of hemin. RESULTS We found that hemin strongly enhanced platelet activation, aggregation, and aggregate formation on immobilized collagen under flow. In contrast, we found that surface expression of GPVI was significantly reduced upon hemin stimulation with high hemin concentrations indicating that hemin-induced loss of surface GPVI does not hinder platelet aggregation. Loss of hemin-induced surface expression of GPVI was caused by shedding of the ectodomain of GPVI as verified by immunoblotting and is independent of the GPVI or CLEC-2 mediated ITAM (immunoreceptor-tyrosine-based-activation-motif) signaling pathway as inhibitor studies revealed. Hemin-induced GPVI shedding was independent of metalloproteinases such as ADAM10 or ADAM17, which were previously described to regulate GPVI degradation. Similarly, concentration-dependent shedding of CD62P was also induced by hemin. Unexpectedly, we found that the subtilisin-like proprotein convertase furin controls hemin-dependent GPVI shedding as shown by inhibitor studies using the specific furin inhibitors SSM3 and Hexa-D-arginine. In the presence of SSM3 and Hexa-D-arginine, hemin-associated GPVI degradation was substantially reduced. Further, SSM3 inhibited hemin-induced but not CRP-XL-induced platelet aggregation and thrombus formation, indicating that furin controls specifically hemin-associated platelet functions. CONCLUSION In summary, we describe a novel mechanism of hemin-dependent GPVI shedding and platelet function mediated by furin.
Collapse
Affiliation(s)
- Annalena Fink
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Valerie Dicenta
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - David Schaale
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marcel Kremser
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Xiaoqing Fu
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Andreas Pelzer
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melina Fischer
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Patrick Münzer
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Scaramellini N, Fischer D, Agarvas AR, Motta I, Muckenthaler MU, Mertens C. Interpreting Iron Homeostasis in Congenital and Acquired Disorders. Pharmaceuticals (Basel) 2023; 16:ph16030329. [PMID: 36986429 PMCID: PMC10054723 DOI: 10.3390/ph16030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Mammalian cells require iron to satisfy their metabolic needs and to accomplish specialized functions, such as hematopoiesis, mitochondrial biogenesis, energy metabolism, or oxygen transport. Iron homeostasis is balanced by the interplay of proteins responsible for iron import, storage, and export. A misbalance of iron homeostasis may cause either iron deficiencies or iron overload diseases. The clinical work-up of iron dysregulation is highly important, as severe symptoms and pathologies may arise. Treating iron overload or iron deficiency is important to avoid cellular damage and severe symptoms and improve patient outcomes. The impressive progress made in the past years in understanding mechanisms that maintain iron homeostasis has already changed clinical practice for treating iron-related diseases and is expected to improve patient management even further in the future.
Collapse
Affiliation(s)
- Natalia Scaramellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dania Fischer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Anand R. Agarvas
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Martina U. Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Side, 69120 Heidelberg, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221564582; Fax: +49-6221564580
| |
Collapse
|
16
|
Yap YJ, Wong PF, AbuBakar S, Sam SS, Shunmugarajoo A, Soh YH, Misbah S, Ab Rahman AK. The clinical utility of CD163 in viral diseases. Clin Chim Acta 2023; 541:117243. [PMID: 36740088 DOI: 10.1016/j.cca.2023.117243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Macrophage activation and hypercytokinemia are notable presentations in certain viral infections leading to severe disease and poor prognosis. Viral infections can cause macrophage polarization into the pro-inflammatory M1 or anti-inflammatory M2 phenotype. Activated M1 macrophages usually restrict viral replication whereas activated M2 macrophages suppress inflammation and promote tissue repair. In response to inflammatory stimuli, macrophages polarize to the M2 phenotype expressing hemoglobin scavenger CD163 surface receptor. The CD163 receptor is shed as the soluble form, sCD163, into plasma or tissue fluids. sCD163 causes detoxification of pro-oxidative hemoglobin which produces anti-inflammatory metabolites that promote the resolution of inflammation. Hence, increased CD163 expression in tissues and elevated circulatory levels of sCD163 have been associated with acute and chronic inflammatory diseases. CD163 and other macrophage activation markers have been commonly included in the investigation of disease pathogenesis and progression. This review provides an overview of the involvement of CD163 in viral diseases. The clinical utility of CD163 in viral disease diagnosis, progression, prognosis and treatment evaluation is discussed.
Collapse
Affiliation(s)
- Yi-Jing Yap
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603 Kuala Lumpur, Malaysia; World Health Organization Collaborating Centre for Arbovirus Reference and Research (Dengue and Severe Dengue) MAA-12, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sing-Sin Sam
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anusha Shunmugarajoo
- Medical Department, Tengku Ampuan Rahimah Hospital, 41200 Klang, Selangor, Malaysia
| | - Yih-Harng Soh
- Centers for Disease Control and Prevention Unit, Central Melaka District Health Office, Jalan Bukit Baru, 75150 Melaka, Malaysia
| | - Suzana Misbah
- Biological Security and Sustainability Research Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Kashfi Ab Rahman
- Department of Medicine (Infectious Disease Unit), Sultanah Nur Zahirah Hospital, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
17
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
18
|
Runge A, Brazel D, Pakbaz Z. Stroke in sickle cell disease and the promise of recent disease modifying agents. J Neurol Sci 2022; 442:120412. [PMID: 36150233 DOI: 10.1016/j.jns.2022.120412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy affecting approximately 100,000 individuals in the United States. Cerebrovascular disease is among the most common and debilitating complications of SCA, with 53% experiencing silent cerebral infarct by age 30 and 3.8% experiencing overt stroke by age 40 years. This review highlights the burden of cerebrovascular disease in SCD, including both stroke and silent cerebral infarct (SCI). We then discuss the pathophysiology of stroke and cerebral fat embolism in the absence of a patent foramen ovale. This review also reveals that options for primary and secondary stroke prevention in SCD are still limited to hydroxyurea and blood transfusion, and that the role of aspirin and anticoagulation in SCD stroke has not been adequately studied. Limited data suggest that the novel disease-modifying agents for SCD management may improve renal dysfunction, leg ulcers, and lower the abnormally high TCD flow velocity. Further research is urgently needed to investigate their role in stroke prevention in SCD, as these novel agents target the main stroke contributors in SCD - hemolysis and vaso-occlusion. This literature review also explores the role of healthcare disparities in slowing progress in SCD management and research in the United States, highlighting the need for more investment in patient and clinician education, SCD management, and research.
Collapse
Affiliation(s)
- Ava Runge
- University of California Irvine School of Medicine, CA, USA
| | - Danielle Brazel
- University of California Irvine Medical Center, Department of Medicine, Orange California, CA, USA
| | - Zahra Pakbaz
- University of California Irvine School of Medicine, CA, USA; University of California Irvine Medical Center, Department of Medicine, Orange California, CA, USA; University of California Irvine Medical Center, Division of Hematology Oncology, CA, USA.
| |
Collapse
|
19
|
Hara Y, Tsukiji J, Yabe A, Onishi Y, Hirose H, Yamamoto M, Kudo M, Kaneko T, Ebina T. Heme oxygenase-1 as an important predictor of the severity of COVID-19. PLoS One 2022; 17:e0273500. [PMID: 36001619 PMCID: PMC9401165 DOI: 10.1371/journal.pone.0273500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/09/2022] [Indexed: 01/08/2023] Open
Abstract
Background and objective
A cytokine storm is caused by inflammatory cells, including pro-inflammatory macrophage phenotype (M1), and play a critical role in the pathogenesis of COVID-19, in which diffuse alveolar damage occurs in the lungs due to oxidative stress exposure. Heme oxygenase (HO)-1 is a stress-induced protein produced by the anti-inflammatory / anti-oxidative macrophage phenotype (M2), which also produces soluble CD163 (sCD163). In our study, we investigated and determined that serum HO-1 can be a predictive biomarker for assessing both the severity and the outcome of COVID-19 patients.
Method
The serum concentrations of HO-1 and sCD163 of COVID-19 patients were measured on admission. The relationship between these biomarkers and other clinical parameters and outcomes were evaluated.
Results
Sixty-four COVID-19 patients (11 mild, 38 moderate, and 15 severe cases) were assessed. The serum HO-1 tended to increase (11.0 ng/mL vs. 24.3 ng/mL vs. 59.6 ng/mL with severity). Serum HO-1 correlated with serum lactate dehydrogenase (R = 0.422), C-reactive protein (R = 0.463), and the ground glass opacity (GGO) and consolidation score (R = 0.625) of chest computed tomography. The serum HO-1 showed a better area under the curve (AUC) for predicting ICU admission than the serum sCD163 (HO-1; 0.816 and sCD163; 0.743). In addition, composite parameters including serum HO-1 and the GGO and consolidation score showed a higher AUC for predicting ICU admission than the AUC of a single parameter.
Conclusion
Clinically, serum HO-1, reflecting the activation of M2, could be a very useful marker for evaluating disease severity and predicting prognoses for COVID-19 patients. In addition, controlling activated M2 might be a preventative COVID-19 therapeutic target.
Collapse
Affiliation(s)
- Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Jun Tsukiji
- Department of Prevention and Infection Control, Kanagawa Cancer Center, Yokohama, Japan
- * E-mail:
| | - Aya Yabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshika Onishi
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| | - Haruka Hirose
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| | - Masaki Yamamoto
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiaki Ebina
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| |
Collapse
|
20
|
Kawai K, Vozenilek AE, Kawakami R, Sato Y, Ghosh SKB, Virmani R, Finn AV. Understanding the role of alternative macrophage phenotypes in human atherosclerosis. Expert Rev Cardiovasc Ther 2022; 20:689-705. [PMID: 35942866 DOI: 10.1080/14779072.2022.2111301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Atherosclerosis-based ischemic heart disease is still the primary cause of death throughout the world. Over the past decades there has been no significant changes in the therapeutic approaches to atherosclerosis, which are mainly based on lipid lowering therapies and management of comorbid conditions such as diabetes and hypertension. The involvement of macrophages in atherosclerosis has been recognized for decades. More recently, a more detailed and sophisticated understanding of their various phenotypes and roles in the atherosclerotic process has been recognized. This new data is revealing how specific subtypes of macrophage-induced inflammation may have distinct effects on atherosclerosis progression and may provide new approaches for treatment, based upon targeting of specific macrophage subtypes. AREAS COVERED We will comprehensively review the spectrum of macrophage phenotypes and how they contribute to atherosclerotic plaque development and progression. EXPERT OPINION Various signals derived from atherosclerotic lesions drive macrophages into complex subsets with different gene expression profiles, phenotypes, and functions, not all of which are understood. Macrophage phenotypes include those that enhance, heal, and regress the atherosclerotic lesions though various mechanisms. Targeting of specific macrophage phenotypes may provide a promising and novel approach to prevent atherosclerosis progression.
Collapse
Affiliation(s)
- Kenji Kawai
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Aimee E Vozenilek
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Rika Kawakami
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Yu Sato
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | | | - Renu Virmani
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Aloke V Finn
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA.,University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Vallelian F, Buzzi RM, Pfefferlé M, Yalamanoglu A, Dubach IL, Wassmer A, Gentinetta T, Hansen K, Humar R, Schulthess N, Schaer CA, Schaer DJ. Heme-stress activated NRF2 skews fate trajectories of bone marrow cells from dendritic cells towards red pulp-like macrophages in hemolytic anemia. Cell Death Differ 2022; 29:1450-1465. [PMID: 35031770 PMCID: PMC9345992 DOI: 10.1038/s41418-022-00932-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an erythrocyte-derived toxin that drives disease progression in hemolytic anemias, such as sickle cell disease. During hemolysis, specialized bone marrow-derived macrophages with a high heme-metabolism capacity orchestrate disease adaptation by removing damaged erythrocytes and heme-protein complexes from the blood and supporting iron recycling for erythropoiesis. Since chronic heme-stress is noxious for macrophages, erythrophagocytes in the spleen are continuously replenished from bone marrow-derived progenitors. Here, we hypothesized that adaptation to heme stress progressively shifts differentiation trajectories of bone marrow progenitors to expand the capacity of heme-handling monocyte-derived macrophages at the expense of the homeostatic generation of dendritic cells, which emerge from shared myeloid precursors. This heme-induced redirection of differentiation trajectories may contribute to hemolysis-induced secondary immunodeficiency. We performed single-cell RNA-sequencing with directional RNA velocity analysis of GM-CSF-supplemented mouse bone marrow cultures to assess myeloid differentiation under heme stress. We found that heme-activated NRF2 signaling shifted the differentiation of bone marrow cells towards antioxidant, iron-recycling macrophages, suppressing the generation of dendritic cells in heme-exposed bone marrow cultures. Heme eliminated the capacity of GM-CSF-supplemented bone marrow cultures to activate antigen-specific CD4 T cells. The generation of functionally competent dendritic cells was restored by NRF2 loss. The heme-induced phenotype of macrophage expansion with concurrent dendritic cell depletion was reproduced in hemolytic mice with sickle cell disease and spherocytosis and associated with reduced dendritic cell functions in the spleen. Our data provide a novel mechanistic underpinning of hemolytic stress as a driver of hyposplenism-related secondary immunodeficiency. ![]()
Collapse
Affiliation(s)
- Florence Vallelian
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland.
| | - Raphael M Buzzi
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Marc Pfefferlé
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Ayla Yalamanoglu
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Irina L Dubach
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | | | | | - Kerstin Hansen
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Nadja Schulthess
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | | | - Dominik J Schaer
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Impact of Enhanced Phagocytosis of Glycated Erythrocytes on Human Endothelial Cell Functions. Cells 2022; 11:cells11142200. [PMID: 35883644 PMCID: PMC9351689 DOI: 10.3390/cells11142200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes is associated with a high mortality rate due to vascular complications. Chronic hyperglycemia in diabetes leads to enhanced oxidative stress and glycation. Here, we explored the impact of glycation on human erythrocyte characteristics and capacity to affect endothelial cell function following erythrophagocytosis. Native and glucose-mediated glycated erythrocytes were prepared and characterized in terms of structural and deformability modifications. Erythrocyte preparations were tested for their binding and phagocytosis capacity as well as the potential functional consequences on human endothelial cell lines and primary cultures. Oxidative modifications were found to be enhanced in glycated erythrocytes after determination of their deformability, advanced glycation end-product content and eryptosis. Erythrophagocytosis by endothelial cells was significantly increased when incubated in the presence of glycated erythrocytes. In addition, higher iron accumulation, oxidative stress and impaired endothelial cell permeability were evidenced in cells previously incubated with glycated erythrocytes. When cultured under flow conditions, cellular integrity was disrupted by glycated erythrocytes at microvessel bifurcations, areas particularly prone to vascular complications. This study provides important new data on the impact of glycation on the structure of erythrocytes and their ability to alter endothelial cell function. Increased erythrophagocytosis may have a deleterious impact on endothelial cell function with adverse consequences on diabetic vascular complications.
Collapse
|
23
|
Abstract
Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in aspergillosis, we generated a transcriptomic time series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection. We found an overwhelming macrophage response beginning 2 to 4 h after exposure to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of the iron exporter ferroportin. The computational model, based on a discrete dynamical systems framework, consisted of 21 3-state nodes, and was validated with additional experimental data that were not used in model generation. The model accurately captures the steady state and the trajectories of most of the quantitatively measured nodes. In the experimental data, we surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory cytokines, a feature that deviated from model predictions. Model simulations suggested that direct induction of transferrin receptor-1 (TfR1) after fungal recognition, independent of the iron regulatory protein-labile iron pool (IRP-LIP) system, explains this finding. We anticipate that this model will contribute to a quantitative understanding of iron regulation as a fundamental host defense mechanism during aspergillosis. IMPORTANCE Invasive pulmonary aspergillosis is a major cause of death among immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron is an essential component of host defense in this infection, but the mechanisms by which the host achieves this are complex. To understand how recruited macrophages mediate iron deprivation during the infection, we developed and validated a mechanistic computational model that integrates the available information in the field. The insights provided by this approach can help in designing iron modulation therapies as anti-fungal treatments.
Collapse
|
24
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
25
|
Torres A, Vivanco S, Lavín F, Pereda C, Chernobrovkin A, Gleisner A, Alcota M, Larrondo M, López MN, Salazar-Onfray F, Zubarev RA, González FE. Haptoglobin Induces a Specific Proteomic Profile and a Mature-Associated Phenotype on Primary Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2022; 23:ijms23136882. [PMID: 35805888 PMCID: PMC9266681 DOI: 10.3390/ijms23136882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) play a critical role in dendritic cells (DCs) ability to trigger a specific and efficient adaptive immune response for different physiological and pathological scenarios. We have previously identified constitutive DAMPs (HMGB1 and Calreticulin) as well as new putative inducible DAMPs such as Haptoglobin (HP), from a therapeutically used heat shock-conditioned melanoma cell lysate (called TRIMEL). Remarkably, HP was shown to be the most abundant protein in the proteomic profile of heat shock-conditioned TRIMEL samples. However, its relative contribution to the observed DCs phenotype has not been fully elucidated. Human DCs were generated from monocytes isolated from PBMC of melanoma patients and healthy donors. DC lineage was induced with rhIL-4 and rhGM-CSF. After additional stimulation with HP, the proteome of these HP-stimulated cells was characterized. In addition, DCs were phenotypically characterized by flow cytometry for canonical maturation markers and cytokine production. Finally, in vitro transmigration capacity was assessed using Transwell plates. Our results showed that the stimulation with HP was associated with the presence of exclusive and higher relative abundance of specific immune-; energy production-; lipid biosynthesis-; and DAMPs-related proteins. Importantly, HP stimulation enhanced the expression of specific DC maturation markers and pro-inflammatory and Th1-associated cytokines, and an in vitro transmigration of primary human DCs. Taken together, these data suggest that HP can be considered as a new inducible DAMP with an important role in in vitro DC activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Sheilah Vivanco
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Francisca Lavín
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Milton Larrondo
- Blood Bank Service, University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Mercedes N. López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-2-29781714
| |
Collapse
|
26
|
Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB, Steck B, Anjani K, Parikh S, Sigdel TK, Zhang G, Velickovic D, Barwinska D, Alexandrov T, Dobi D, Rashmi P, Otto EA, Rivera M, Rose MP, Anderton CR, Shapiro JP, Pamreddy A, Winfree S, Xiong Y, He Y, de Boer IH, Hodgin JB, Barisoni L, Naik AS, Sharma K, Sarwal MM, Zhang K, Himmelfarb J, Rovin B, El-Achkar TM, Laszik Z, He JC, Dagher PC, Valerius MT, Jain S, Satlin LM, Troyanskaya OG, Kretzler M, Iyengar R, Azeloglu EU, Kidney Precision Medicine Project. A reference tissue atlas for the human kidney. SCIENCE ADVANCES 2022; 8:eabn4965. [PMID: 35675394 PMCID: PMC9176741 DOI: 10.1126/sciadv.abn4965] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 05/08/2023]
Abstract
Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.
Collapse
Affiliation(s)
- Jens Hansen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Sealfon
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | - Rajasree Menon
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Blue B. Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Becky Steck
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kavya Anjani
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Samir Parikh
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tara K. Sigdel
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Guanshi Zhang
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | | | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Dejan Dobi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Priyanka Rashmi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Edgar A. Otto
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Miguel Rivera
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Michael P. Rose
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christopher R. Anderton
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - John P. Shapiro
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Annapurna Pamreddy
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Seth Winfree
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuguang Xiong
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yongqun He
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ian H. de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | | | | | - Abhijit S. Naik
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kumar Sharma
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Minnie M. Sarwal
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Himmelfarb
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | - Brad Rovin
- Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Zoltan Laszik
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | - M. Todd Valerius
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sanjay Jain
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| | - Lisa M. Satlin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga G. Troyanskaya
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | | | - Ravi Iyengar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kidney Precision Medicine Project
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
- University of Michigan School of Medicine, Ann Arbor, MI, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- University of California San Francisco School of Medicine, San Francisco, CA, USA
- Ohio State University College of Medicine, Columbus, OH, USA
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
- European Molecular Biology Laboratory, Heidelberg, Germany
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Duke University School of Medicine, Durham, NC, USA
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| |
Collapse
|
27
|
Hunter GA, Ferreira GC. Metal ion coordination sites in ferrochelatase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Taiwo GA, Idowu M, Denvir J, Cervantes AP, Ogunade IM. Identification of Key Pathways Associated With Residual Feed Intake of Beef Cattle Based on Whole Blood Transcriptome Data Analyzed Using Gene Set Enrichment Analysis. Front Vet Sci 2022; 9:848027. [PMID: 35518641 PMCID: PMC9062580 DOI: 10.3389/fvets.2022.848027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
We applied whole blood transcriptome analysis and gene set enrichment analysis to identify pathways associated with divergent selection for low or high RFI in beef cattle. A group of 56 crossbred beef steers (average BW = 261 ± 18.5 kg) were adapted to a high-forage total mixed ration in a confinement dry lot equipped with GrowSafe intake nodes for period of 49 d to determine their residual feed intake (RFI). After RFI determination, whole blood samples were collected from beef steers with the lowest RFI (most efficient; low-RFI; n = 8) and highest RFI (least efficient; high-RFI; n = 8). Prior to RNA extraction, whole blood samples collected were composited for each steer. Sequencing was performed on an Illumina NextSeq2000 equipped with a P3 flow. Gene set enrichment analysis (GSEA) was used to analyze differentially expressed gene sets and pathways between the two groups of steers. Results of GSEA revealed pathways associated with metabolism of proteins, cellular responses to external stimuli, stress, and heat stress were differentially inhibited (false discovery rate (FDR) < 0.05) in high-RFI compared to low-RFI beef cattle, while pathways associated with binding and uptake of ligands by scavenger receptors, scavenging of heme from plasma, and erythrocytes release/take up oxygen were differentially enriched (FDR < 0.05) in high-RFI, relative to low-RFI beef cattle. Taken together, our results revealed that beef steers divergently selected for low or high RFI revealed differential expressions of genes related to protein metabolism and stress responsiveness.
Collapse
Affiliation(s)
- Godstime A Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States
| | - Modoluwamu Idowu
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States
| | - James Denvir
- Department of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Andres Pech Cervantes
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA, United States
| | - Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
29
|
de Oliveira J, Denadai MB, Costa DL. Crosstalk between Heme Oxygenase-1 and Iron Metabolism in Macrophages: Implications for the Modulation of Inflammation and Immunity. Antioxidants (Basel) 2022; 11:861. [PMID: 35624725 PMCID: PMC9137896 DOI: 10.3390/antiox11050861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the degradation of heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The anti-inflammatory and antioxidant properties of HO-1 activity are conferred in part by the release of CO and BV and are extensively characterized. However, iron constitutes an important product of HO-1 activity involved in the regulation of several cellular biological processes. The macrophage-mediated recycling of heme molecules, in particular those contained in hemoglobin, constitutes the major mechanism through which living organisms acquire iron. This process is finely regulated by the activities of HO-1 and of the iron exporter protein ferroportin. The expression of both proteins can be induced or suppressed in response to pro- and anti-inflammatory stimuli in macrophages from different tissues, which alters the intracellular iron concentrations of these cells. As we discuss in this review article, changes in intracellular iron levels play important roles in the regulation of cellular oxidation reactions as well as in the transcriptional and translational regulation of the expression of proteins related to inflammation and immune responses, and therefore, iron metabolism represents a potential target for the development of novel therapeutic strategies focused on the modulation of immunity and inflammation.
Collapse
Affiliation(s)
- Joseana de Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Marina B. Denadai
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
30
|
Sakamoto A, Cornelissen A, Sato Y, Mori M, Kawakami R, Kawai K, Ghosh SKB, Xu W, Abebe BG, Dikongue A, Kolodgie FD, Virmani R, Finn AV. Vulnerable Plaque in Patients with Acute Coronary Syndrome: Identification, Importance, and Management. US CARDIOLOGY REVIEW 2022; 16:e01. [PMID: 39600843 PMCID: PMC11588187 DOI: 10.15420/usc.2021.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/07/2021] [Indexed: 11/04/2022] Open
Abstract
MI is a leading cause of morbidity and mortality worldwide. Coronary artery thrombosis is the final pathologic feature of the most cases of acute MI primarily caused by atherosclerotic coronary artery disease. The concept of vulnerable plaque has evolved over the years but originated from early pioneering work unveiling the crucial role of plaque rupture and subsequent coronary thrombosis as the dominant cause of MI. Along with systemic cardiovascular risk factors, developments of intravascular and non-invasive imaging modalities have allowed us to identify coronary plaques thought to be at high risk for rupture. However, morphological features alone may only be one of many factors which promote plaque progression. The current vulnerable-plaque-oriented approaches to accomplish personalized risk assessment and treatment have significant room for improvement. In this review, the authors discuss recent advances in the understanding of vulnerable plaque and its management strategy from pathology and clinical perspectives.
Collapse
Affiliation(s)
| | | | - Yu Sato
- CVPath InstituteGaithersburg, MD
| | | | | | | | | | - Weili Xu
- CVPath InstituteGaithersburg, MD
| | | | | | | | | | - Aloke V Finn
- CVPath InstituteGaithersburg, MD
- University of Maryland, School of MedicineBaltimore, MD
| |
Collapse
|
31
|
Guo Y, Zhao H, Lin Z, Ye T, Xu D, Zeng Q. Heme in Cardiovascular Diseases: A Ubiquitous Dangerous Molecule Worthy of Vigilance. Front Cell Dev Biol 2022; 9:781839. [PMID: 35127704 PMCID: PMC8807526 DOI: 10.3389/fcell.2021.781839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Heme, the protoporphyrin IX iron complex is widely present in the human body and it is involved in oxygen storage, electron transfer, and enzymatic reactions. However, free heme can be toxic as it catalyzes the production of reactive oxygen species, oxidizes lipids and proteins, and causes DNA damage, thereby inducing a pro-inflammatory environment. The generation, metabolism, and degradation of heme in the human body are regulated by precise mechanisms to ensure that heme remains non-toxic. However, in several types of cardiovascular diseases, impaired metabolism and exposure to heme may occur in pathological processes, including neovascularization, internal hemorrhage, ischemia, and reperfusion. Based on years of research, in this review, we aimed to summarize the underlying mechanisms by which heme contributes to the development of cardiovascular diseases through oxidative stress, relative pathway gene expression regulation and phenotypic changes in cells. Excess heme plays a detrimental role in atherosclerosis, heart failure, myocardial ischemia-reperfusion injury, degenerative aortic valve stenosis, cardiac iron overload. Recent researches revealed that in some cases heme involved in cardiac damage though ferroptosis. Thus, heme concentrations beyond normal levels are dangerous. Further research on the role of heme in cardiovascular diseases is needed.
Collapse
Affiliation(s)
- Yuyang Guo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hengli Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zhibin Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Taochun Ye
- Department of Cardiopulmonary Rehabilitation, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- *Correspondence: Qingchun Zeng, ; Dingli Xu,
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- *Correspondence: Qingchun Zeng, ; Dingli Xu,
| |
Collapse
|
32
|
Recalcati S, Cairo G. Macrophages and Iron: A Special Relationship. Biomedicines 2021; 9:biomedicines9111585. [PMID: 34829813 PMCID: PMC8615895 DOI: 10.3390/biomedicines9111585] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages perform a variety of different biological functions and are known for their essential role in the immune response. In this context, a principal function is phagocytic clearance of pathogens, apoptotic and senescent cells. However, the major targets of homeostatic phagocytosis by macrophages are old/damaged red blood cells. As such, macrophages play a crucial role in iron trafficking, as they recycle the large quantity of iron obtained by hemoglobin degradation. They also seem particularly adapted to handle and store amounts of iron that would be toxic to other cell types. Here, we examine the specific and peculiar iron metabolism of macrophages.
Collapse
|
33
|
Trejo-Santillan I, Mendoza-Guevara CC, Ramos-Godinez MDP, Ramon-Gallegos E. Biosecurity test of conjugated nanoparticles of chitosanprotoporphyrin IX-vitamin B9 for their use in photodynamic therapy. IEEE Trans Nanobioscience 2021; 21:149-156. [PMID: 34606461 DOI: 10.1109/tnb.2021.3117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanotechnology proposes new applications for the development of nanotransporters and active targeting molecules with the use of biodegradable polymeric nanoparticles to improve the specificity towards target cells. However, these products must comply with safety tests to be endorsed as therapeutic alternatives by regulatory organizations. The goal of this work was to evaluate the biosafety (cytotoxicity and genotoxicity) of chitosan polymeric nanoparticles conjugate with protoporphyrin IX and vitamin B9 (CNPs-PpIX-B9) that were previously optimized from the established protocol by our laboratory and tested in CHO-K1 cells by bioassay following the recommendations of the chromosomal aberrations test by OECD 473 (2016) guideline. The conjugate did not show evidence of genotoxicity (clastogenicity). Surprisingly, the significant differences between the treatments performed and the negative control do not represent increases in chromosomal aberrations, whereby the safe concentrations to use the conjugate without inducing cytotoxic or genotoxic effects are less than 0.25 mg / mL. Since it induced a significant decrease of structural chromosomal aberrations, generating a positive effect on the genomic stability of CHO-K1 cells cultured in this test system.
Collapse
|
34
|
Sharma H, Bose A, Sachdeva R, Malik M, Kumar U, Pal R. Haemoglobin drives inflammation and initiates antigen spread and nephritis in lupus. Immunology 2021; 165:122-140. [PMID: 34549818 DOI: 10.1111/imm.13418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Haemoglobin (Hb) has well-documented inflammatory effects and is normally efficiently scavenged; clearance mechanisms can be overwhelmed during erythrocyte lysis. Whether Hb is preferentially inflammatory in lupus and triggers broad anti-self responses was assessed. Peripheral blood mononuclear cells (PBMCs) derived from SLE patients secreted higher levels of lupus-associated inflammatory cytokines when incubated with human Hb than did PBMCs derived from healthy donors, an effect negated by haptoglobin. Ferric murine Hb triggered the preferential release of lupus-associated cytokines from splenocytes, B cells, CD4 T cells, CD8 T cells and plasmacytoid dendritic cells isolated from ageing, lupus-prone NZM2410 mice, and also had mitogenic effects on B cells. Pull-downs, followed by mass spectrometry, revealed interactions of Hb with several lupus-associated autoantigens; co-incubation of ferric Hb with apoptotic blebs (structures that contain packaged autoantigens) revealed synergies-in terms of cytokine release and autoantibody production in vitro-that were also restricted to the lupus genotype. Murine ferric Hb activated multiple signalling pathways and, in combination with apoptotic blebs, preferentially triggered MAP kinase signalling specifically in splenocytes isolated from lupus-prone mice. Infusion of murine ferric Hb into lupus-prone mice led to enhanced release of lupus-associated cytokines, the generation of a spectrum of autoantibodies and enhanced-onset glomerulosclerosis. Given that the biased recognition of ferric Hb in a lupus milieu, possibly in concert with lupus-associated autoantigens, triggers inflammatory responses and the generation of lupus-associated cytokines, and also stimulates the generation of potentially pathogenic lupus-associated autoantibodies, neutralization of Hb could have beneficial effects.
Collapse
Affiliation(s)
- Hritika Sharma
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Anjali Bose
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Ruchi Sachdeva
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Monika Malik
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Pal
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|
35
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
36
|
Turpin C, Catan A, Meilhac O, Bourdon E, Canonne-Hergaux F, Rondeau P. Erythrocytes: Central Actors in Multiple Scenes of Atherosclerosis. Int J Mol Sci 2021; 22:ijms22115843. [PMID: 34072544 PMCID: PMC8198892 DOI: 10.3390/ijms22115843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.
Collapse
Affiliation(s)
- Chloé Turpin
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Aurélie Catan
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Olivier Meilhac
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Centre Hospitalier Universitaire de La Réunion, 97400 Saint Denis, France
| | - Emmanuel Bourdon
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | | | - Philippe Rondeau
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Correspondence: ; Tel.: +262(0)-2-62-93-88-43; Fax: +262-(0)-2-62-93-88-01
| |
Collapse
|
37
|
Pfefferlé M, Ingoglia G, Schaer CA, Hansen K, Schulthess N, Humar R, Schaer DJ, Vallelian F. Acute Hemolysis and Heme Suppress Anti-CD40 Antibody-Induced Necro-Inflammatory Liver Disease. Front Immunol 2021; 12:680855. [PMID: 34054870 PMCID: PMC8149790 DOI: 10.3389/fimmu.2021.680855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Clearance of red blood cells and hemoproteins is a key metabolic function of macrophages during hemolytic disorders and following tissue injury. Through this archetypical phagocytic function, heme is detoxified and iron is recycled to support erythropoiesis. Reciprocal interaction of heme metabolism and inflammatory macrophage functions may modify disease outcomes in a broad range of clinical conditions. We hypothesized that acute hemolysis and heme induce acute anti-inflammatory signals in liver macrophages. Using a macrophage-driven model of sterile liver inflammation, we showed that phenylhydrazine (PHZ)-mediated acute erythrophagocytosis blocked the anti-CD40 antibody-induced pathway of macrophage activation. This process attenuated the inflammatory cytokine release syndrome and necrotizing hepatitis induced by anti-CD40 antibody treatment of mice. We further established that administration of heme-albumin complexes specifically delivered heme to liver macrophages and replicated the anti-inflammatory effect of hemolysis. The anti-inflammatory heme-signal was induced in macrophages by an increased intracellular concentration of the porphyrin independently of iron. Overall, our work suggests that induction of heme-signaling strongly suppresses inflammatory macrophage function, providing protection against sterile liver inflammation.
Collapse
Affiliation(s)
- Marc Pfefferlé
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Giada Ingoglia
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | | | - Kerstin Hansen
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Nadja Schulthess
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Le Y, Zhang Z, Wang C, Lu D. Ferroptotic Cell Death: New Regulatory Mechanisms for Metabolic Diseases. Endocr Metab Immune Disord Drug Targets 2021; 21:785-800. [DOI: 10.2174/1871530320666200731175328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Background:
Cell death is a fundamental biological phenomenon that contributes to the
pathogenesis of various diseases. Regulation of iron and iron metabolism has received considerable
research interests especially concerning the progression of metabolic diseases.
Discussion:
Emerging evidence shows that ferroptosis, a non-apoptotic programmed cell death induced by iron-dependent
lipid peroxidation, contributes to the development of complex diseases such as non-alcoholic steatohepatitis, cardiomyopathy, renal ischemia-reperfusion, and neurodegenerative diseases. Therefore, inhibiting ferroptosis can improve the pathophysiology of associated metabolic diseases. This review describes the vital role of ferroptosis in mediating the development
of certain metabolic diseases. Besides, the potential risk of iron and ferroptosis in atherosclerosis and cardiovascular diseases is also described. Iron overload and ferroptosis are potential secondary causes of death in metabolic diseases. Moreover,
this review also provides potential novel approaches against ferroptosis based on recent research advances.
Conclusion:
Several controversies exist concerning mechanisms underlying ferroptotic cell death in metabolic diseases, particularly in atherosclerosis. Since ferroptosis participates in the progression of metabolic diseases such as non-alcoholic steatohepatitis (NASH), there is a need to develop new drugs targeting ferroptosis to alleviate such diseases.
Collapse
Affiliation(s)
- Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijie Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
39
|
Su CM, Rowland RRR, Yoo D. Recent Advances in PRRS Virus Receptors and the Targeting of Receptor-Ligand for Control. Vaccines (Basel) 2021; 9:vaccines9040354. [PMID: 33916997 PMCID: PMC8067724 DOI: 10.3390/vaccines9040354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor–ligand for the control of PRRS.
Collapse
|
40
|
Gemtuzumab-Ozogamicin-Related Impaired Hemoglobin-Haptoglobin Scavenging as On-Target/Off-Tumor Toxicity of Anti-CD33 AML Therapy: A Report of Two Cases. Case Rep Hematol 2021; 2021:6641349. [PMID: 33824768 PMCID: PMC8007360 DOI: 10.1155/2021/6641349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023] Open
Abstract
Gemtuzumab-ozogamicin (GO) is a humanized anti-CD33 antibody, which is conjugated to a cytotoxic calicheamicin. It is used to treat acute myeloid leukemia (AML) in combination with chemotherapy. We describe here two GO-treated acute myeloid leukemia (AML) cases: both patients suffered from a toxic syndrome, which manifested as impaired hemoglobin-haptoglobin scavenging and accumulation of hemolysis-related products. Our observations and earlier reports indicated that the reaction was caused by GO-targeted destruction of CD33 + CD163+ monocytes/macrophages, which are responsible for the clearance of hemoglobin-haptoglobin complexes. The rise of plasma lactate dehydrogenase was an early sign of the reaction, and both patients had high levels of free plasma hemoglobin, but plasma haptoglobin and bilirubin levels were paradoxically normal. Symptoms included septic fever and abnormalities in cardiac tests and in the case of the first patient, severe neurological symptoms which required intensive care unit admittance. Therapeutic plasma exchanges supported the patients until the recovery of normal hematopoiesis. The symptoms may be easily confounded with infectious complications-related organ damage. Regarding the increasing use of gemtuzumab-ozogamicin and other emerging CD33-targeted cell therapies, we want to highlight this mostly unknown and probably underdiagnosed toxicity.
Collapse
|
41
|
Liu Q, Wu J, Zhang X, Wu X, Zhao Y, Ren J. Iron homeostasis and disorders revisited in the sepsis. Free Radic Biol Med 2021; 165:1-13. [PMID: 33486088 DOI: 10.1016/j.freeradbiomed.2021.01.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022]
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host-response to inflammation, although it currently lacks a fully elucidated pathobiology. Iron is a crucial trace element that is essential for fundamental processes in both humans and bacteria. During sepsis, iron metabolism is altered, including increased iron transport and uptake into cells and decreased iron export. The intracellular sequestration of iron limits its availability to circulating pathogens, which serves as a conservative strategy against the pathogens. Although iron retention has been showed to have protective protect effects, an increase in labile iron may cause oxidative injury and cell death (e.g., pyroptosis, ferroptosis) as the condition progresses. Moreover, iron disorders are substantial and correlate with the severity of sepsis. This also suggests that iron may be useful as a diagnostic marker for evaluating the severity and predicting the outcome of the disease. Further knowledge about these disorders could help in evaluating how drugs targeting iron homeostasis can be optimally applied to improve the treatment of patients with sepsis. Here, we present a comprehensive review of recent advances in the understanding of iron metabolism, focusing on the regulatory mechanisms and iron-mediated injury in sepsis.
Collapse
Affiliation(s)
- Qinjie Liu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Jie Wu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210002, PR China.
| | - Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, PR China.
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, 210002, PR China.
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210002, PR China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China; Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210002, PR China; Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, PR China.
| |
Collapse
|
42
|
Vona R, Sposi NM, Mattia L, Gambardella L, Straface E, Pietraforte D. Sickle Cell Disease: Role of Oxidative Stress and Antioxidant Therapy. Antioxidants (Basel) 2021; 10:antiox10020296. [PMID: 33669171 PMCID: PMC7919654 DOI: 10.3390/antiox10020296] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb), which affects approximately a million people worldwide. It is characterized by a single nucleotide substitution in the β-globin gene, leading to the production of abnormal sickle hemoglobin (HbS) with multi-system consequences. HbS polymerization is the primary event in SCD. Repeated polymerization and depolymerization of Hb causes oxidative stress that plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e., by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.
Collapse
Affiliation(s)
- Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Nadia Maria Sposi
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Lorenza Mattia
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00161 Rome, Italy;
- Endocrine-Metabolic Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
- Correspondence: ; Tel.: +39-064-990-2443; Fax: +39-064-990-3690
| | - Donatella Pietraforte
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
43
|
Soluble Receptors Affecting Stroke Outcomes: Potential Biomarkers and Therapeutic Tools. Int J Mol Sci 2021; 22:ijms22031108. [PMID: 33498620 PMCID: PMC7865279 DOI: 10.3390/ijms22031108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Soluble receptors are widely understood to be freestanding moieties formed via cleavage from their membrane-bound counterparts. They have unique structures, are found among various receptor families, and have intriguing mechanisms of generation and release. Soluble receptors’ ability to exhibit pleiotropic action by receptor modulation or by exhibiting a dual role in cytoprotection and neuroinflammation is concentration dependent and has continually mystified researchers. Here, we have compiled findings from preclinical and clinical studies to provide insights into the role of soluble/decoy receptors, focusing on the soluble cluster of differentiation 36, the soluble cluster of differentiation 163, and soluble lipoprotein-related protein 1 (sCD36, sCD163, and sLRP1, respectively) and the functions they could likely serve in the management of stroke, as they would notably regulate the bioavailability of the hemoglobin and heme after red blood cell lysis. The key roles that these soluble receptors play in inflammation, oxidative stress, and the related pharmacotherapeutic potential in improving stroke outcomes are described. The precise pleiotropic physiological functions of soluble receptors remain unclear, and further scientific investigation/validation is required to establish their respective role in diagnosis and therapy.
Collapse
|
44
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2021; 73:64-91. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
AbstractCardiovascular disease is the leading cause of death globally. Coronary artery disease (CAD) is a chronic inflammatory disease usually caused by atherosclerosis, in which the coronary arteries become narrowed by atheromatous plaque. Plaques in atherosclerosis are formed through the accumulation of lipids and various immune cells. Both adaptive and innate immune systems are involved in the pathogenesis of atherosclerosis and facilitate plaque formation and disease progression. Almost all immune system cells, including neutrophils, B cells, T cells monocytes, macrophages, foam cells, and dendritic cells (DCs), play a vital role in atherosclerotic plaque. Atherogenesis, the normal function of the endothelium, is initially disrupted and, then, cells of the immune system are recruited to the endothelium following increased expression of cell adhesion molecules. Accumulation of immune cells and lipids leads to the formation of a necrotic nucleus. As the disease progresses, smooth muscle cells form fibrous layers, whose rupture results in exposing the necrotic nucleus and thrombosis. Accordingly, the present review was conducted to determine the role of different cells in innate and adaptive immune systems in inhibition and progression of atherosclerosis.
Collapse
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
45
|
Singh D, Wasan H, Reeta KH. Heme oxygenase-1 modulation: A potential therapeutic target for COVID-19 and associated complications. Free Radic Biol Med 2020; 161:263-271. [PMID: 33091573 PMCID: PMC7571447 DOI: 10.1016/j.freeradbiomed.2020.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to infect hundred thousands of people every day worldwide. Since it is a novel virus, research continues to update the possible therapeutic targets when new evidence regarding COVID-19 are gathered. This article presents an evidence-based hypothesis that activating the heme oxygenase-1 (HO-1) pathway is a potential target for COVID-19. Interferons (IFNs) have broad-spectrum antiviral activity including against SARS-CoV-2. Induction of HO-1 and increase in the heme catabolism end-product confer antiviral activity. IFN activation results in inhibition of viral replication in various viral infections. COVID-19 induced inflammation as well as acute respiratory distress syndrome (ARDS), and coagulopathies are now known major causes of mortality. A protective role of HO-1 induction in inflammation, inflammation-induced coagulation, and ARDS has been reported. Based on an association of HO-1 promoter polymorphisms and disease severity, we propose an evaluation of the status of these polymorphisms in COVID-19 patients who become severely ill. If an association is established, it might be helpful in identifying patients at high risk. Hence, we hypothesize that HO-1 pathway activation could be a therapeutic strategy against COVID-19 and associated complications.
Collapse
Affiliation(s)
- Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
46
|
Kumar V, Ray S, Aggarwal S, Biswas D, Jadhav M, Yadav R, Sabnis SV, Banerjee S, Talukdar A, Kochar SK, Shetty S, Sehgal K, Patankar S, Srivastava S. Multiplexed quantitative proteomics provides mechanistic cues for malaria severity and complexity. Commun Biol 2020; 3:683. [PMID: 33204009 PMCID: PMC7672109 DOI: 10.1038/s42003-020-01384-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Management of severe malaria remains a critical global challenge. In this study, using a multiplexed quantitative proteomics pipeline we systematically investigated the plasma proteome alterations in non-severe and severe malaria patients. We identified a few parasite proteins in severe malaria patients, which could be promising from a diagnostic perspective. Further, from host proteome analysis we observed substantial modulations in many crucial physiological pathways, including lipid metabolism, cytokine signaling, complement, and coagulation cascades in severe malaria. We propose that severe manifestations of malaria are possibly underpinned by modulations of the host physiology and defense machinery, which is evidently reflected in the plasma proteome alterations. Importantly, we identified multiple blood markers that can effectively define different complications of severe falciparum malaria, including cerebral syndromes and severe anemia. The ability of our identified blood markers to distinguish different severe complications of malaria may aid in developing new clinical tests for monitoring malaria severity.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Manali Jadhav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Radha Yadav
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sanjeev V Sabnis
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Soumaditya Banerjee
- Medicine Department, Medical College Hospital Kolkata, 88, College Street, Kolkata, 700073, India
| | - Arunansu Talukdar
- Medicine Department, Medical College Hospital Kolkata, 88, College Street, Kolkata, 700073, India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Centre, S.P. Medical College, Bikaner, 334003, India
| | - Suvin Shetty
- Dr. L H Hiranandani Hospital, Mumbai, 400076, India
| | | | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
47
|
Alpha-2-macroglobulin from circulating exosome-like vesicles is increased in women with preterm pregnancies. Sci Rep 2020; 10:16961. [PMID: 33046786 PMCID: PMC7552414 DOI: 10.1038/s41598-020-73772-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Preterm labor (PTL) and Preterm Premature Rupture of Membranes (PPROM) impose substantial morbimortality on mothers and newborns. Exosomes act in intercellular communication carrying molecules involved in physiopathological processes. Little is known about exosomal proteins in prematurity. Our aim was to evaluate the protein expression of hemopexin, C1 inhibitor (C1INH) and alpha-2-macroglobulin (A2M) from circulating exosomes of women with PTL and PPROM. Plasma was obtained from PTL, PPROM, Term in labor and Term out of labor (T) patients, exosomes were isolated by ultracentrifugation, then lysed and the proteins quantified. Western Blot (WB) and Nanoparticle Tracking Analysis (NTA) were performed. Data were compared by Kruskal–Wallis, unpaired T-test and one-way ANOVA. WB and NTA confirmed exosome isolation (concentration: 4.3 × 1010 particles/ml ± 1.9 × 1010). There was no difference regarding hemopexin or C1INH expression between the groups. For A2M, the fold change was significantly higher on preterm groups when compared to term groups (1.07 ± 0.30 vs. 0.42 ± 0.17, p < 0.0001). Higher levels of A2M in circulating exosomes are linked to preterm pregnancies. sEV are strong candidates to intermediate maternal–fetal communication, carrying preterm labor-related immunomodulatory proteins.
Collapse
|
48
|
Skuratovskaia D, Vulf M, Khaziakhmatova O, Malashchenko V, Komar A, Shunkin E, Shupletsova V, Goncharov A, Urazova O, Litvinova L. Tissue-Specific Role of Macrophages in Noninfectious Inflammatory Disorders. Biomedicines 2020; 8:E400. [PMID: 33050138 PMCID: PMC7600904 DOI: 10.3390/biomedicines8100400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation may not begin with local tissue disorders, such as hypoxia, but with the accumulation of critically activated macrophages in one site. The purpose of this review is to analyze the data reported in the scientific literature on the features of the functions of macrophages and their contributions to the development of pathology in various tissues during aseptic inflammation in obese subjects. In individuals with obesity, increased migration of monocytes from the peripheral blood to various tissues, the proliferation of resident macrophages and a change in the balance between alternatively activated anti-inflammatory macrophages (M2) and pro-inflammatory classically activated macrophages (M1) towards the latter have been observed. The primary cause of some metabolic pathologies has been precisely identified as the recruitment of macrophages with an altered phenotype, which is probably typical for many other pathologies. Recent studies have identified phenotypes, such as metabolically activated M (MMe), oxidized (Mox), hemoglobin-related macrophages (Mhem and MHb), M4 and neuroimmunological macrophages (NAM, SAM), which directly and indirectly affect energy metabolism. The high heterogeneity of macrophages in tissues contributes to the involvement of these cells in the development of a wide range of immune responses, including pathological ones. The replenishment of tissue-specific macrophages occurs at the expense of infiltrating monocyte-derived macrophages (MoMFs) in the pathological process. The origin of MoMFs from a general precursor retains their common regulatory mechanisms and similar sensitivity to regulatory stimuli. This makes it possible to find universal approaches to the effect on these cells and, as a consequence, universal approaches for the treatment of various pathological conditions.
Collapse
Affiliation(s)
- Daria Skuratovskaia
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| | - Aleksandra Komar
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| | - Egor Shunkin
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| | - Valeriya Shupletsova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| | - Andrei Goncharov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| | - Olga Urazova
- Pathophysiology Division, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (M.V.); (O.K.); (V.M.); (A.K.); (E.S.); (V.S.); (A.G.); (L.L.)
| |
Collapse
|
49
|
Suttorp CM, van Rheden REM, van Dijk NWM, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. Heme Oxygenase Protects against Placental Vascular Inflammation and Abortion by the Alarmin Heme in Mice. Int J Mol Sci 2020; 21:ijms21155385. [PMID: 32751152 PMCID: PMC7432719 DOI: 10.3390/ijms21155385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Both infectious as non-infectious inflammation can cause placental dysfunction and pregnancy complications. During the first trimester of human gestation, when palatogenesis takes place, intrauterine hematoma and hemorrhage are common phenomena, causing the release of large amounts of heme, a well-known alarmin. We postulated that exposure of pregnant mice to heme during palatogenesis would initiate oxidative and inflammatory stress, leading to pathological pregnancy, increasing the incidence of palatal clefting and abortion. Both heme oxygenase isoforms (HO-1 and HO-2) break down heme, thereby generating anti-oxidative and -inflammatory products. HO may thus counteract these heme-induced injurious stresses. To test this hypothesis, we administered heme to pregnant CD1 outbred mice at Day E12 by intraperitoneal injection in increasing doses: 30, 75 or 150 μmol/kg body weight (30H, 75H or 150H) in the presence or absence of HO-activity inhibitor SnMP from Day E11. Exposure to heme resulted in a dose-dependent increase in abortion. At 75H half of the fetuses where resorbed, while at 150H all fetuses were aborted. HO-activity protected against heme-induced abortion since inhibition of HO-activity aggravated heme-induced detrimental effects. The fetuses surviving heme administration demonstrated normal palatal fusion. Immunostainings at Day E16 demonstrated higher numbers of ICAM-1 positive blood vessels, macrophages and HO-1 positive cells in placenta after administration of 75H or SnMP + 30H. Summarizing, heme acts as an endogenous “alarmin” during pregnancy in a dose-dependent fashion, while HO-activity protects against heme-induced placental vascular inflammation and abortion.
Collapse
Affiliation(s)
- Christiaan M. Suttorp
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - René E. M. van Rheden
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Natasja W. M. van Dijk
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Maria P. A. C. Helmich
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, CH-3010 Bern, Switzerland
- Faculty of Dentistry, Universitas Indonesia, Jakarta ID-10430, Indonesia
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-24-36-18824
| |
Collapse
|
50
|
Jończy A, Lipiński P, Ogórek M, Starzyński RR, Krzysztofik D, Bednarz A, Krzeptowski W, Szudzik M, Haberkiewicz O, Miłoń A, Grzmil P, Lenartowicz M. Functional iron deficiency in toxic milk mutant mice (tx-J) despite high hepatic ferroportin: a critical role of decreased GPI-ceruloplasmin expression in liver macrophages. Metallomics 2020; 11:1079-1092. [PMID: 31011744 DOI: 10.1039/c9mt00035f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Jackson toxic milk mutant mice (tx-J) carrying a missense mutation in the Atp7b gene are animal models of the Wilson disease. In both the Wilson patients and the tx-J mice, mutations in the ATP7B/Atp7b gene lead to disturbances in copper metabolism. The dysfunction of ATP7B/Atp7b leads to a reduction in the incorporation of copper into apoceruloplasmin; this decreases the ferroxidase activity of ceruloplasmin necessary for the efflux of iron from cells and reduces the release of copper from hepatocytes to the bile; this results in a massive hepatic copper accumulation. A decrease in the ferroxidase activity of ceruloplasmin in the tx-J mice emphasises the practicality of this animal model for the exploration of disturbances in iron balance triggered by dysregulation of copper metabolism. We found that 6-month-old tx-J mutants developed mild anaemia caused by functional iron deficiency. The tx-J mutants showed decreased plasma iron levels with concomitant iron accumulation in hepatocytes and liver macrophages. Hepatic iron retention was accompanied by decreased expression of the membrane form of ceruloplasmin in both liver cell types. Interestingly, in the liver of mutants, we found high levels of ferroportin (an iron exporter) on the surface of liver macrophages despite increased hepatic expression of hepcidin, a peptide inducing internalization and degradation of ferroportin. We conclude that even when the ferroportin expression is high, ceruloplasmin remains a limiting factor in the release of iron to the extracellular environment.
Collapse
Affiliation(s)
- Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Postepu 36A, 05-552 Magdalenka, Jastrzebiec, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|