1
|
Yamaguchi K, Abdelbaky S, Yu L, Oakes CC, Abruzzo LV, Coombes KR. PLASMA: Partial LeAst Squares for Multiomics Analysis. Cancers (Basel) 2025; 17:287. [PMID: 39858069 PMCID: PMC11763701 DOI: 10.3390/cancers17020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Recent growth in the number and applications of high-throughput "omics" technologies has created a need for better methods to integrate multiomics data. Much progress has been made in developing unsupervised methods, but supervised methods have lagged behind. Methods: Here we present the first algorithm, PLASMA, that can learn to predict time-to-event outcomes from multiomics data sets, even when some samples have only been assayed on a subset of the omics data sets. PLASMA uses two layers of existing partial least squares algorithms to first select components that covary with the outcome and then construct a joint Cox proportional hazards model. Results: We apply PLASMA to the stomach adenocarcinoma (STAD) data from The Cancer Genome Atlas. We validate the model both by splitting the STAD data into training and test sets and by applying them to the subset of esophageal cancer (ESCA) containing adenocarcinomas. We use the other half of the ESCA data, which contains squamous cell carcinomas dissimilar to STAD, as a negative comparison. Our model successfully separates both the STAD test set (p = 2.73 × 10-8) and the independent ESCA adenocarcinoma data (p = 0.025) into high-risk and low-risk patients. It does not separate the negative comparison data set (ESCA squamous cell carcinomas, p = 0.57). The performance of the unified multiomics model is superior to that of individually trained models and is also superior to an unsupervised method (Multi-Omics Factor Analysis; MOFA), which finds latent factors to be used as putative predictors in a post hoc survival analysis. Conclusions: Many of the factors that contribute strongly to the PLASMA model can be justified from the biological literature.
Collapse
Affiliation(s)
- Kyoko Yamaguchi
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA (C.C.O.)
| | - Salma Abdelbaky
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA (C.C.O.)
| | - Lianbo Yu
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA (C.C.O.)
| | - Lynne V. Abruzzo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kevin R. Coombes
- Department of Biostatistics, Data Science, and Epidemiology, School of Public Health, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Pádua JDB, Mariano CFA, Fabro AT, Lizarte Neto FS, Zuliani RL, Sares CTG, dos Santos JS, Sankarankutty AK, Tirapelli DPDC, Silveira VDS, de Molfetta GA, Júnior WADS, Brunaldi MO. mRNA Expression and Methylation of the RAD51, ATM, ATR, BRCA1, and BRCA2 Genes in Gastric Adenocarcinoma. Biomark Insights 2024; 19:11772719231225206. [PMID: 38293680 PMCID: PMC10826385 DOI: 10.1177/11772719231225206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Background Immunohistochemical prognostic significance of the homologous recombination-related proteins RAD51, ATM, BRCA1, and BRCA2 is known in gastric adenocarcinoma, one of the deadliest cancers. Objective and design This retrospective cohort study aimed to evaluate mRNA expression and promoter methylation of some homologous recombination-related genes in this neoplasm. Methods We evaluated mRNA expression and methylation of RAD51, ATM, ATR, BRCA1, and BRCA2 in tumor and non-tumor frozen samples from gastrectomy specimens by RT-qPCR and MS-HRM, correlating our results with previous immunohistochemistry data and prognostic features. Results RAD51, ATR, BRCA1, BRCA2, and ATM mRNA expression was detected in 93.75% (45/48), 93.75% (45/48), 91.67% (44/48), 83.33% (40/48), and 89.58% (43/48) of the tumors; partial or complete methylation, in 94.87% (37/39), 0 (0/42), 97.56% (40/41), 100% (41/41), and 0 (0/40), respectively. Most gene pairs showed significant weak to moderate positive correlations of tumoral mRNA expression with each other: RAD51 with ATR (P = .027), BRCA1 (P < .001), and BRCA2 (P < .001); ATR with BRCA1 (P = .007), and ATM (P = .001); BRCA1 with BRCA2 (P = 0.001). BRCA1 mRNA was reduced in tumors compared with non-neoplastic mucosa (0.345 vs 1.272, P = .015) and, excluding neoadjuvant therapy cases, in T3 to T4 tumors compared with T2 (0.414 vs 0.954, P = .035). Greater tumoral RAD51 mRNA levels correlated with perineural invasion (1.822 vs 0.725, P = .010) and death (1.664 vs 0.929, P = .036), but not with survival time. There was an inverse association between nuclear immunohistochemical positivity for ATR and its mRNA levels (0.487 vs 0.907, P = .032), and no significant correlation for the other markers. Conclusions Our results suggest RAD51, BRCA1, and BRCA2 methylation as a frequent epigenetic mechanism in gastric cancer, support the hypothesis that reduced BRCA1 expression participates in disease progression, and show an association between RAD51 mRNA and perineural invasion and mortality that may be considered unexpected, considering the former immunohistochemical studies. The lack of correlation between immunohistochemistry and mRNA, and even the inverse association, for ATR, can be seen as indicative of action of post-transcriptional or post-translational regulatory mechanisms, to be better investigated.
Collapse
Affiliation(s)
- Joel Del Bel Pádua
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carolline Fontes Alves Mariano
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Rogério Lenotti Zuliani
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | - Mariângela Ottoboni Brunaldi
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Pádua JDB, Mariano CFA, Fabro AT, Tirapelli DPDC, Sankarankutty AK, dos Santos JS, Brunaldi MO. Prognostic Value of the Immunohistochemical Expression of RAD51 and BRCA2 in Gastric Adenocarcinoma. J Histochem Cytochem 2022; 70:199-210. [PMID: 34978208 PMCID: PMC8832630 DOI: 10.1369/00221554211065834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current scientific literature lacks data on the prognostic value of the expression of RAD51 and BRCA2 in gastric adenocarcinoma. Therefore, we aimed to evaluate those and other homologous recombination-related proteins (ATM, ATR, BRCA1, CHK2, γH2AX, p53) in gastric cancer, assessing their correlation with clinical prognosis. Paraffin-embedded samples were obtained from surgical specimens collected in total or subtotal gastrectomy procedures. Between 2008 and 2017, 121 patients with advanced gastric adenocarcinoma underwent surgical resection and were included in this study. Negativity for nuclear RAD51 correlated with vascular invasion, lymph node metastasis, larger tumor size, and lower overall survival and disease-free survival in univariate analysis. However, nuclear RAD51-negative cases presented better response rates to adjuvant therapy than the positive ones. Nuclear ATR negativity correlated with larger tumor size and a higher histological grade. Positivity for ATM was associated with more prolonged disease-free survival. Positivity for nuclear BRCA2 correlated with lower overall survival and diffuse histological type, whereas its high expression was associated with vascular invasion. Nevertheless, tumors positive for nuclear BRCA2 were more frequently low grade in the intestinal histological type. Our findings indicate that RAD51 and BRCA2 are valuable immunohistochemical prognostic markers in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Joel Del Bel Pádua
- Joel Del Bel Pádua, Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil. E-mail:
| | - Carolline Fontes Alves Mariano
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Ajith Kumar Sankarankutty
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Sebastião dos Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mariângela Ottoboni Brunaldi
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
5
|
Kaur J, Sambyal V, Guleria K, Singh NR, Uppal MS, Manjari M, Sudan M. Association of XRCC1, XRCC2 and XRCC3 Gene Polymorphism with Esophageal Cancer Risk. Clin Exp Gastroenterol 2020; 13:73-86. [PMID: 32214837 PMCID: PMC7083648 DOI: 10.2147/ceg.s232961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Aim The X-ray repair cross-complementing (XRCC) gene polymorphisms influence esophageal carcinogenesis by altering the DNA repair capacity. The present study was designed to screen five single nucleotide polymorphisms (SNPs) of XRCC genes for their susceptibility to esophageal cancer (EC) risk. There is no previous report on these polymorphisms for EC from India, where EC frequency is high. Methods The present study included 497 subjects (213 EC patients and 284 healthy controls). The polymorphisms were screened using the PCR-RFLP method and allele and genotype distribution were compared using chi-square test. Association analysis was done by haplotype analysis and linkage disequilibrium (LD) analysis. Gene–gene interactions were identified using multifactor dimensionality reduction (MDR). The risk was calculated using binary logistic regression. Results For XRCC1 p.Arg399Gln, a decreased risk for EC was associated with the AA genotype [OR (95% CI): 0.53 (0.3–0.95), p=0.03] even after adjusting for various covariates [OR (95% CI): 0.49 (0.26–0.9), p=0.024] and with the recessive model [OR (95% CI): 0.49 (0.27–0.8), p=0.016]. The GA genotype of p.Arg280His was associated with an increased risk for EC [OR (95% CI): 1.7 (1.0–2.82), p= 0.045] after adjustments. The two XRCC1 polymorphisms, p.Arg399Gln and p.Arg194Trp were in slight LD among EC patients (D̍́=0.845, r2=0.042). XRCC2 and XRCC3 polymorphisms were not associated with EC risk. Conclusion XRCC1 p.Arg399Gln plays a protective role in the development of the EC. The study is the first report from India, providing baseline data about genetic polymorphisms in DNA repair genes XRCC1, XRCC2 and XRCC3 modulating overall EC risk.
Collapse
Affiliation(s)
- Jagjeet Kaur
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Vasudha Sambyal
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Kamlesh Guleria
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | | | | | | | - Meena Sudan
- Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India
| |
Collapse
|
6
|
Tivadar ST, McIntosh RS, Chua JX, Moss R, Parsons T, Zaitoun AM, Madhusudan S, Durrant LG, Vankemmelbeke M. Monoclonal Antibody Targeting Sialyl-di-Lewis a-Containing Internalizing and Noninternalizing Glycoproteins with Cancer Immunotherapy Development Potential. Mol Cancer Ther 2019; 19:790-801. [PMID: 31871270 DOI: 10.1158/1535-7163.mct-19-0221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
Tumor glycans constitute attractive targets for therapeutic antibodies. The sialylated glycocalyx plays a prominent role in cancer progression and immune evasion. Here, we describe the characterization of the mAb, FG129, which targets tumor-associated sialylated glycan, and demonstrate its potential for multimodal cancer therapy. FG129, obtained through BALB/c mouse immunizations with liposomes containing membrane glycan extracts from the colorectal cancer cell line LS180, is an mIgG1κ that targets sialyl-di-Lewisa-containing glycoproteins. FG129, as well as its chimeric human IgG1 variant, CH129, binds with nanomolar functional affinity to a range of colorectal, pancreatic, and gastric cancer cell lines. FG129 targets 74% (135/182) of pancreatic, 50% (46/92) of gastric, 36% (100/281) of colorectal, 27% (89/327) of ovarian, and 21% (42/201) of non-small cell lung cancers, by IHC. In our pancreatic cancer cohort, high FG129 glyco-epitope expression was significantly associated with poor prognosis (P = 0.004). Crucially, the glyco-epitope displays limited normal tissue distribution, with FG129 binding weakly to a small percentage of cells within gallbladder, ileum, liver, esophagus, pancreas, and thyroid tissues. Owing to glyco-epitope internalization, we validated payload delivery by CH129 through monomethyl auristatin E (MMAE) or maytansinoid (DM1 and DM4) conjugation. All three CH129 drug conjugates killed high-binding colorectal and pancreatic cancer cell lines with (sub)nanomolar potency, coinciding with significant in vivo xenograft tumor control by CH129-vcMMAE. CH129, with its restricted normal tissue distribution, avid tumor binding, and efficient payload delivery, is a promising candidate for the treatment of sialyl-di-Lewisa-expressing solid tumors, as an antibody-drug conjugate or as an alternative cancer immunotherapy modality.
Collapse
Affiliation(s)
- Silvana T Tivadar
- Division of Cancer and Stem Cells, School of Medicine, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
| | - Richard S McIntosh
- Division of Cancer and Stem Cells, School of Medicine, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
| | - Jia Xin Chua
- Scancell Limited, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Robert Moss
- Division of Cancer and Stem Cells, School of Medicine, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
| | - Tina Parsons
- Scancell Limited, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Abed M Zaitoun
- Section of Surgery, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Division of Cancer and Stem Cells, School of Medicine, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
| | - Lindy G Durrant
- Division of Cancer and Stem Cells, School of Medicine, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom. .,Scancell Limited, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| |
Collapse
|
7
|
Vodenkova S, Jiraskova K, Urbanova M, Kroupa M, Slyskova J, Schneiderova M, Levy M, Buchler T, Liska V, Vodickova L, Vymetalkova V, Collins A, Opattova A, Vodicka P. Base excision repair capacity as a determinant of prognosis and therapy response in colon cancer patients. DNA Repair (Amst) 2018; 72:77-85. [PMID: 30314738 DOI: 10.1016/j.dnarep.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
The DNA-damaging agent 5-fluorouracil represents the most commonly used chemotherapeutic drug for colorectal cancer patients. DNA lesions associated with 5-fluorouracil therapy are primarily repaired by base excision repair (BER) and mismatch repair (MMR) pathways. Published evidence suggests that the individual DNA repair capacity (DRC) may affect a patient's prognosis and response to chemotherapy. With this in mind, we designed a prospective study of which the main aim was to investigate BER-DRC in relation to 5-fluorouracil response as potential predictive and/or prognostic biomarker. BER-DRC was supplemented by a microsatellite instability (MSI) analysis which represents an indirect marker of MMR activity in the tumor. All parameters were measured in paired samples of tumor tissue and non-malignant adjacent mucosa of 123 incident colon cancer patients. Our results indicate that BER-DRC in non-malignant adjacent mucosa was positively associated with overall survival (P = 0.007) and relapse-free survival (P = 0.04). Additionally, in multivariate analysis, good therapy responders in TNM stage II and III with an elevated BER-DRC in mucosa exhibited better overall survival. Moreover, the overall survival of these patients was even better in the presence of a decreased BER-DRC in tumor tissue. The ratio of BER-DRC in tumor tissue over BER-DRC in mucosa positively correlated with advanced tumor stage (P = 0.003). With respect to MSI, we observed that MSI-high tumors were mostly localized in proximal colon; however, in our cohort, the MSI status affected neither patients' prognosis nor survival. In summary, the results of the present study suggest that the level of BER-DRC is associated with patients' survival. BER-DRC represents a potential prognostic biomarker, applicable for prediction of therapy response and useful for individual approach to patients.
Collapse
Affiliation(s)
- Sona Vodenkova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00, Prague, Czech Republic; Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Marketa Urbanova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Jana Slyskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, U Nemocnice 499/2, 128 08, Prague, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Thomayerova 815/5, 140 00, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59, Prague, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic; Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic.
| |
Collapse
|
8
|
Limpose KL, Trego KS, Li Z, Leung SW, Sarker AH, Shah JA, Ramalingam SS, Werner EM, Dynan WS, Cooper PK, Corbett AH, Doetsch PW. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer. Nucleic Acids Res 2018; 46:4515-4532. [PMID: 29522130 PMCID: PMC5961185 DOI: 10.1093/nar/gky162] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer.
Collapse
Affiliation(s)
- Kristin L Limpose
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Kelly S Trego
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhentian Li
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Altaf H Sarker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jason A Shah
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Erica M Werner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Priscilla K Cooper
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| |
Collapse
|
9
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
10
|
Wang C, Jette N, Moussienko D, Bebb DG, Lees-Miller SP. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib. Transl Oncol 2017; 10:190-196. [PMID: 28182994 PMCID: PMC5299208 DOI: 10.1016/j.tranon.2017.01.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas Jette
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Moussienko
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - D Gwyn Bebb
- Department on Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada; Department on Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Differential role of Wnt signaling and base excision repair pathways in gastric adenocarcinoma aggressiveness. Clin Exp Med 2016; 17:505-517. [PMID: 27909884 DOI: 10.1007/s10238-016-0443-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/20/2016] [Indexed: 02/06/2023]
Abstract
Aberrant activation of Wnt and base excision repair (BER) signaling pathways are implicated in tumor progression and chemotherapy resistance in gastric adenocarcinoma. This study was conducted to clarify the role of E2F6 and RhoA, components of the Wnt signaling pathway, and SMUG1, a component of the BER pathway in gastric adenocarcinoma. Expression levels and clinicopathological significance of three biomarkers, namely E2F6, RhoA, and SMUG1, as potential signaling molecules involved in tumorigenesis and aggressive behavior, were examined using tissue microarray. Our analysis showed a relative increase in the expression of E2F6 in gastric adenocarcinoma with no lymph node metastasis (χ 2, P = 0.04 and OR, P = 0.08), while overexpression of RhoA and SMUG1 was found more often in the diffuse subtype of gastric adenocarcinoma as compared to the intestinal subtype (χ 2, P = 0.05, OR, P = 0.08 and χ 2, P = 0.001, OR, P = 0.009, respectively). Higher expression of RhoA was frequently seen in tumors with vascular invasion (χ 2, P = 0.01 and OR, P = 0.01). In addition, increased expression of SMUG1 was found more often in poorly differentiated tumors (χ 2, P = 0.01 and OR, P = 0.01). The distinct phenotype of E2F6Low/SMUG1High was more common in poorly differentiated tumors (P = 0.04) and with omental involvement (P = 0.01). The RhoAHigh/SMUG1High expression pattern was significantly more often found in diffuse subtype compared to the intestinal subtype (P = 0.001) as well as in poorly differentiated tumors (P = 0.004). The E2F6Low/SMUG1High and RhoAHigh/SMUG1High phenotypes can be considered as aggressive phenotypes of gastric adenocarcinoma. Our findings also demonstrated the synergistic effect of RhoA and SMUG1 in conferring tumor aggressiveness in diffuse subtype of gastric adenocarcinoma.
Collapse
|
12
|
64Cu-ATSM therapy targets regions with activated DNA repair and enrichment of CD133+ cells in an HT-29 tumor model: Sensitization with a nucleic acid antimetabolite. Cancer Lett 2016; 376:74-82. [DOI: 10.1016/j.canlet.2016.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
|
13
|
Mo D, Fang H, Niu K, Liu J, Wu M, Li S, Zhu T, Aleskandarany MA, Arora A, Lobo DN, Madhusudan S, Balajee AS, Chi Z, Zhao Y. Human Helicase RECQL4 Drives Cisplatin Resistance in Gastric Cancer by Activating an AKT-YB1-MDR1 Signaling Pathway. Cancer Res 2016; 76:3057-66. [PMID: 27013200 DOI: 10.1158/0008-5472.can-15-2361] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Elevation of the DNA-unwinding helicase RECQL4, which participates in various DNA repair pathways, has been suggested to contribute to the pathogenicity of various human cancers, including gastric cancer. In this study, we addressed the prognostic and chemotherapeutic significance of RECQL4 in human gastric cancer, which has yet to be determined. We observed significant increases in RECQL4 mRNA or protein in >70% of three independent sets of human gastric cancer specimens examined, relative to normal gastric tissues. Strikingly, high RECQL4 expression in primary tumors correlated well with poor survival and gastric cancer lines with high RECQL4 expression displayed increased resistance to cisplatin treatment. Mechanistic investigations revealed a novel role for RECQL4 in transcriptional regulation of the multidrug resistance gene MDR1, through a physical interaction with the transcription factor YB1. Notably, ectopic expression of RECQL4 in cisplatin-sensitive gastric cancer cells with low endogenous RECQL4 was sufficient to render them resistant to cisplatin, in a manner associated with YB1 elevation and MDR1 activation. Conversely, RECQL4 silencing in cisplatin-resistant gastric cancer cells with high endogenous RECQL4 suppressed YB1 phosphorylation, reduced MDR1 expression, and resensitized cells to cisplatin. In establishing RECQL4 as a critical mediator of cisplatin resistance in gastric cancer cells, our findings provide a therapeutic rationale to target RECQL4 or the downstream AKT-YB1-MDR1 axis to improve gastric cancer treatment. Cancer Res; 76(10); 3057-66. ©2016 AACR.
Collapse
Affiliation(s)
- Dongliang Mo
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Fang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaifeng Niu
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wu
- Biological Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Shiyou Li
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Tienian Zhu
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Mohammed A Aleskandarany
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, City Hospital Campus, Nottingham, United Kingdom
| | - Arvind Arora
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, City Hospital Campus, Nottingham, United Kingdom
| | - Dileep N Lobo
- Gastrointestinal Surgery, National Institute for Health Research Nottingham Digestive Diseases Centre, Biomedical Research Unit, Nottingham University Hospitals and University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, City Hospital Campus, Nottingham, United Kingdom
| | - Adayabalam S Balajee
- REAC/TS, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Zhenfen Chi
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Yongliang Zhao
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Hwang JC, Sung WW, Tu HP, Hsieh KC, Yeh CM, Chen CJ, Tai HC, Hsu CT, Shieh GS, Chang JG, Yeh KT, Liu TC. The Overexpression of FEN1 and RAD54B May Act as Independent Prognostic Factors of Lung Adenocarcinoma. PLoS One 2015; 10:e0139435. [PMID: 26431531 PMCID: PMC4592204 DOI: 10.1371/journal.pone.0139435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 09/14/2015] [Indexed: 11/22/2022] Open
Abstract
Synthetic lethality arises when a combination of mutations in two or more genes leads to cell death. However, the prognostic role of concordant overexpression of synthetic lethality genes in protein level rather than a combination of mutations is not clear. In this study, we explore the prognostic role of combined overexpression of paired genes in lung adenocarcinoma. We used immunohistochemical staining to investigate 24 paired genes in 93 lung adenocarcinoma patients and Kaplan-Meier analysis and Cox proportional hazards models to evaluate their prognostic roles. Among 24 paired genes, only FEN1 (Flap endonuclease 1) and RAD54B (RAD54 homolog B) were overexpressed in lung adenocarcinoma patients with poor prognosis. Patients with expression of both FEN1 and RAD54B were prone to have advanced nodal involvement and significantly poor prognosis (HR = 2.35, P = 0.0230). These results suggest that intensive follow up and targeted therapy might improve clinical outcome for patients who show expression of both FEN1 and RAD54B.
Collapse
Affiliation(s)
- Jau-Chung Hwang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Lin Shin Hospital, Taichung, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Chou Hsieh
- Division of Thoracic Surgery, Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Chung-Min Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Jung Chen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hui-Chun Tai
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chao-Tien Hsu
- Department of Pathology, E-Da Hospital and I-SHOU University, Kaohsiung, Taiwan
| | - Grace S. Shieh
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Jan-Gowth Chang
- Department of Laboratory Medicine, and Center of RNA Biology and Clinical Application, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kun-Tu Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ta-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Chua JX, Vankemmelbeke M, McIntosh RS, Clarke PA, Moss R, Parsons T, Spendlove I, Zaitoun AM, Madhusudan S, Durrant LG. Monoclonal Antibodies Targeting LecLex-Related Glycans with Potent Antitumor Activity. Clin Cancer Res 2015; 21:2963-74. [DOI: 10.1158/1078-0432.ccr-14-3030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/28/2015] [Indexed: 11/16/2022]
|
16
|
Abdel-Fatah TMA, Russell R, Albarakati N, Maloney DJ, Dorjsuren D, Rueda OM, Moseley P, Mohan V, Sun H, Abbotts R, Mukherjee A, Agarwal D, Illuzzi JL, Jadhav A, Simeonov A, Ball G, Chan S, Caldas C, Ellis IO, Wilson DM, Madhusudan S. Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer. Mol Oncol 2014; 8:1326-38. [PMID: 24880630 PMCID: PMC4690463 DOI: 10.1016/j.molonc.2014.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 12/27/2022] Open
Abstract
FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p = 4.89 × 10(-57)), high mitotic index (p = 5.25 × 10(-28)), pleomorphism (p = 6.31 × 10(-19)), ER negative (p = 9.02 × 10(-35)), PR negative (p = 9.24 × 10(-24)), triple negative phenotype (p = 6.67 × 10(-21)), PAM50.Her2 (p = 5.19 × 10(-13)), PAM50. Basal (p = 2.7 × 10(-41)), PAM50.LumB (p = 1.56 × 10(-26)), integrative molecular cluster 1 (intClust.1) (p = 7.47 × 10(-12)), intClust.5 (p = 4.05 × 10(-12)) and intClust. 10 (p = 7.59 × 10(-38)) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p = 4.4 × 10(-16)) and multivariate analysis (p = 9.19 × 10(-7)). At the protein level, in ER positive tumours, FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps < 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps < 0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is associated with poor survival in univariate and multivariate analysis (ps < 0.01). In ovarian epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps < 0.05). We conclude that FEN1 is a promising biomarker in breast and ovarian epithelial cancer.
Collapse
Affiliation(s)
| | - Roslin Russell
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Nada Albarakati
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Oscar M Rueda
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Vivek Mohan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Hongmao Sun
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Rachel Abbotts
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Abhik Mukherjee
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Jennifer L Illuzzi
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ian O Ellis
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - David M Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK; Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK.
| |
Collapse
|
17
|
Kubota E, Williamson CT, Ye R, Elegbede A, Peterson L, Lees-Miller SP, Bebb DG. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines. Cell Cycle 2014; 13:2129-37. [PMID: 24841718 DOI: 10.4161/cc.29212] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption.
Collapse
Affiliation(s)
- Eiji Kubota
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary, Alberta, Canada; Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada
| | - Christopher T Williamson
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary, Alberta, Canada; Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada
| | - Ruiqiong Ye
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary, Alberta, Canada; Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada
| | - Anifat Elegbede
- Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada; Tom Baker Cancer Center; Calgary, Alberta, Canada
| | - Lars Peterson
- Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada; Tom Baker Cancer Center; Calgary, Alberta, Canada
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary, Alberta, Canada; Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada
| | - D Gwyn Bebb
- Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada; Tom Baker Cancer Center; Calgary, Alberta, Canada
| |
Collapse
|
18
|
Abdel-Fatah TMA, Albarakati N, Bowell L, Agarwal D, Moseley P, Hawkes C, Ball G, Chan S, Ellis IO, Madhusudan S. Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1) deficiency is linked to aggressive breast cancer and predicts response to adjuvant therapy. Breast Cancer Res Treat 2013; 142:515-27. [PMID: 24253812 DOI: 10.1007/s10549-013-2769-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 01/26/2023]
Abstract
Uracil in DNA is an important cause of mutagenesis. SMUG1 is a uracil-DNA glycosylase that removes uracil through base excision repair. SMUG1 also processes radiation-induced oxidative base damage as well as 5-fluorouracil incorporated into DNA during chemotherapy. We investigated SMUG1 mRNA expression in 249 primary breast cancers. SMUG1 protein expression was investigated in 1,165 breast tumours randomised into two cohorts [training set (n = 583) and test set (n = 582)]. SMUG1 and chemotherapy response was also investigated in a series of 315 ER-negative tumours (n = 315). For mechanistic insights, SMUG1 was correlated to biomarkers of aggressive phenotype, DNA repair, cell cycle and apoptosis. Low SMUG1 mRNA expression was associated with adverse disease specific survival (p = 0.008) and disease-free survival (p = 0.008). Low SMUG1 protein expression (25 %) was associated with high histological grade (p < 0.0001), high mitotic index (p < 0.0001), pleomorphism (p < 0.0001), glandular de-differentiation (p = 0.0001), absence of hormonal receptors (ER-/PgR-/AR) (p < 0.0001), presence of basal-like (p < 0.0001) and triple-negative phenotypes (p < 0.0001). Low SMUG1 protein expression was associated with loss of BRCA1 (p < 0.0001), ATM (p < 0.0001) and XRCC1 (p < 0.0001). Low p27 (p < 0.0001), low p21 (p = 0.023), mutant p53 (p = 0.037), low MDM2 (p < 0.0001), low MDM4 (p = 0.004), low Bcl-2 (p = 0.001), low Bax (p = 0.003) and high MIB1 (p < 0.0001) were likely in low SMUG1 tumours. Low SMUG1 protein expression was associated with poor prognosis in univariate (p < 0.001) and multivariate analysis (p < 0.01). In ER+ cohort that received adjuvant endocrine therapy, low SMUG1 protein expression remains associated with poor survival (p < 0.01). In ER- cohort that received adjuvant chemotherapy, low SMUG1 protein expression is associated with improved survival (p = 0.043). Our study suggests that low SMUG1 expression may correlate to adverse clinicopathological features and predict response to adjuvant therapy in breast cancer.
Collapse
|