1
|
Łoboda A, Dulak J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024; 13:158. [PMID: 38247849 PMCID: PMC10814317 DOI: 10.3390/cells13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland;
| | | |
Collapse
|
2
|
Kim H, Kim MJ, Moon SA, Cho HJ, Lee YS, Park SJ, Kim Y, Baek IJ, Kim BJ, Lee SH, Koh JM. Aortic carboxypeptidase-like protein, a putative myokine, stimulates the differentiation and survival of bone-forming osteoblasts. FASEB J 2023; 37:e23104. [PMID: 37486753 DOI: 10.1096/fj.202300140r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
A new target that stimulates bone formation is needed to overcome limitations of current anti-osteoporotic drugs. Myokines, factors secreted from muscles, may modulate it. In this study, we investigated the role of aortic carboxypeptidase-like protein (ACLP), which is highly expressed in skeletal muscles, on bone formation. MC3T3-E1 cells and/or calvaria osteoblasts were treated with recombinant N-terminal mouse ACLP containing a signal peptide [rmACLP (N)]. The expression and secretion of ACLP were higher in skeletal muscle and differentiated myotube than in other tissues and undifferentiated myoblasts, respectively. rmACLP (N) increased bone formation, ALP activity, and phosphorylated p38 mitogen-activated protein (MAP) kinase in osteoblasts; reversal was achieved by pre-treatment with a TGF-β receptor inhibitor. Under H2 O2 treatment, rmACLP (N) increased osteoblast survival, phosphorylated p38 MAP kinase, and the nuclear translocation of FoxO3a in osteoblasts. H2 O2 treatment caused rmACLP (N) to suppress its apoptotic, oxidative, and caspase-9 activities. rmACLP (N)-stimulated osteoblast survival was reversed by pre-treatment with a p38 inhibitor, a TGF-β-receptor II blocking antibody, and a FoxO3a shRNA. Conditioned media (CM) from muscle cells stimulated osteoblast survival under H2 O2 treatment, in contrast to CM from ACLP knockdown muscle cells. rmACLP (N) increased the expressions of FoxO3a target anti-oxidant genes such as Sod2, Trx2, and Prx5. In conclusion, ACLP stimulated the differentiation and survival of osteoblasts. This led to the stimulation of bone formation by the activation of p38 MAP kinase and/or FoxO3a via TGF-β receptors. These findings suggest a novel role for ACLP in bone metabolism as a putative myokine.
Collapse
Affiliation(s)
- Hanjun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Min Ji Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sung Ah Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Yewon Kim
- AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Liu Y, Hu Z, Zhang Y, Wang C. Long non-coding RNAs in Epstein-Barr virus-related cancer. Cancer Cell Int 2021; 21:278. [PMID: 34034760 PMCID: PMC8144696 DOI: 10.1186/s12935-021-01986-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epstein Barr-virus (EBV) is related to several cancers. Long non-coding RNAs (lncRNAs) act by regulating target genes and are involved in tumourigenesis. However, the role of lncRNAs in EBV-associated cancers is rarely reported. Understanding the role and mechanism of lncRNAs in EBV-associated cancers may contribute to diagnosis, prognosis and clinical therapy in the future. EBV encodes not only miRNAs, but also BART lncRNAs during latency and the BHLF1 lncRNA during both the latent and lytic phases. These lncRNAs can be targeted regulate inflammation, invasion, and migration and thus tumourigenesis. The products of EBV also directly and indirectly regulate host lncRNAs, including LINC00312, NORAD CYTOR, SHNG8, SHNG5, MINCR, lncRNA-BC200, LINC00672, MALATI1, LINC00982, LINC02067, IGFBP7-AS1, LOC100505716, LOC100128494, NAG7 and RP4-794H19.1, to facilitate tumourigenesis using different mechanisms. Additionally, lncRNAs have been previously validated to interact with microRNAs (miRNAs), and lncRNAs and miRNAs mutually suppress each other. The EBV-miR-BART6-3p/LOC553103/STMN1 axis inhibits EBV-associated tumour cell proliferation. Additionally, H. pylori-EBV co-infection promotes inflammatory lesions and results in EMT. HPV-EBV co-infection inhibits the transition from latency to lytic replication. KSHV-EBV co-infection aggravates tumourigenesis in huNSG mice. COVID-19-EBV co-infection may activate the immune system to destroy a tumour, although this situation is rare and the mechanism requires further confirmation. Hopefully, this information will shed some light on tumour therapy strategies tumourigenesis. Additionally, this strategy benefits for infected patients by preventing latency to lytic replication. Understanding the role and expression of lnRNAs in these two phases of EBV is critical to control the transition from latency to the lytic replication phase. This review presents differential expressed lncRNAs in EBV-associated cancers and provides resources to aid in developing superior strategies for clinical therapy.
Collapse
Affiliation(s)
- Yitong Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhizhong Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Zhao L, Liu T, Dou ZJ, Wang MT, Hu ZX, Wang B. CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced renal injury in rats. BMC Nephrol 2021; 22:153. [PMID: 33902473 PMCID: PMC8077827 DOI: 10.1186/s12882-021-02362-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) induced chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH). Our study investigate the mechanism underlying CIH-induced renal damage and whether the cannabinoid receptor 1 (CB1R) antagonist rimonabant (Ri) alleviates CIH-induced renal injury. METHODS Male Sprague-Dawley rats were randomly divided into five groups: one normal control (NC) group, two chronic intermittent hypoxia (CIH) groups, and two CIH + Ri groups. Rats in the NC groups were exposed to room air, while the CIH groups were exposed to a CIH environment for 4 weeks (4w CIH group) and 6 weeks (6w CIH group), respectively. Additionally, rats in the CIH + Ri groups were administered 1.5 mg/kg/day Ri for 4 weeks (4w CIH + Ri group) and 6 weeks (6w CIH + Ri group), respectively. Following this, the rats were euthanized and kidneys were excised for downstream analysis. In the renal tissues, the morphological alterations were examined via haematoxylin eosin (HE) staining and periodic acid schiff (PAS) staining, CB1R, Fis1, Mfn1, and p66Shc expression was assessed through western blot and immunohistochemistry, and the mitochondrial ultrastructural changes in kidney sections were assessed by electron microscopy. RESULTS CB1R expression in the 4w and 6w CIH groups was significantly elevated, and further increased with prolonged hypoxia; however, Ri prevented the increase in CIH-induced CB1R expression. Fis1 and p66Shc expression in the CIH groups were increased, but Mfn1 expression decreased. Ri decreased Fis1 and p66Shc expression and increased Mfn1 expression. Renal damage in the 4w or 6w CIH + Ri group was evidently improved compared with that in the 4w or 6w CIH group. CB1R expression was positively correlated with Fis1 and p66Shc and negatively correlated with Mfn1. Meanwhile, electron microscopy showed that the percentage of fragmented mitochondria in the tubular cells in each group was consistent with the trend of CB1R expression. CONCLUSION CIH causes endocannabinoid disorders and induces abnormal mitochondrial dynamics, resulting in renal injury. Treatment with CB1R antagonists reduces CIH-induced renal damage by inhibiting dysregulated renal mitochondrial dynamics.
Collapse
Affiliation(s)
- Li Zhao
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Tao Liu
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhan-Jun Dou
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Mei-Ting Wang
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zi-Xuan Hu
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bei Wang
- The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi Province, People's Republic of China.
| |
Collapse
|
6
|
The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis 2021; 12:58. [PMID: 33431811 PMCID: PMC7801447 DOI: 10.1038/s41419-020-03355-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases. In recent times, it is widely accepted that these toxic by-products could act as secondary messengers, such as hydrogen peroxide (H2O2), to drive important signaling pathways. Notably, mitochondria are considered one of the major producers of ROS, especially in the production of mitochondrial H2O2. As a secondary messenger, cellular H2O2 can initiate redox signaling through oxidative post-translational modifications (oxPTMs) on the thiol group of the amino acid cysteine. With the current consensus that cellular ROS could drive important biological signaling pathways through redox signaling, researchers have started to investigate the role of cellular ROS in the pathogenesis of neurodegenerative diseases. Moreover, mitochondrial dysfunction has been linked to various neurodegenerative diseases, and recent studies have started to focus on the implications of mitochondrial ROS from dysfunctional mitochondria on the dysregulation of redox signaling. Henceforth, in this review, we will focus our attention on the redox signaling of mitochondrial ROS, particularly on mitochondrial H2O2, and its potential implications with neurodegenerative diseases.
Collapse
|
7
|
Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin Sci (Lond) 2020; 134:1491-1519. [PMID: 32584404 DOI: 10.1042/cs20190559] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and aging is the primary risk factor for CVD. The development of vascular dysfunction, including endothelial dysfunction and stiffening of the large elastic arteries (i.e., the aorta and carotid arteries), contribute importantly to the age-related increase in CVD risk. Vascular aging is driven in large part by oxidative stress, which reduces bioavailability of nitric oxide and promotes alterations in the extracellular matrix. A key upstream driver of vascular oxidative stress is age-associated mitochondrial dysfunction. This review will focus on vascular mitochondria, mitochondrial dysregulation and mitochondrial reactive oxygen species (ROS) production and discuss current evidence for prevention and treatment of vascular aging via lifestyle and pharmacological strategies that improve mitochondrial health. We will also identify promising areas and important considerations ('research gaps') for future investigation.
Collapse
|
8
|
Lyu D, Tang N, Womack AW, He YJ, Lin Q. Neonatal ketamine exposure-induced hippocampal neuroapoptosis in the developing brain impairs adult spatial learning ability. Neural Regen Res 2020; 15:880-886. [PMID: 31719253 PMCID: PMC6990767 DOI: 10.4103/1673-5374.268929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Ketamine exposure can lead to selective neuroapoptosis in the developing brain. p66ShcA, the cellular adapter protein expressed selectively in immature neurons, is a known pro-apoptotic molecule that triggers neuroapoptosis when activated. Sprague-Dawley rats at postnatal day 7 were subcutaneously injected in the neck with ketamine 20 mg/kg, six times at 2-hour intervals. At 0, 1, 3, and 6 hours after final injection, western blot assay was used to detect the expression of cleaved caspase-3, p66ShcA, and phosphorylated p66ShcA. We found that the expression of activated p66ShcA and caspase-3 increased after ketamine exposure and peaked at 3 hours. The same procedure was performed on a different group of rats. At the age of 4 weeks, spatial learning and memory abilities were tested with the Morris water maze. Latency to find the hidden platform for these rats was longer than it was for control rats, although the residence time in the target quadrant was similar. These findings indicate that ketamine exposure resulted in p66ShcA being activated in the course of an apoptotic cascade during the neonatal period. This may have contributed to the deficit in spatial learning and memory that persisted into adulthood. The experimental protocol was approved by the Institutional Animal Care and Use Committee at the University of Texas at Arlington, USA (approval No. A13.008) on January 22, 2013.
Collapse
Affiliation(s)
- Dan Lyu
- Department of Pain Management, Tianjin First Center Hospital, Tianjin, China; Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA
| | - Ning Tang
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA; Reproductive Medicine Center, the 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong Province, China
| | - Andrew W Womack
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA
| | - Yong-Jin He
- Department of Pain Management, Tianjin First Center Hospital, Tianjin, China
| | - Qing Lin
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
9
|
P66Shc and vascular endothelial function. Biosci Rep 2019; 39:BSR20182134. [PMID: 30918103 PMCID: PMC6488855 DOI: 10.1042/bsr20182134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Dysfunctional endothelium is an early change in vasculature known to be associated with atherosclerosis. Among many regulators of vascular endothelial function, p66Shc has consistently been shown to mediate endothelial dysfunction. Over more than three decades of active research in the field of the physiological function of p66Shc, regulation of vascular endothelial functions has emerged as one of the most robust effects in a broad range of pathological conditions including hyperlipidemia, diabetes, and aging. A significant understanding has been developed with respect to the molecular signaling regulating the oxidative function of p66Shc in endothelial cells and its targets and regulators. In addition, novel regulatory modifications of p66Shc controlling its oxidative function, subcellular distribution, and stability have also been reported. This review will focus on summarizing the molecular signaling regulating the oxidative function of p66Shc and its role in vascular endothelium.
Collapse
|
10
|
p66Shc activation promotes increased oxidative phosphorylation and renders CNS cells more vulnerable to amyloid beta toxicity. Sci Rep 2018; 8:17081. [PMID: 30459314 PMCID: PMC6244282 DOI: 10.1038/s41598-018-35114-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022] Open
Abstract
A key pathological feature of Alzheimer's disease (AD) is the accumulation of the neurotoxic amyloid beta (Aβ) peptide within the brains of affected individuals. Previous studies have shown that neuronal cells selected for resistance to Aβ toxicity display a metabolic shift from mitochondrial-dependent oxidative phosphorylation (OXPHOS) to aerobic glycolysis to meet their energy needs. The Src homology/collagen (Shc) adaptor protein p66Shc is a key regulator of mitochondrial function, ROS production and aging. Moreover, increased expression and activation of p66Shc promotes a shift in the cellular metabolic state from aerobic glycolysis to OXPHOS in cancer cells. Here we evaluated the hypothesis that activation of p66Shc in CNS cells promotes both increased OXPHOS and enhanced sensitivity to Aβ toxicity. The effect of altered p66Shc expression on metabolic activity was assessed in rodent HT22 and B12 cell lines of neuronal and glial origin respectively. Overexpression of p66Shc repressed glycolytic enzyme expression and increased both mitochondrial electron transport chain activity and ROS levels in HT22 cells. The opposite effect was observed when endogenous p66Shc expression was knocked down in B12 cells. Moreover, p66Shc activation in both cell lines increased their sensitivity to Aβ toxicity. Our findings indicate that expression and activation of p66Shc renders CNS cells more sensitive to Aβ toxicity by promoting mitochondrial OXPHOS and ROS production while repressing aerobic glycolysis. Thus, p66Shc may represent a potential therapeutically relevant target for the treatment of AD.
Collapse
|
11
|
Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy. Clin Sci (Lond) 2018; 132:1297-1314. [PMID: 29760122 DOI: 10.1042/cs20180005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Abstract
Renal tubular injury is increasingly being recognized as an early characteristic of diabetic nephropathy (DN). Mitochondrial dynamic alterations and redox protein p66Shc-mediated oxidative stress are both critical for ensuing diabetic tubular cell injury and apoptosis; whether these two processes are interlinked remains unclear. In the present study, we observed changes in mitochondrial morphology and expression of associated proteins in tubules of patients with DN. We demonstrated mitochondrial fragmentation as an important pathogenic feature of tubular cell injury that is linked to oxidative stress and p66Shc up-regulation. In renal proximal tubular cells, alterations in mitochondrial dynamics and expression of fission-fusion proteins were observed under high glucose (HG) ambience, along with p66Shc Ser36 phosphorylation. Gene ablation of p66Shc alleviated HG-induced mitochondrial fragmentation, down-regulated Fis1 and reduced p66Shc-Fis1 binding, increased Mfn1 expression, and disrupted interactions between Mfn1 and proapoptotic Bak. Overexpression of p66Shc exacerbated these changes, whereas overexpression of dominant-negative p66Shc Ser36 mutant had a marginal effect under HG, indicating that p66Shc phosphorylation as a prerequisite in the modulation of mitochondrial dynamics. Disrupted mitochondrial dynamics and enhanced Mfn1-Bak interactions modulated by p66Shc led to loss of mitochondrial voltage potential, cytochrome C release, excessive ROS generation, and apoptosis. Taken together, these results link p66Shc to mitochondrial dynamic alterations in the pathogenesis of DN and unveil a novel mechanism by which p66Shc mediates HG-induced mitochondrial fragmentation and proapoptotic signaling that results in oxidative injury and apoptosis in the tubular compartment in human diabetic nephropathy.
Collapse
|
12
|
p66Shc Mediates Mitochondrial Dysfunction Dependent on PKC Activation in Airway Epithelial Cells Induced by Cigarette Smoke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5837123. [PMID: 29849902 PMCID: PMC5925171 DOI: 10.1155/2018/5837123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/08/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022]
Abstract
Airway epithelial mitochondrial injury plays a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The p66Shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction. However, little is known about the effect of p66Shc on airway epithelial damage in the development of COPD. The aim of the present study is to investigate the roles of p66Shc and its upstream regulators in the mitochondrial injury of airway epithelial cells (Beas-2b) induced by cigarette smoke extract (CSE). Our present study revealed that CSE increased p66Shc expression and its mitochondrial translocation in concentration and time-dependent manners in airway epithelial cells. And p66Shc siRNA significantly attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. The total and phosphorylated expression of PKCβ and PKCδ was significantly increased associated with mitochondrial dysfunction and cell injury when airway epithelial cells were exposed to 7.5% CSE. The pretreatments with pharmacological inhibitors of PKCβ and PKCδ could notably suppress p66Shc phosphorylation and its mitochondrial translocation and protect the mitochondria and cells against oxidative damage when airway epithelial cells were incubated with 7.5% CSE. These data suggest that a novel PKCβ/δ-p66Shc signaling pathway may be involved in the pathogenesis of COPD and other oxidative stress-associated pulmonary diseases and provide a potential therapeutic target for these diseases.
Collapse
|
13
|
Cheng XY, Li YY, Huang C, Li J, Yao HW. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema. Oncotarget 2017; 8:22513-22523. [PMID: 28186975 PMCID: PMC5410241 DOI: 10.18632/oncotarget.15116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.
Collapse
Affiliation(s)
- Xiao-Yu Cheng
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Yang-Yang Li
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Hong-Wei Yao
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| |
Collapse
|
14
|
Abstract
Various mechanisms in the mammalian body provide resilience against food deprivation and dietary stress. The ketone body β-hydroxybutyrate (BHB) is synthesized in the liver from fatty acids and represents an essential carrier of energy from the liver to peripheral tissues when the supply of glucose is too low for the body's energetic needs, such as during periods of prolonged exercise, starvation, or absence of dietary carbohydrates. In addition to its activity as an energetic metabolite, BHB is increasingly understood to have cellular signaling functions. These signaling functions of BHB broadly link the outside environment to epigenetic gene regulation and cellular function, and their actions may be relevant to a variety of human diseases as well as human aging.
Collapse
Affiliation(s)
- John C Newman
- Buck Institute for Research on Aging, Novato, California 94945; ,
- Gladstone Institutes, San Francisco, California 94158
- Division of Geriatrics, University of California, San Francisco, California 94143
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945; ,
- Gladstone Institutes, San Francisco, California 94158
- Division of Geriatrics, University of California, San Francisco, California 94143
| |
Collapse
|
15
|
Daiber A, Di Lisa F, Oelze M, Kröller‐Schön S, Steven S, Schulz E, Münzel T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol 2017; 174:1670-1689. [PMID: 26660451 PMCID: PMC5446573 DOI: 10.1111/bph.13403] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are associated with and/or caused by oxidative stress. This concept has been proven by using the approach of genetic deletion of reactive species producing (pro-oxidant) enzymes as well as by the overexpression of reactive species detoxifying (antioxidant) enzymes leading to a marked reduction of reactive oxygen and nitrogen species (RONS) and in parallel to an amelioration of the severity of diseases. Likewise, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of antioxidant RONS detoxifying enzymes. Thus, the consequences of the interaction (redox crosstalk) of superoxide/hydrogen peroxide produced by mitochondria with other ROS producing enzymes such as NADPH oxidases (Nox) are of outstanding importance and will be discussed including the consequences for endothelial nitric oxide synthase (eNOS) uncoupling as well as the redox regulation of the vascular function/tone in general (soluble guanylyl cyclase, endothelin-1, prostanoid synthesis). Pathways and potential mechanisms leading to this crosstalk will be analysed in detail and highlighted by selected examples from the current literature including hypoxia, angiotensin II-induced hypertension, nitrate tolerance, aging and others. The general concept of redox-based activation of RONS sources via "kindling radicals" and enzyme-specific "redox switches" will be discussed providing evidence that mitochondria represent key players and amplifiers of the burden of oxidative stress. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Matthias Oelze
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Swenja Kröller‐Schön
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Sebastian Steven
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- Center of Thrombosis and HemostasisMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Eberhard Schulz
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Thomas Münzel
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| |
Collapse
|
16
|
Wills MKB, Keyvani Chahi A, Lau HR, Tilak M, Guild BD, New LA, Lu P, Jacquet K, Meakin SO, Bisson N, Jones N. Signaling adaptor ShcD suppresses extracellular signal-regulated kinase (Erk) phosphorylation distal to the Ret and Trk neurotrophic receptors. J Biol Chem 2017; 292:5748-5759. [PMID: 28213521 DOI: 10.1074/jbc.m116.770511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Proteins of the Src homology and collagen (Shc) family are typically involved in signal transduction events involving Ras/MAPK and PI3K/Akt pathways. In the nervous system, they function proximal to the neurotrophic factors that regulate cell survival, differentiation, and neuron-specific characteristics. The least characterized homolog, ShcD, is robustly expressed in the developing and mature nervous system, but its contributions to neural cell circuitry are largely uncharted. We now report that ShcD binds to active Ret, TrkA, and TrkB neurotrophic factor receptors predominantly via its phosphotyrosine-binding (PTB) domain. However, in contrast to the conventional Shc adaptors, ShcD suppresses distal phosphorylation of the Erk MAPK. Accordingly, genetic knock-out of mouse ShcD enhances Erk phosphorylation in the brain. In cultured cells, this capacity is tightly aligned to phosphorylation of ShcD CH1 region tyrosine motifs, which serve as docking platforms for signal transducers, such as Grb2. Erk suppression is relieved through independent mutagenesis of the PTB domain and the CH1 tyrosine residues, and successive substitution of these tyrosines breaks the interaction between ShcD and Grb2, thereby promoting TrkB-Grb2 association. Erk phosphorylation can also be restored in the presence of wild type ShcD through Grb2 overexpression. Conversely, mutation of the ShcD SH2 domain results in enhanced repression of Erk. Although the SH2 domain is a less common binding interface in Shc proteins, we demonstrate that it associates with the Ptpn11 (Shp2) phosphatase, which in turn regulates ShcD tyrosine phosphorylation. We therefore propose a model whereby ShcD competes with neurotrophic receptors for Grb2 binding and opposes activation of the MAPK cascade.
Collapse
Affiliation(s)
- Melanie K B Wills
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ava Keyvani Chahi
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hayley R Lau
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Manali Tilak
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brianna D Guild
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Laura A New
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Peihua Lu
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kévin Jacquet
- Cancer Research Centre, Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO) and Centre Hospitalier Universitaire de Québec Research Centre-Université Laval, Québec City, Québec G1R 2J6, Canada, and
| | - Susan O Meakin
- Department of Biochemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Nicolas Bisson
- Cancer Research Centre, Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO) and Centre Hospitalier Universitaire de Québec Research Centre-Université Laval, Québec City, Québec G1R 2J6, Canada, and
| | - Nina Jones
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada,
| |
Collapse
|
17
|
Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sci 2016; 165:43-55. [DOI: 10.1016/j.lfs.2016.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
|
18
|
Curcumin ameliorates alveolar epithelial injury in a rat model of chronic obstructive pulmonary disease. Life Sci 2016; 164:1-8. [DOI: 10.1016/j.lfs.2016.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/23/2022]
|
19
|
Coenzyme Q10 protects renal proximal tubule cells against nicotine-induced apoptosis through induction of p66shc-dependent antioxidant responses. Apoptosis 2016; 22:220-228. [DOI: 10.1007/s10495-016-1309-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Wils J, Favre J, Bellien J. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther 2016; 170:98-115. [PMID: 27773788 DOI: 10.1016/j.pharmthera.2016.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes induces a decrease in the number and function of different pro-angiogenic cell types generically designated as putative endothelial progenitor cells (EPC), which encompasses cells from myeloid origin that act in a paracrine fashion to promote angiogenesis and putative "true" EPC that contribute to endothelial replacement. This not only compromises neovasculogenesis in ischemic tissues but also impairs, at an early stage, the reendotheliziation process at sites of injury, contributing to the development of endothelial dysfunction and cardiovascular complications. Hyperglycemia, insulin resistance and dyslipidemia promote putative EPC dysregulation by affecting the SDF-1/CXCR-4 and NO pathways and the p53/SIRT1/p66Shc axis that contribute to their mobilization, migration, homing and vasculogenic properties. To optimize the clinical management of patients with hypoglycemic agents, statins and renin-angiotensin system inhibitors, which display pleiotropic effects on putative EPC, is a first step to improve their number and angiogenic potential but specific strategies are needed. Among them, mobilizing therapies based on G-CSF, erythropoietin or CXCR-4 antagonism have been developed to increase putative EPC number to treat ischemic diseases with or without prior cell isolation and transplantation. Growth factors, genetic and pharmacological strategies are also evaluated to improve ex vivo cultured EPC function before transplantation. Moreover, pharmacological agents increasing in vivo the bioavailability of NO and other endothelial factors demonstrated beneficial effects on neovascularization in diabetic ischemic models but their effects on endothelial dysfunction remain poorly evaluated. More experiments are warranted to develop orally available drugs and specific agents targeting p66Shc to reverse putative EPC dysfunction in the expected goal of preventing endothelial dysfunction and diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Julien Wils
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Julie Favre
- MITOVASC Institute, Angers, France; Centre National de la Recherche Scientifique (CNRS) UMR 6214, Angers, France; INSERM U1083, Angers, France; University of Angers, Angers, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
21
|
Zhang C, Dong WB, Zhao S, Li QP, Kang L, Lei XP, Guo L, Zhai XS. Construction of p66Shc gene interfering lentivirus vectors and its effects on alveolar epithelial cells apoptosis induced by hyperoxia. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2611-22. [PMID: 27574400 PMCID: PMC4993261 DOI: 10.2147/dddt.s84820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The aim of this study is to observe the inhibitive effects of p66Shc gene interfering lentivirus vectors on the expression of p66Shc, and to explore its effects on alveolar epithelial cells apoptosis induced by hyperoxia. Methods The gene sequences were cloned into the pLenR-GPH-shRNA lentiviral vector, which was selected by Genebank searches. The pLenR-GPH-shRNA and lentiviral vector packaging plasmid mix were cotransfected into 293T cells to package lentiviral particles. Culture virus supernatant was harvested, and then the virus titer was determined by serial dilution assay. A549 cells were transduced with the constructed lentiviral vectors, and real-time polymerase chain reaction (RT-PCR) and Western blot were used to evaluate p66Shc expression. This study is divided into a control group, a hyperoxia group, an A549-p66ShcshRNA hyperoxia group, and a negative lentivirus group. Cell apoptosis was detected by flow cytometry after 24 hours; the expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-9 were detected by immunohistochemistry assay. The production of reactive oxygen species and cellular mitochondria membrane potential (ΔΨm) were determined by fluorescence microscopy. Results We successfully established the p66Shc gene interfering lentivirus vectors, A549-p66ShcshRNA. The A549-p66ShcshRNA was transfected into alveolar epithelial cells, and the inhibitive effects on the expression of p66Shc were observed. Both RT-PCR and Western blot demonstrated downregulation of p66Shc expression in A549 cells. In the A549-p66ShcshRNA hyperoxia group, we found dampened oxidative stress. A549-p66ShcshRNA can cause p66Shc gene silencing, reduce mitochondrial reactive oxygen species generation, reduce membrane potential decrease, reduce the apoptosis of A549 cells, and reduce alveolar epithelial cell injury, while the lentiviral empty vector group had no such changes. Conclusion p66Shc gene interfering lentivirus vector can affect the alveolar epithelial cells apoptosis induced by hyperoxia.
Collapse
Affiliation(s)
- Chan Zhang
- Department of Newborn Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Wen-Bin Dong
- Department of Newborn Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Shuai Zhao
- Department of Newborn Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Qing-Ping Li
- Department of Newborn Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Lan Kang
- Department of Newborn Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Xiao-Ping Lei
- Department of Newborn Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Lin Guo
- Department of Newborn Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Xue-Song Zhai
- Department of Newborn Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Giorgio M, Stendardo M, Migliaccio E, Pelicci PG. P66SHC deletion improves fertility and progeric phenotype of late-generation TERC-deficient mice but not their short lifespan. Aging Cell 2016; 15:446-54. [PMID: 26968134 PMCID: PMC4854904 DOI: 10.1111/acel.12448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress and telomere attrition are considered the driving factors of aging. As oxidative damage to telomeric DNA favors the erosion of chromosome ends and, in turn, telomere shortening increases the sensitivity to pro-oxidants, these two factors may trigger a detrimental vicious cycle. To check whether limiting oxidative stress slows down telomere shortening and related progeria, we have investigated the effect of p66SHC deletion, which has been shown to reduce oxidative stress and mitochondrial apoptosis, on late-generation TERC (telomerase RNA component)-deficient mice having short telomeres and reduced lifespan. Double mutant (TERC(-/-) p66SHC(-/-) ) mice were generated, and their telomere length, fertility, and lifespan investigated in different generations. Results revealed that p66SHC deletion partially rescues sterility and weight loss, as well as organ atrophy, of TERC-deficient mice, but not their short lifespan and telomere erosion. Therefore, our data suggest that p66SHC-mediated oxidative stress and telomere shortening synergize in some tissues (including testes) to accelerate aging; however, early mortality of late-generation mice seems to be independent of any link between p66SHC-mediated oxidative stress and telomere attrition.
Collapse
Affiliation(s)
- Marco Giorgio
- Experimental Oncology Department; European Institute of Oncology; Via Ripamonti 435 20141 Milan Italy
| | - Massimo Stendardo
- Experimental Oncology Department; European Institute of Oncology; Via Ripamonti 435 20141 Milan Italy
| | - Enrica Migliaccio
- Experimental Oncology Department; European Institute of Oncology; Via Ripamonti 435 20141 Milan Italy
| | - Pier Giuseppe Pelicci
- Experimental Oncology Department; European Institute of Oncology; Via Ripamonti 435 20141 Milan Italy
| |
Collapse
|
23
|
Andreyev AY, Kushnareva YE, Murphy AN, Starkov AA. Mitochondrial ROS Metabolism: 10 Years Later. BIOCHEMISTRY (MOSCOW) 2016; 80:517-31. [PMID: 26071769 DOI: 10.1134/s0006297915050028] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of mitochondria in oxidative stress is well recognized, but many questions are still to be answered. This article is intended to update our comprehensive review in 2005 by highlighting the progress in understanding of mitochondrial reactive oxygen species (ROS) metabolism over the past 10 years. We review the recently identified or re-appraised sources of ROS generation in mitochondria, such as p66(shc) protein, succinate dehydrogenase, and recently discovered properties of the mitochondrial antioxidant system. We also reflect upon some controversies, disputes, and misconceptions that confound the field.
Collapse
Affiliation(s)
- A Y Andreyev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0601, USA.
| | | | | | | |
Collapse
|
24
|
Hydrogen Sulfide and Cellular Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6043038. [PMID: 26881033 PMCID: PMC4736422 DOI: 10.1155/2016/6043038] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/06/2023]
Abstract
Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review.
Collapse
|
25
|
Abstract
For the past century, vitamin A has been considered to serve as a precursor for retinoids that facilitate vision or as a precursor for retinoic acid (RA), a signaling molecule that modulates gene expression. However, vitamin A circulates in plasma at levels that far exceed the amount needed for vision or the synthesis of nanomolar levels of RA, and this suggests that vitamin A alcohol (i.e. retinol) may possess additional biological activity. We have pursued this question for the last 20 years, and in this chapter, we unfold the story of our quest and the data that support a novel and distinct role for vitamin A (alcohol) action. Our current model supports direct binding of vitamin A to the activation domains of serine/threonine kinases, such as protein kinase C (PKC) and Raf isoforms, where it is involved in redox activation of these proteins. Redox activation of PKCs was first described by the founders of the PKC field, but several hurdles needed to be overcome before a detailed understanding of the biochemistry could be provided. Two discoveries moved the field forward. First, was the discovery that the PKCδ isoform was activated by cytochrome c, a protein with oxidoreduction activity in mitochondria. Second, was the revelation that both PKCδ and cytochrome c are tethered to p66Shc, an adapter protein that brings the PKC zinc-finger substrate into close proximity with its oxidizing partner. Detailed characterization of the PKCδ signalosome complex was made possible by the work of many investigators. Our contribution was determining that vitamin A is a vital co-factor required to support an unprecedented redox-activation mechanism. This unique function of vitamin A is the first example of a general system that connects the one-electron redox chemistry of a heme protein (cytochrome c) with the two-electron chemistry of a classical phosphoprotein (PKCδ). Furthermore, contributions to the regulation of mitochondrial energetics attest to biological significance of vitamin A alcohol action.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Member Emeritus, Immunology Program, Sloan-Kettering Institute for Cancer Research, 10065, New York, NY, USA.
| |
Collapse
|
26
|
Study of the activated macrophage transcriptome. Exp Mol Pathol 2015; 99:575-80. [PMID: 26439118 DOI: 10.1016/j.yexmp.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
Transcriptome analysis is a powerful modern tool to study possible alterations of gene expression associated with human diseases. It turns out to be especially promising for evaluation of gene expression changes in immunopathology, as immune cells have flexible gene expression patterns that can be switched in response to infection, inflammatory stimuli and exposure to various cytokines. In particular, macrophage polarization towards pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes can be successfully studied using the modern transcriptome analysis approaches. The two mostly used techniques for transcriptome analysis are microarray and next generation sequencing. In this review we will provide an overview of known gene expression changes associated with immunopathology and discuss the advantage and limitations of different methods of transcriptome analysis.
Collapse
|
27
|
Orrenius S, Gogvadze V, Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 2015; 460:72-81. [PMID: 25998735 DOI: 10.1016/j.bbrc.2015.01.137] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/19/2015] [Indexed: 12/15/2022]
Abstract
The calcium ion has long been known to play an important role in cell death regulation. Hence, necrotic cell death was early associated with intracellular Ca(2+) overload, leading to mitochondrial permeability transition and functional collapse. Subsequent characterization of the signaling pathways in apoptosis revealed that Ca(2+)/calpain was critically involved in the processing of the mitochondrially localized, Apoptosis Inducing Factor. More recently, the calcium ion has been demonstrated to play important regulatory roles also in other cell death modalities, notably autophagic cell death and anoikis. In this review, we summarize current knowledge about the mechanisms involved in Ca(2+) regulation of these various modes of cell death with a focus on the importance of the mitochondria.
Collapse
Affiliation(s)
- Sten Orrenius
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; MV Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
28
|
Abstract
SIGNIFICANCE The molecular mechanism of aging is still vigorously debated, although a general consensus exists that mitochondria are significantly involved in this process. However, the previously postulated role of mitochondrial-derived reactive oxygen species (ROS) as the damaging agents inducing functional loss in aging has fallen out of favor in the recent past. In this review, we critically examine the role of ROS in aging in the light of recent advances on the relationship between mitochondrial structure and function. RECENT ADVANCES The functional mitochondrial respiratory chain is now recognized as a reflection of the dynamic association of respiratory complexes in the form of supercomplexes (SCs). Besides providing kinetic advantage (channeling), SCs control ROS generation by the respiratory chain, thus providing a means to regulate ROS levels in the cell. Depending on their concentration, these ROS are either physiological signals essential for the life of the cell or toxic species that damage cell structure and functions. CRITICAL ISSUES We propose that under physiological conditions the dynamic nature of SCs reversibly controls the generation of ROS as signals involved in mitochondrial-nuclear communication. During aging, there is a progressive loss of control of ROS generation so that their production is irreversibly enhanced, inducing a vicious circle in which signaling is altered and structural damage takes place. FUTURE DIRECTIONS A better understanding on the forces affecting SC association would allow the manipulation of ROS generation, directing these species to their physiological signaling role.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| | - Giorgio Lenaz
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| |
Collapse
|
29
|
Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, Glanzmann M, Burger F, Paneni F, Galan K, Pelli G, Vuilleumier N, Belin A, Vallée JP, Mach F, Lüscher TF. Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J 2015; 36:516-26a. [PMID: 25336219 DOI: 10.1093/eurheartj/ehu400] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Several intracellular mediators have been implicated as new therapeutic targets against myocardial ischaemia and reperfusion injury. However, clinically effective salvage pathways remain undiscovered. Here, we focused on the potential role of the adaptor protein p66(Shc) as a regulator of myocardial injury in a mouse model of cardiac ischaemia and reperfusion. METHODS AND RESULTS Adult male p66(Shc) deficient (p66(Shc) (-/-)) and C57Bl/6 wild-type (WT) mice were exposed to 30, 45, or 60 min of ischaemia and reperfusion (5, 15 min, or 24 h). Infarct size, systemic and intracardiac inflammation and oxidants, as well as cytosolic and mitochondrial apoptotic pathways were investigated. Following 30, but not 45 or 60 min of ischaemia, genetic p66(Shc) deficiency was associated with larger infarcts. In WT mice, in vivo p66(Shc) knock down by siRNA with transient protein deficiency confirmed these findings. P66(Shc) inhibition was not associated with any modification in post-infarction inflammation, oxidative burst nor cardiac vessel density or structure. However, in p66(Shc) (-/-) mice activation of the protective and anti-apoptotic Reperfusion Injury Salvage Kinases and Survivor Activating Factor Enhancement pathways were blunted and mitochondrial swelling and cellular apoptosis via the caspase-3 pathway increased compared with WT. CONCLUSIONS Genetic deletion of p66(Shc) increased susceptibility to myocardial injury in response to short-term ischaemia and reperfusion in mice. Still, additional studies are needed for assessing the role of this pathway in acute coronary syndrome patients.
Collapse
Affiliation(s)
- Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland Department of Cardiology, University Heart Center, Center for Molecular Cardiology, University Hospital and University of Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Vincent Braunersreuther
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland Department of Cardiology, University Heart Center, Center for Molecular Cardiology, University Hospital and University of Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Philipp Jakob
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland Department of Cardiology, University Heart Center, Center for Molecular Cardiology, University Hospital and University of Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Martin F Reiner
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland Department of Cardiology, University Heart Center, Center for Molecular Cardiology, University Hospital and University of Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Martina Glanzmann
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland Department of Cardiology, University Heart Center, Center for Molecular Cardiology, University Hospital and University of Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Francesco Paneni
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland Department of Cardiology, University Heart Center, Center for Molecular Cardiology, University Hospital and University of Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland Cardiology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Katia Galan
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Graziano Pelli
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland Department of Human Protein Science, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Alexandre Belin
- Department of Radiology, CIBM, Geneva University Hospital, Geneva, Switzerland
| | - Jean-Paul Vallée
- Department of Radiology, CIBM, Geneva University Hospital, Geneva, Switzerland
| | - Francois Mach
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland Department of Cardiology, University Heart Center, Center for Molecular Cardiology, University Hospital and University of Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Xie ZZ, Shi MM, Xie L, Wu ZY, Li G, Hua F, Bian JS. Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal 2014; 21:2531-42. [PMID: 24766279 PMCID: PMC4245843 DOI: 10.1089/ars.2013.5604] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Mitochondrion is considered as the major source of intracellular reactive oxygen species (ROS). H2S has been reported to be an antioxidant, but its mechanism remains largely elusive. P66Shc is an upstream activator of mitochondrial redox signaling. The aim of this study was to explore whether the antioxidant effect of H2S is mediated by p66Shc. RESULTS Application of exogenous H2S with its donor, NaHS, or overexpression of its generating enzyme, cystathionine β-synthase, induced sulfhydration of p66Shc, but inhibited its phosphorylation caused by H2O2/D-galactose in SH-SY5Y cells or in the mice cortex. H2S also decreased mitochondrial ROS production and protected neuronal cells against stress-induced senescence. PKCβII and PP2A are the two key proteins to regulate p66Shc phosphorylation. Although H2S failed to affect the activities of these two proteins, it disrupted their association. Cysteine-59 resides in proximity to serine-36, the phosphorylation site of p66Shc. The C59S mutant attenuated the above-described biological function of H2S. INNOVATION We revealed a novel mechanism for the antioxidant effect of H2S and its role in oxidative stress-related diseases. CONCLUSION H2S inhibits mitochondrial ROS production via the sulfhydration of Cys-59 residue, which in turn, prevents the phosphorylation of p66Shc.
Collapse
Affiliation(s)
- Zhi-Zhong Xie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | | | | | | | | | | | | |
Collapse
|
31
|
Distelmaier F, Valsecchi F, Liemburg-Apers DC, Lebiedzinska M, Rodenburg RJ, Heil S, Keijer J, Fransen J, Imamura H, Danhauser K, Seibt A, Viollet B, Gellerich FN, Smeitink JAM, Wieckowski MR, Willems PHGM, Koopman WJH. Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α. Biochim Biophys Acta Mol Basis Dis 2014; 1852:529-40. [PMID: 25536029 DOI: 10.1016/j.bbadis.2014.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/06/2023]
Abstract
Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined how primary human skin fibroblasts adapt to chronic CI inhibition. CI inhibition triggered transient and sustained changes in metabolism, redox homeostasis and mitochondrial (ultra)structure but no cell senescence/death. CI-inhibited cells consumed no oxygen and displayed minor mitochondrial depolarization, reverse-mode action of complex V, a slower proliferation rate and futile mitochondrial biogenesis. Adaptation was neither prevented by antioxidants nor associated with increased PGC1-α/SIRT1/mTOR levels. Survival of CI-inhibited cells was strictly glucose-dependent and accompanied by increased AMPK-α phosphorylation, which occurred without changes in ATP or cytosolic calcium levels. Conversely, cells devoid of AMPK-α died upon CI inhibition. Chronic CI inhibition did not increase mitochondrial superoxide levels or cellular lipid peroxidation and was paralleled by a specific increase in SOD2/GR, whereas SOD1/CAT/Gpx1/Gpx2/Gpx5 levels remained unchanged. Upon hormone stimulation, fully adapted cells displayed aberrant cytosolic and ER calcium handling due to hampered ATP fueling of ER calcium pumps. It is concluded that CI dysfunction triggers an adaptive program that depends on extracellular glucose and AMPK-α. This response avoids cell death by suppressing energy crisis, oxidative stress induction and substantial mitochondrial depolarization.
Collapse
Affiliation(s)
- Felix Distelmaier
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Federica Valsecchi
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Dania C Liemburg-Apers
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | - Richard J Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Sandra Heil
- Department of Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Hiromi Imamura
- The Hakubi Project, Kyoto University, 606-8501 Kyoto, Japan
| | - Katharina Danhauser
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Benoit Viollet
- Institut Cochin, NSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Frank N Gellerich
- Department of Stereotactic Neurosurgery, Otto-von-Guericke-Universität, 39120 Magdeburg, Germany
| | - Jan A M Smeitink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Zaccagnini G, Maimone B, Di Stefano V, Fasanaro P, Greco S, Perfetti A, Capogrossi MC, Gaetano C, Martelli F. Hypoxia-induced miR-210 modulates tissue response to acute peripheral ischemia. Antioxid Redox Signal 2014; 21:1177-88. [PMID: 23931770 PMCID: PMC4142832 DOI: 10.1089/ars.2013.5206] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Peripheral artery disease is caused by the restriction or occlusion of arteries supplying the leg. Better understanding of the molecular mechanisms underpinning tissue response to ischemia is urgently needed to improve therapeutic options. The aim of this study is to investigate hypoxia-induced miR-210 regulation and its role in a mouse model of hindlimb ischemia. RESULTS miR-210 expression was induced by femoral artery dissection. To study the role of miR-210, its function was inhibited by the systemic administration of a miR-210 complementary locked nucleic acid (LNA)-oligonucleotide (anti-miR-210). In the ischemic skeletal muscle, anti-miR-210 caused a marked decrease of miR-210 compared with LNA-scramble control, while miR-210 target expression increased accordingly. Histological evaluation of acute tissue damage showed that miR-210 inhibition increased both apoptosis at 1 day and necrosis at 3 days. Capillary density decrease caused by ischemia was significantly more pronounced in anti-miR-210-treated mice; residual limb perfusion decreased accordingly. To investigate the molecular mechanisms underpinning the increased damage triggered by miR-210 blockade, we tested the impact of anti-miR-210 treatment on the transcriptome. Gene expression analysis highlighted the deregulation of mitochondrial function and redox balance. Accordingly, oxidative damage was more severe in the ischemic limb of anti-miR-210-treated mice and miR-210 inhibition increased oxidative metabolism. Further, oxidative-stress resistant p66(Shc)-null mice displayed decreased tissue damage following ischemia. INNOVATION This study identifies miR-210 as a crucial element in the adaptive mechanisms to acute peripheral ischemia. CONCLUSIONS The physiopathological significance of miR-210 is context dependent. In the ischemic skeletal muscle it seems to be cytoprotective, regulating oxidative metabolism and oxidative stress.
Collapse
Affiliation(s)
- Germana Zaccagnini
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato , Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
LaRocca TJ, Hearon CM, Henson GD, Seals DR. Mitochondrial quality control and age-associated arterial stiffening. Exp Gerontol 2014; 58:78-82. [PMID: 25034910 DOI: 10.1016/j.exger.2014.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/13/2014] [Accepted: 07/13/2014] [Indexed: 12/29/2022]
Abstract
Stiffening of large elastic arteries with age increases the risk of cardiovascular diseases (CVD), but the underlying mechanisms are incompletely understood. We investigated the role of mitochondrial quality control (QC, i.e., mitophagy and biogenesis) in arterial stiffening with aging. In C57BL6 mice, aging was associated with impaired aortic expression of mitochondrial QC mediators, greater activation of the mitochondrial redox/stress sensor p66shc, elevated superoxide production and increased arterial stiffness-as indicated by ~25% higher aortic pulse wave velocity (aPWV). In old mice, supplementation with trehalose, a nutraceutical reported to enhance mitophagy, normalized mitochondrial QC markers, p66shc activation and superoxide production, and reduced aPWV and aortic collagen I (a structural protein that confers stiffness). In vitro experiments suggested that mitochondrial QC processes were enhanced in the aortas from old trehalose-treated mice, and in aortic rings studied ex vivo, both aging and treatment with the mitochondrial stressor rotenone were associated with increases in p66shc activation and intrinsic mechanical stiffness, whereas co-incubation with trehalose prevented these effects. Taken together, these findings suggest that mitochondrial stress/dysfunction as a result of impaired mitochondrial QC contributes to large elastic artery stiffening with age. Enhancing mitochondrial QC with agents such as trehalose may be a novel strategy for reducing age-associated arterial stiffness and CVD.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher M Hearon
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Grant D Henson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
34
|
Miyazawa M, Tsuji Y. Evidence for a novel antioxidant function and isoform-specific regulation of the human p66Shc gene. Mol Biol Cell 2014; 25:2116-27. [PMID: 24807908 PMCID: PMC4072584 DOI: 10.1091/mbc.e13-11-0666] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
p66Shc, but not p52Shc or p46Shc, is regulated by the Nrf2-ARE system, indicative of p66Shc as an antioxidant gene. p66Shc serves as an antioxidant protein in the cytoplasm, protecting cells from ROS toxicity and maintaining expression of other ARE-regulated genes. Finally, p66Shc is essential for erythroid differentiation. The mammalian Shc family, composed of p46, p52, and p66 isoforms, serves as an adaptor protein in cell growth and stress response. p66Shc was shown to be a negative lifespan regulator by acting as a prooxidant protein in mitochondria; however, the regulatory mechanisms of p66Shc expression and function are incompletely understood. This study provides evidence for new features of p66Shc serving as an antioxidant and critical protein in cell differentiation. Unique among the Shc family, transcription of p66Shc is activated through the antioxidant response element (ARE)–nuclear factor erythroid 2–related factor 2 (Nrf2) pathway in K562 human erythroleukemia and other cell types after treatment with hemin, an iron-containing porphyrin. Phosphorylated p66Shc at Ser-36, previously reported to be prone to mitochondrial localization, is increased by hemin treatment, but p66Shc remains exclusively in the cytoplasm. p66Shc knockdown inhibits hemin-induced erythroid differentiation, in which reactive oxygen species production and apoptosis are significantly enhanced in conjunction with suppression of other ARE-dependent antioxidant genes. Conversely, p66Shc overexpression is sufficient for inducing erythroid differentiation. Collectively these results demonstrate the isoform-specific regulation of the Shc gene by the Nrf2-ARE pathway and a new antioxidant role of p66Shc in the cytoplasm. Thus p66Shc is a bifunctional protein involved in cellular oxidative stress response and differentiation.
Collapse
Affiliation(s)
- Masaki Miyazawa
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
35
|
Chen Z, Wang G, Zhai X, Hu Y, Gao D, Ma L, Yao J, Tian X. Selective inhibition of protein kinase C β2 attenuates the adaptor P66 Shc-mediated intestinal ischemia-reperfusion injury. Cell Death Dis 2014; 5:e1164. [PMID: 24722289 PMCID: PMC5424109 DOI: 10.1038/cddis.2014.131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 01/02/2014] [Accepted: 02/28/2014] [Indexed: 12/15/2022]
Abstract
Apoptosis is a major mode of cell death occurring during ischemia–reperfusion (I/R) induced injury. The p66Shc adaptor protein, which is mediated by PKCβ, has an essential role in apoptosis under oxidative stress. This study aimed to investigate the role of PKCβ2/p66Shc pathway in intestinal I/R injury. In vivo, ischemia was induced by superior mesenteric artery occlusion in mice. Ruboxistaurin (PKCβ inhibitor) or normal saline was administered before ischemia. Then blood and gut tissues were collected after reperfusion for various measurements. In vitro, Caco-2 cells were challenged with hypoxia–reoxygenation (H/R) to simulate intestinal I/R. Translocation and activation of PKCβ2 were markedly induced in the I/R intestine. Ruboxistaurin significantly attenuated gut damage and decreased the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Pharmacological blockade of PKCβ2 suppressed p66Shc overexpression and phosphorylation in the I/R intestine. Gene knockdown of PKCβ2 via small interfering RNA (siRNA) inhibited H/R-induced p66Shc overexpression and phosphorylation in Caco-2 cells. Phorbol 12-myristate 13-acetate (PMA), which stimulates PKCs, induced p66Shc phosphorylation and this was inhibited by ruboxistaurin and PKCβ2 siRNA. Ruboxistaurin attenuated gut oxidative stress after I/R by suppressing the decreased expression of manganese superoxide dismutase (MnSOD), the exhaustion of the glutathione (GSH) system, and the overproduction of malondialdehyde (MDA). As a consequence, ruboxistaurin inhibited intestinal mucosa apoptosis after I/R. Therefore, PKCβ2 inhibition protects mice from gut I/R injury by suppressing the adaptor p66Shc-mediated oxidative stress and subsequent apoptosis. This may represent a novel therapeutic approach for the prevention of intestinal I/R injury.
Collapse
Affiliation(s)
- Z Chen
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023 Dalian, China
| | - G Wang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023 Dalian, China
| | - X Zhai
- Department of Pharmacology, Dalian Medical University, 116044 Dalian, China
| | - Y Hu
- Department of Pharmacology, Dalian Medical University, 116044 Dalian, China
| | - D Gao
- Department of Pharmacology, Dalian Medical University, 116044 Dalian, China
| | - L Ma
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023 Dalian, China
| | - J Yao
- Department of Pharmacology, Dalian Medical University, 116044 Dalian, China
| | - X Tian
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023 Dalian, China
| |
Collapse
|
36
|
Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP, Seals DR. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol 2014; 592:2549-61. [PMID: 24665093 DOI: 10.1113/jphysiol.2013.268680] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD.
Collapse
Affiliation(s)
- Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Amy L Sindler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Melanie C Zigler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
37
|
Betts DH, Bain NT, Madan P. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos. PLoS One 2014; 9:e86978. [PMID: 24475205 PMCID: PMC3901717 DOI: 10.1371/journal.pone.0086978] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.
Collapse
Affiliation(s)
- Dean H. Betts
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| | - Nathan T. Bain
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
38
|
Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. p53 and mitochondrial function in neurons. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1186-97. [PMID: 24412988 DOI: 10.1016/j.bbadis.2013.12.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 01/08/2023]
Abstract
The p53 tumor suppressor plays a central role in dictating cell survival and death as a cellular sensor for a myriad of stresses including DNA damage, oxidative and nutritional stress, ischemia and disruption of nucleolar function. Activation of p53-dependent apoptosis leads to mitochondrial apoptotic changes via the intrinsic and extrinsic pathways triggering cell death execution most notably by release of cytochrome c and activation of the caspase cascade. Although it was previously believed that p53 induces apoptotic mitochondrial changes exclusively through transcription-dependent mechanisms, recent studies suggest that p53 also regulates apoptosis via a transcription-independent action at the mitochondria. Recent evidence further suggests that p53 can regulate necrotic cell death and autophagic activity including mitophagy. An increasing number of cytosolic and mitochondrial proteins involved in mitochondrial metabolism and respiration are regulated by p53, which influences mitochondrial ROS production as well. Cellular redox homeostasis is also directly regulated by p53 through modified expression of pro- and anti-oxidant proteins. Proper regulation of mitochondrial size and shape through fission and fusion assures optimal mitochondrial bioenergetic function while enabling adequate mitochondrial transport to accommodate local energy demands unique to neuronal architecture. Abnormal regulation of mitochondrial dynamics has been increasingly implicated in neurodegeneration, where elevated levels of p53 may have a direct contribution as the expression of some fission/fusion proteins are directly regulated by p53. Thus, p53 may have a much wider influence on mitochondrial integrity and function than one would expect from its well-established ability to transcriptionally induce mitochondrial apoptosis. However, much of the evidence demonstrating that p53 can influence mitochondria through nuclear, cytosolic or intra-mitochondrial sites of action has yet to be confirmed in neurons. Nonetheless, as mitochondria are essential for supporting normal neuronal functions and in initiating/propagating cell death signaling, it appears certain that the mitochondria-related functions of p53 will have broader implications than previously thought in acute and progressive neurological conditions, providing new therapeutic targets for treatment.
Collapse
Affiliation(s)
- David B Wang
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, WA 98195-6470, USA
| | - Chizuru Kinoshita
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, WA 98195-6470, USA
| | - Yoshito Kinoshita
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, WA 98195-6470, USA
| | - Richard S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, WA 98195-6470, USA.
| |
Collapse
|
39
|
Kim B, Zhang X, Kan R, Cohen R, Mukai C, Travis AJ, Coonrod SA. The role of MATER in endoplasmic reticulum distribution and calcium homeostasis in mouse oocytes. Dev Biol 2013; 386:331-9. [PMID: 24374158 DOI: 10.1016/j.ydbio.2013.12.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/25/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Ca(2+) oscillations are a hallmark of mammalian fertilization and play a central role in the activation of development. The calcium required for these oscillations is primarily derived from the endoplasmic reticulum (ER), which accumulates in clusters at the microvillar subcortex during oocyte maturation. The migration of the ER to the cortex during maturation is thought to play an important role in rendering the ER competent to generate the calcium transients, and the redistribution of ER is believed to be primarily mediated by microtubules and microfilaments. We have previously shown that the oocyte- and early embryo-restricted maternal effect gene Mater (Nlrp5) localizes to, and is required for, formation of the oocyte cytoplasmic lattices, a tubulin-containing structure that appears to play an important role in organelle positioning and distribution during oocyte maturation. Given these observations, we hypothesized that Mater may also be required for ER redistribution and Ca(2+) homeostasis in oocytes. To test this hypothesis, we first investigated ER localization in metaphase-II Mater(tm/tm) (hypomorph) oocytes and found ER clusters to be less abundant at the microvillar cortex when compared to wild type oocytes. To examine the potential mechanisms by which MATER mediates ER redistribution, we tested whether tubulin expression levels and localization were affected in the mutant oocytes and found that the Triton-insoluble fraction of tubulin was significantly decreased in Mater(tm/tm) oocytes. To identify potential functional defects associated with these ER abnormalities, we next set out to investigate if the pattern of Ca(2+) oscillations was altered in Mater(tm/tm) oocytes after fertilization in vitro. Intriguingly, Ca(2+) oscillations in Mater(tm/tm) oocytes exhibited a significantly lower first peak amplitude and a higher frequency when compared to wild type oocytes. We then found that the Ca(2+) oscillation defect in Mater(tm/tm) oocytes was likely caused by a reduced amount of Ca(2+) in the ER stores. Taken together, these observations support the hypothesis that MATER is required for ER distribution and Ca(2+) homeostasis in oocytes, likely due to defects in lattice-mediated ER positioning and/or redistribution.
Collapse
Affiliation(s)
- Boram Kim
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Xuesen Zhang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China.
| | - Rui Kan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Roy Cohen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
41
|
Abstract
Cardiac senescence and age-related disease development have gained general attention and recognition in the past decades due to increased accessibility and quality of health care. The advancement in global civilization is complementary to concerns regarding population aging and development of chronic degenerative diseases. Cardiac degeneration has been rigorously studied. The molecular mechanisms of cardiac senescence are on multiple cellular levels and hold a multilayer complexity level, thereby hampering development of unambiguous treatment protocols. In particular, the synergistic exchange of the senescence phenotype through a senescence secretome between myocytes and stem cells appears complicated and is of great future therapeutic value. The current review article will highlight hallmarks of senescence, cardiac myocyte and stem cell senescence, and the mutual exchange of senescent secretome. Future cardiac cell therapy approaches require a comprehensive understanding of myocardial senescence to improve therapeutic efficiency as well as efficacy.
Collapse
|
42
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
43
|
Hahn T, Polanczyk MJ, Borodovsky A, Ramanathapuram LV, Akporiaye ET, Ralph SJ. Use of anti-cancer drugs, mitocans, to enhance the immune responses against tumors. Curr Pharm Biotechnol 2013; 14:357-76. [PMID: 22201597 DOI: 10.2174/1389201011314030010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/02/2010] [Accepted: 09/17/2010] [Indexed: 12/12/2022]
Abstract
Cytotoxic drugs in cancer therapy are used with the expectation of selectively killing and thereby eliminating the offending cancer cells. If they should die in an appropriate manner, the cells can also release danger signals that promote an immune reaction that reinforces the response against the cancer. The identity of these immune-enhancing danger signals, how they work extra- and intracellularly, and the molecular mechanisms by which some anti-cancer drugs induce cell death to bring about the release of danger signals are the major focus of this review. A specific group of mitocans, the vitamin E analogs that act by targeting mitochondria to drive ROS production and also promote a more immunogenic means of cancer cell death exemplify such anti-cancer drugs. The role of reactive oxygen species (ROS) production and the events leading to the activation of the inflammasome and pro-inflammatory mediators induced by dying cancer cell mitochondria are discussed along with the evidence for their contribution to promoting immune responses against cancer. Current knowledge of how the danger signals interact with immune cells to boost the anti-tumor response is also evaluated.
Collapse
Affiliation(s)
- T Hahn
- School of Medical Sciences, Griffith Health Institute, Griffith University, Parklands Ave., Gold Coast, Queensland 4222, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
45
|
Bain NT, Madan P, Betts DH. Elevated p66Shc is associated with intracellular redox imbalance in developmentally compromised bovine embryos. Mol Reprod Dev 2012; 80:22-34. [DOI: 10.1002/mrd.22128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/19/2012] [Indexed: 11/06/2022]
|
46
|
Abstract
Shc (Src homology and collagen homology) proteins are considered prototypical signalling adaptors in mammalian cells. Consisting of four unique members, ShcA, B, C and D, and multiple splice isoforms, the family is represented in nearly every cell type in the body, where it engages in an array of fundamental processes to transduce environmental stimuli. Two decades of investigation have begun to illuminate the mechanisms of the flagship ShcA protein, whereas much remains to be learned about the newest discovery, ShcD. It is clear, however, that the distinctive modular architecture of Shc proteins, their promiscuous phosphotyrosine-based interactions with a multitude of membrane receptors, involvement in central cascades including MAPK (mitogen-activated protein kinase) and Akt, and unconventional contributions to oxidative stress and apoptosis all require intricate regulation, and underlie diverse physiological function. From early cardiovascular development and neuronal differentiation to lifespan determination and tumorigenesis, Shc adaptors have proven to be more ubiquitous, versatile and dynamic than their structures alone suggest.
Collapse
|
47
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
48
|
Al-Gubory KH. Mitochondria: Omega-3 in the route of mitochondrial reactive oxygen species. Int J Biochem Cell Biol 2012; 44:1569-73. [DOI: 10.1016/j.biocel.2012.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 01/14/2023]
|
49
|
Fernandes R, Tsuda C, Perumalsamy AL, Naranian T, Chong J, Acton BM, Tong ZB, Nelson LM, Jurisicova A. NLRP5 mediates mitochondrial function in mouse oocytes and embryos. Biol Reprod 2012; 86:138, 1-10. [PMID: 22357545 DOI: 10.1095/biolreprod.111.093583] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Unraveling molecular pathways responsible for regulation of early embryonic development is crucial for our understanding of female infertility. Maternal determinants that control the transition from oocyte to embryo are crucial molecules that govern developmental competence of the newly conceived zygote. We describe a series of defects that are triggered by a disruption of maternal lethal effect gene, Nlrp5. Previous studies have shown that Nlrp5 hypomorph embryos fail to develop beyond the two-cell stage. Despite its importance in preimplantation development, the mechanism by which the embryo arrest occurs remains unclear. We confirmed that Nlrp5 mutant and wild-type females possess comparable ovarian germ pool and follicular recruitment rates. However, ovulated oocytes lacking Nlrp5 have abnormal mitochondrial localization and increased activity in order to sustain physiological ATP content. This results in an accumulation of reactive oxygen species and increased cellular stress causing mitochondrial depletion. Compromised cellular state is also accompanied by increased expression of cell death inducer Bax and depletion of cytochrome c. However, neither genetic deletion (Bax/Nlrp5 double knockout) nor mimetic interference (BH4 domain or Bax inhibitory peptide) were sufficient to alleviate embryo demise caused by depletion of Nlrp5. We therefore conclude that lack of Nlrp5 in oocytes triggers premature activation of the mitochondrial pool, causing mitochondrial damage that cannot be rescued by inactivation of Bax.
Collapse
Affiliation(s)
- Roxanne Fernandes
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Su KG, Savino C, Marracci G, Chaudhary P, Yu X, Morris B, Galipeau D, Giorgio M, Forte M, Bourdette D. Genetic inactivation of the p66 isoform of ShcA is neuroprotective in a murine model of multiple sclerosis. Eur J Neurosci 2012; 35:562-71. [PMID: 22277070 PMCID: PMC3279590 DOI: 10.1111/j.1460-9568.2011.07972.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although multiple sclerosis (MS) has traditionally been considered to be an inflammatory disease, recent evidence has brought neurodegeneration into the spotlight, suggesting that accumulated damage and loss of axons is critical to disease progression and the associated irreversible disability. Proposed mechanisms of axonal degeneration in MS posit cytosolic and subsequent mitochondrial Ca(2+) overload, accumulation of pathologic reactive oxygen species (ROS), and mitochondrial dysfunction leading to cell death. In this context, the role of the p66 isoform of ShcA protein (p66) may be significant. The ShcA isoform is uniquely targeted to the mitochondrial intermembrane space in response to elevated oxidative stress, and serves as a redox enzyme amplifying ROS generation in a positive feedforward loop that eventually mediates cell death by activation of the mitochondrial permeability transition pore. Consequently, we tested the hypothesis that genetic inactivation of p66 would reduce axonal injury in a murine model of MS, experimental autoimmune encephalomyelitis (EAE). As predicted, the p66-knockout (p66-KO) mice developed typical signs of EAE, but had less severe clinical impairment and paralysis than wild-type (WT) mice. Histologic examination of spinal cords and optic nerves showed significant axonal protection in the p66-KO tissue, despite similar levels of inflammation. Furthermore, cultured p66-KO neurons treated with agents implicated in MS neurodegenerative pathways showed greater viability than WT neurons. These results confirm the critical role of ROS-mediated mitochondrial dysfunction in the axonal loss that accompanies EAE, and identify p66 as a new pharmacologic target for MS neuroprotective therapeutics.
Collapse
MESH Headings
- Animals
- Axons/pathology
- Axons/ultrastructure
- Cell Proliferation
- Cells, Cultured
- Cerebral Cortex/cytology
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/deficiency
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Freund's Adjuvant/adverse effects
- Glycoproteins/adverse effects
- Hydrogen Peroxide/pharmacology
- Leukemic Infiltration/drug therapy
- Leukemic Infiltration/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Myelin-Oligodendrocyte Glycoprotein
- Nerve Fibers, Myelinated/pathology
- Neurons/metabolism
- Neurons/ultrastructure
- Optic Nerve/immunology
- Optic Nerve/metabolism
- Optic Nerve/pathology
- Optic Nerve/ultrastructure
- Peptide Fragments/adverse effects
- Shc Signaling Adaptor Proteins/deficiency
- Shc Signaling Adaptor Proteins/metabolism
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Spinal Cord/ultrastructure
- Src Homology 2 Domain-Containing, Transforming Protein 1
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Kimmy G. Su
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | | | - Gail Marracci
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
- Portland VA Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239
| | - Priya Chaudhary
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | - Xiaolin Yu
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | - Brooke Morris
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | - Danielle Galipeau
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | | | - Michael Forte
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | - Dennis Bourdette
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
- Portland VA Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239
| |
Collapse
|