1
|
Sun M, Shang X, Liu X, Lu Z, Di J. Synthesis and performance of a nanosensing platform for homocysteine detection: A series of iridium(III) complexes containing aldehyde group as probe and MOF as supporting substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124257. [PMID: 38615414 DOI: 10.1016/j.saa.2024.124257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
The low cost and simple detection method for Hcy (homocysteine) is highly desired in analytical and biological fields since Hcy has been regarded as a bio-marker for multiple diseases. In this work, five Ir(C^N)2(N^N)+ compounds having -CHO group in their C^N or N^N ligand were synthesized and tried for Hcy sensing. Electron-donating groups such as -NH2 and -CH3 were incorporated into the C^N or N^N ligand. Their geometric structure, electronic structure, and optical parameters (with or without Hcy) were analyzed and compared carefully to explore their Hcy sensing potential. The sensing mechanism was revealed by NMR titration and theoretical simulation as a cyclization reaction between the -CHO group and Hcy. The optimal compounds, which showed increased emission quantum yield (2.5-fold) and emission blue-shift (by ∼ 100 nm) upon Hcy, were then covalently grafted into a porous host bio-MOF-1. Linear working plots were fitted, with good selectivity, LOD of 0.15 μM, and response time of 33 s. The novelty of this work was the eye-sensitive emission color change of this nanosensing platform from red (without Hcy) to green (with Hcy).
Collapse
Affiliation(s)
- Meng Sun
- Jilin Engineering Normal University, College of Biological and Food Engineering, No.3050 Kaixuan Road, Changchun City, Jilin Province 130052, PR China.
| | - Xiaomin Shang
- Jilin Engineering Normal University, College of Biological and Food Engineering, No.3050 Kaixuan Road, Changchun City, Jilin Province 130052, PR China.
| | - Xiaoqiu Liu
- Jilin Engineering Normal University, College of Biological and Food Engineering, No.3050 Kaixuan Road, Changchun City, Jilin Province 130052, PR China.
| | - Zuoyu Lu
- Jilin Engineering Normal University, College of Biological and Food Engineering, No.3050 Kaixuan Road, Changchun City, Jilin Province 130052, PR China
| | - Jun Di
- Jilin Engineering Normal University, College of Biological and Food Engineering, No.3050 Kaixuan Road, Changchun City, Jilin Province 130052, PR China
| |
Collapse
|
2
|
Chen P, Sharma A, Weiher H, Schmidt-Wolf IGH. Biological mechanisms and clinical significance of endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) in human cancer. J Exp Clin Cancer Res 2024; 43:71. [PMID: 38454454 PMCID: PMC10921667 DOI: 10.1186/s13046-024-02990-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
A firm link between endoplasmic reticulum (ER) stress and tumors has been wildly reported. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α), an ER-resident thiol oxidoreductase, is confirmed to be highly upregulated in various cancer types and associated with a significantly worse prognosis. Of importance, under ER stress, the functional interplay of ERO1α/PDI axis plays a pivotal role to orchestrate proper protein folding and other key processes. Multiple lines of evidence propose ERO1α as an attractive potential target for cancer treatment. However, the unavailability of specific inhibitor for ERO1α, its molecular inter-relatedness with closely related paralog ERO1β and the tightly regulated processes with other members of flavoenzyme family of enzymes, raises several concerns about its clinical translation. Herein, we have provided a detailed description of ERO1α in human cancers and its vulnerability towards the aforementioned concerns. Besides, we have discussed a few key considerations that may improve our understanding about ERO1α in tumors.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359, Rheinbach, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany.
| |
Collapse
|
3
|
Mu X, Zhang W, Yi C, Li MJ, Fu F. Colorimetric and Photoluminescent Probes Based on Iridium(III) Complexes for Highly Selective Detection of Homocysteine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
ERO1L promotes IL6/sIL6R signaling and regulates MUC16 expression to promote CA125 secretion and the metastasis of lung cancer cells. Cell Death Dis 2020; 11:853. [PMID: 33056994 PMCID: PMC7560734 DOI: 10.1038/s41419-020-03067-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
The abnormal secretion of CA125, a classic tumor marker, is usually related to a poor prognosis in various tumors. Thus, this study aimed to explore the potential mechanisms that promote CA125 secretion in lung cancer. By querying the database, the gene endoplasmic reticulum oxidoreductase 1L (ERO1L) was identified and chosen as the research subject. The antibody chips were used to screen the lung cancer cell supernatant and found that the most obvious secreted protein was CA125. ERO1L was found to promote the secretion of IL6R by affecting the formation of disulfide bonds. IL6R bound to IL6 and triggered the activation of the NF-κB signaling pathway. Then, NF-κB bound to the promoter of MUC16, resulting in overexpression of MUC16. The extracellular segment of MUC16 was cleaved to form CA125, while the C terminus of MUC16 promoted the EMT phenotype and the release of IL6, forming a positive feedback pathway. In conclusion, ERO1L might affect the secretion of CA125 through the IL6 signaling pathway and form a positive feedback loop to further promote the development of lung cancer. This might expand the application scope of CA125 in lung cancer.
Collapse
|
5
|
Wang T, Ren C, Ni J, Ding H, Qi Q, Yan C, Deng B, Dai J, Li G, Ding Y, Jin G. Genetic Association of Plasma Homocysteine Levels with Gastric Cancer Risk: A Two-Sample Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2020; 29:487-492. [PMID: 31748259 DOI: 10.1158/1055-9965.epi-19-0724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/19/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The association of plasma homocysteine level (PHL) with gastric cancer risk was reported in observational studies. However, the causality is challenging due to confounding factors and the lack of evidence from well-designed cohort studies. Herein, we performed a two-sample Mendelian randomization (MR) analysis to investigate whether PHL is causally related to gastric cancer risk. METHODS We performed the MR analysis based on the results from genome-wide association studies consisting of 2,631 patients with gastric cancer and 4,373 controls. An externally weighted genetic risk score (wGRS) was constructed with 15 SNPs with well-established associations with PHL. We utilized logistic regression model to estimate associations of PHL-related SNPs and wGRS with gastric cancer risk in total population and in strata by sex, age, and study site, in addition to a series of sensitivity analyses. RESULTS High genetically predicted PHL was associated with an increased gastric cancer risk (per SD increase in the wGRS: OR = 1.07; 95% confidence interval, 1.01-1.12; P = 0.011), which was consistent in sensitivity analyses. Subgroup analyses provided evidence of a stronger association with gastric cancer risk in women than in men. MR-Egger and weighted median regression suggested that potentially unknown pleiotropic effects were not biasing the association between PHL and gastric cancer risk. CONCLUSIONS These results revealed that genetically predicted high PHL was associated with an increased gastric cancer risk, suggesting that high PHL may have a causal role in the etiology of gastric cancer. IMPACT These findings provide causal inference for PHL on gastric cancer risk, suggesting a causal role of high PHL in the etiology of gastric cancer.
Collapse
Affiliation(s)
- Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Chuanli Ren
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Jing Ni
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Ding
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Qi
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Worfolk JC, Bell S, Simpson LD, Carne NA, Francis SL, Engelbertsen V, Brown AP, Walker J, Viswanath YK, Benham AM. Elucidation of the AGR2 Interactome in Esophageal Adenocarcinoma Cells Identifies a Redox-Sensitive Chaperone Hub for the Quality Control of MUC-5AC. Antioxid Redox Signal 2019; 31:1117-1132. [PMID: 31436131 DOI: 10.1089/ars.2018.7647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: AGR2 is a tissue-restricted member of the protein disulfide isomerase family that has attracted interest because it is highly expressed in a number of cancers, including gastroesophageal adenocarcinoma. The behavior of AGR2 was analyzed under oxidizing conditions, and an alkylation trapping and immunoprecipitation approach were developed to identify novel AGR2 interacting proteins. Results: The data show that AGR2 is induced in esophageal adenocarcinoma, where it participates in redox-responsive, disulfide-dependent complexes. AGR2 preferentially engages with MUC-5 as a primary client and is coexpressed with the acidic mucin in Barrett's esophagus and esophageal adenocarcinoma tissue. Innovation: New partner chaperones for AGR2 have been identified, including peroxiredoxin IV, ERp44, P5, ERp29, and Ero1α. AGR2 interacts with unexpected metabolic enzymes, including aldehyde dehydrogenase (ALDH)3A1, and engages in an alkylation-sensitive association with the autophagy receptor SQSTM1, suggesting a potential mechanism for the postendoplasmic reticulum targeting of AGR2 to mucin granules. Disulfide-driven AGR2 complex formation provides a framework for a limited number of client proteins to interact, rather than for the recruitment of multiple novel clients. Conclusion: The extended AGR2 interactome will facilitate the development of therapeutics to target AGR2/mucin pathways in esophageal cancer and other conditions, including chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jack C Worfolk
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Steven Bell
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Lee D Simpson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Naomi A Carne
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Sarah L Francis
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Vibecke Engelbertsen
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | - Adrian P Brown
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Julie Walker
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | | | - Adam M Benham
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
7
|
Zhang Y, Li T, Zhang L, Shangguan F, Shi G, Wu X, Cui Y, Wang X, Wang X, Liu Y, Lu B, Wei T, Wang CC, Wang L. Targeting the functional interplay between endoplasmic reticulum oxidoreductin-1α and protein disulfide isomerase suppresses the progression of cervical cancer. EBioMedicine 2019; 41:408-419. [PMID: 30826359 PMCID: PMC6443025 DOI: 10.1016/j.ebiom.2019.02.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and protein disulfide isomerase (PDI) constitute the pivotal pathway of oxidative protein folding, and are highly expressed in many cancers. However, whether targeting the functional interplay between Ero1α and PDI could be a new approach for cancer therapy remains unknown. METHODS We performed wound healing assays, transwell migration and invasion assays and xenograft assays to assess cell migration, invasion and tumorigenesis; gel filtration chromatography, oxygen consumption assay and in cells folding assays were used to detect Ero1α-PDI interaction and Ero1α oxidase activity. FINDINGS Here, we report that elevated expression of Ero1α is correlated with poor prognosis in human cervical cancer. Knockout of ERO1A decreases the growth, migration and tumorigenesis of cervical cancer cells, through downregulation of the H2O2-correlated epithelial-mesenchymal transition. We identify that the conserved valine (Val) 101 of Ero1α is critical for Ero1α-PDI complex formation and Ero1α oxidase activity. Val101 of Ero1α is specifically involved in the recognition of PDI catalytic domain. Mutation of Val101 results in a reduced ER, retarded oxidative protein folding and decreased H2O2 levels in the ER of cervical cancer cells and further impairs cell migration, invasion, and tumor growth. INTERPRETATION Our study identifies the critical residue of Ero1α for recognizing PDI, which underlines the molecular mechanism of oxidative protein folding for tumorigenesis and provides a proof-of-concept for cancer therapy by targeting Ero1α-PDI interaction. FUND: This work was supported by National Key R&D Program of China, National Natural Science Foundation of China, and Youth Innovation Promotion Association, CAS.
Collapse
Affiliation(s)
- Yini Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guizhi Shi
- Laboratory Animal Center of Institute of Biophysics, Chinese Academy of Sciences, Aviation General Hospital of Beijing, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xun Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Wu X, Zhang L, Miao Y, Yang J, Wang X, Wang CC, Feng J, Wang L. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol 2018; 20:46-59. [PMID: 30292945 PMCID: PMC6174864 DOI: 10.1016/j.redox.2018.09.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction induced by hyperhomocysteinemia (HHcy) plays a critical role in vascular pathology. However, little is known about the role of endoplasmic reticulum (ER) redox homeostasis in HHcy-induced endothelial dysfunction. Here, we show that Hcy induces ER oxidoreductin-1α (Ero1α) expression with ER stress and inflammation in human umbilical vein endothelial cells and in the arteries of HHcy mice. Hcy upregulates Ero1α expression by promoting binding of hypoxia-inducible factor 1α to the ERO1A promoter. Notably, Hcy rather than other thiol agents markedly increases the GSH/GSSG ratio in the ER, therefore allosterically activating Ero1α to produce H2O2 and trigger ER oxidative stress. By contrast, the antioxidant pathway mediated by ER glutathione peroxidase 7 (GPx7) is downregulated in HHcy mice. Ero1α knockdown and GPx7 overexpression protect the endothelium from HHcy-induced ER oxidative stress and inflammation. Our work suggests that targeting ER redox homeostasis could be used as an intervention for HHcy-related vascular diseases.
Collapse
Affiliation(s)
- Xun Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yütong Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Juan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Zhang J, Zhu Q, Wang X, Yu J, Chen X, Wang J, Wang X, Xiao J, Wang CC, Wang L. Secretory kinase Fam20C tunes endoplasmic reticulum redox state via phosphorylation of Ero1α. EMBO J 2018; 37:embj.201798699. [PMID: 29858230 DOI: 10.15252/embj.201798699] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 11/09/2022] Open
Abstract
Family with sequence similarity 20C (Fam20C), the physiological Golgi casein kinase, phosphorylates numerous secreted proteins that are involved in a wide variety of biological processes. However, the role of Fam20C in regulating proteins in the endoplasmic reticulum (ER) lumen is largely unknown. Here, we report that Fam20C interacts with various luminal proteins and that its depletion results in a more reduced ER lumen. We further show that ER oxidoreductin 1α (Ero1α), the pivotal sulfhydryl oxidase that catalyzes disulfide formation in the ER, is phosphorylated by Fam20C in the Golgi apparatus and retrograde-transported to the ER mediated by ERp44. The phosphorylation of Ser145 greatly enhances Ero1α oxidase activity and is critical for maintaining ER redox homeostasis and promoting oxidative protein folding. Notably, phosphorylation of Ero1α is induced under hypoxia, reductive stress, and secretion-demanding conditions such as mammalian lactation. Collectively, our findings open a door to uncover how oxidative protein folding is regulated by phosphorylation in the secretory pathway.
Collapse
Affiliation(s)
- Jianchao Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qinyu Zhu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jifeng Wang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Smirnova OA, Bartosch B, Zakirova NF, Kochetkov SN, Ivanov AV. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int J Mol Sci 2018; 19:1219. [PMID: 29673197 PMCID: PMC5979612 DOI: 10.3390/ijms19041219] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H₂O₂ production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), Lyon 69003, France.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| |
Collapse
|
11
|
Patel SJ, Darie CC, Clarkson BD. Effect of purified fractions from cell culture supernate of high-density pre-B acute lymphoblastic leukemia cells (ALL3) on the growth of ALL3 cells at low density. Electrophoresis 2016; 38:417-428. [PMID: 27804141 DOI: 10.1002/elps.201600399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/02/2023]
Abstract
The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed.
Collapse
Affiliation(s)
- Sapan J Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA.,Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Bayard D Clarkson
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
| |
Collapse
|
12
|
Delaunay-Moisan A, Appenzeller-Herzog C. The antioxidant machinery of the endoplasmic reticulum: Protection and signaling. Free Radic Biol Med 2015; 83:341-51. [PMID: 25744411 DOI: 10.1016/j.freeradbiomed.2015.02.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 12/16/2022]
Abstract
Cellular metabolism is inherently linked to the production of oxidizing by-products, including reactive oxygen species (ROS) hydrogen peroxide (H2O2). When present in excess, H2O2 can damage cellular biomolecules, but when produced in coordinated fashion, it typically serves as a mobile signaling messenger. It is therefore not surprising that cell health critically relies on both low-molecular-weight and enzymatic antioxidant components, which protect from ROS-mediated damage and shape the propagation and duration of ROS signals. This review focuses on H2O2-antioxidant cross talk in the endoplasmic reticulum (ER), which is intimately linked to the process of oxidative protein folding. ER-resident or ER-regulated sources of H2O2 and other ROS, which are subgrouped into constitutive and stimulated sources, are discussed and set into context with the diverse antioxidant mechanisms in the organelle. These include two types of peroxide-reducing enzymes, a high concentration of glutathione derived from the cytosol, and feedback-regulated thiol-disulfide switches, which negatively control the major ER oxidase ER oxidoreductin-1. Finally, new evidence highlighting emerging principles of H2O2-based cues at the ER will likely set a basis for establishing ER redox processes as a major line of future signaling research. A fundamental problem that remains to be solved is the specific, quantitative, time resolved, and targeted detection of H2O2 in the ER and in specialized ER subdomains.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Laboratoire Stress Oxydants et Cancer, CEA-Saclay, Service de Biologie Intégrative et de Génétique Moléculaire, Institut de Biologie et de Technologie de Saclay, Commissariat à l׳Energie Atomique et aux Energies Alternatives, F-91191 Gif Sur Yvette, France/Institute for Integrative Biology of the Cell (I2BC), Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France.
| | | |
Collapse
|
13
|
Wang L, Zhang L, Niu Y, Sitia R, Wang CC. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1α to promote oxidative protein folding. Antioxid Redox Signal 2014; 20:545-56. [PMID: 23919619 PMCID: PMC3901321 DOI: 10.1089/ars.2013.5236] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS Ero1 flavoproteins catalyze oxidative folding in the endoplasmic reticulum (ER), consuming oxygen and generating hydrogen peroxide (H2O2). The ER-localized glutathione peroxidase 7 (GPx7) shows protein disulfide isomerase (PDI)-dependent peroxidase activity in vitro. Our work aims at identifying the physiological role of GPx7 in the Ero1α/PDI oxidative folding pathway and at dissecting the reaction mechanisms of GPx7. RESULTS Our data show that GPx7 can utilize Ero1α-produced H2O2 to accelerate oxidative folding of substrates both in vitro and in vivo. H2O2 oxidizes Cys57 of GPx7 to sulfenic acid, which can be resolved by Cys86 to form an intramolecular disulfide bond. Both the disulfide form and sulfenic acid form of GPx7 can oxidize PDI for catalyzing oxidative folding. GPx7 prefers to interact with the a domain of PDI, and intramolecular cooperation between the two redox-active sites of PDI increases the activity of the Ero1α/GPx7/PDI triad. INNOVATION Our in vitro and in vivo evidence provides mechanistic insights into how cells consume potentially harmful H2O2 while optimizing oxidative protein folding via the Ero1α/GPx7/PDI triad. Cys57 can promote PDI oxidation in two ways, and Cys86 emerges as a novel noncanonical resolving cysteine. CONCLUSION GPx7 promotes oxidative protein folding, directly utilizing Ero1α-generated H2O2 in the early secretory compartment. Thus, the Ero1α/GPx7/PDI triad generates two disulfide bonds and two H2O molecules at the expense of a single O2 molecule.
Collapse
Affiliation(s)
- Lei Wang
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
14
|
Destroy and exploit: catalyzed removal of hydroperoxides from the endoplasmic reticulum. Int J Cell Biol 2013; 2013:180906. [PMID: 24282412 PMCID: PMC3824332 DOI: 10.1155/2013/180906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Peroxidases are enzymes that reduce hydroperoxide substrates. In many cases, hydroperoxide reduction is coupled to the formation of a disulfide bond, which is transferred onto specific acceptor molecules, the so-called reducing substrates. As such, peroxidases control the spatiotemporal distribution of diffusible second messengers such as hydrogen peroxide (H2O2) and generate new disulfides. Members of two families of peroxidases, peroxiredoxins (Prxs) and glutathione peroxidases (GPxs), reside in different subcellular compartments or are secreted from cells. This review discusses the properties and physiological roles of PrxIV, GPx7, and GPx8 in the endoplasmic reticulum (ER) of higher eukaryotic cells where H2O2 and—possibly—lipid hydroperoxides are regularly produced. Different peroxide sources and reducing substrates for ER peroxidases are critically evaluated. Peroxidase-catalyzed detoxification of hydroperoxides coupled to the productive use of disulfides, for instance, in the ER-associated process of oxidative protein folding, appears to emerge as a common theme. Nonetheless, in vitro and in vivo studies have demonstrated that individual peroxidases serve specific, nonoverlapping roles in ER physiology.
Collapse
|