1
|
da Costa Silva Kindelan S, Pires Queiroz M, Jacielly Dos Santos J, Lucia de Azevedo Oliveira M, Cristina Milhomens Ferreira Melo P, Carolina de Menezes Santos Bertozzo C, Carlo Rufino Freitas J, Dantas de Oliveira N, Veloso Rodrigues Dantas R, Suely Madruga M, Késsia Barbosa Soares J. Memory is improved and reflex maturation accelerated in the progeny of rat dams that consumed pequi (Caryocar Brasiliense). Brain Res 2025; 1848:149318. [PMID: 39561933 DOI: 10.1016/j.brainres.2024.149318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
This study evaluated the influence of maternal consumption of pequi pulp and nuts during pregnancy and lactation on reflex and somatic maturation and memory performance in rat offspring. The pups were divided into three groups: Control, treated with distilled water; a Pulp group and a Nuts group, treated with 2000 mg/kg of body weight of pequi pulp and nuts, respectively. Reflex and somatic maturation of the offspring were evaluated during lactation. Short and long-term memory consolidation in adolescent offspring were measured by evaluating habituation to the open field and object recognition. Data showed an acceleration of reflex maturation in three of the seven parameters evaluated in the Nuts group and four parameters in the Pulp group compared to the control. There was an acceleration in the appearance of somatic maturation in one parameter in the Nuts group and three in the pulp group compared to the control. The long-term object recognition rate was higher in the Nuts group compared to the control and highest in the Pulp group. Maternal levels of malonaldehyde in the brain were measured and their levels in the Pulp and Nuts groups were lower than those in the Control group. We can conclude that consumption of both pulp and pequi nuts promoted a reduction in oxidative stress in the maternal brain, promoted acceleration of reflex and somatic maturation, and improved long-term memory in the offspring, with these effects being more intense in the Pulp group.
Collapse
Affiliation(s)
| | - Michelly Pires Queiroz
- Postgraduate Program in Food Science and Technology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Jany Jacielly Dos Santos
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | | | | | | | | | - Natália Dantas de Oliveira
- Postgraduate Program in Food Science and Technology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| | | | - Marta Suely Madruga
- Postgraduate Program in Food Science and Technology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
2
|
Vauzour D, Rendeiro C, D’Amato A, Waffo-Téguo P, Richard T, Mérillon JM, Pontifex MG, Connell E, Müller M, Butler LT, Williams CM, Spencer JPE. Anthocyanins Promote Learning through Modulation of Synaptic Plasticity Related Proteins in an Animal Model of Ageing. Antioxidants (Basel) 2021; 10:antiox10081235. [PMID: 34439483 PMCID: PMC8388918 DOI: 10.3390/antiox10081235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Anthocyanin-rich foods, such as berries, reportedly ameliorate age-related cognitive deficits in both animals and humans. Despite this, investigation into the mechanisms which underpin anthocyanin-mediated learning and memory benefits remains relatively limited. The present study investigates the effects of anthocyanin intake on a spatial working memory paradigm, assessed via the cross-maze apparatus, and relates behavioural test performance to underlying molecular mechanisms. Six-week supplementation with pure anthocyanins (2% w/w), administered throughout the learning phase of the task, improved both spatial and psychomotor performances in aged rats. Behavioural outputs were accompanied by changes in the expression profile of key proteins integral to synaptic function/maintenance, with upregulation of dystrophin, protein kinase B (PKB/Akt) and tyrosine hydroxylase, and downregulation of apoptotic proteins B-cell lymphoma-extra-large (Bcl-xL) and the phosphorylated rapidly accelerated fibrosarcoma (p-Raf). Separate immunoblot analysis supported these observations, indicating increased activation of extracellular signal-related kinase (ERK1), Akt Ser473, mammalian target of rapamycin (mTOR) Ser2448, activity-regulated cytoskeleton-associated protein (Arc/Arg 3.1) and brain-derived neurotrophic factor (BDNF) in response to anthocyanin treatment, whilst α-E-catenin, c-Jun N-terminal kinase (JNK1) and p38 protein levels decreased. Together, these findings suggest that purified anthocyanin consumption enhances spatial learning and motor coordination in aged animals and can be attributed to the modulation of key synaptic proteins, which support integrity and maintenance of synaptic function.
Collapse
Affiliation(s)
- David Vauzour
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
- Correspondence: ; Tel.: +44-1603-591-732
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Pierre Waffo-Téguo
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Tristan Richard
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Jean Michel Mérillon
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Matthew G. Pontifex
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Emily Connell
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Michael Müller
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Laurie T. Butler
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Claire M. Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK;
| | - Jeremy P. E. Spencer
- Molecular Nutrition Group, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK;
| |
Collapse
|
3
|
Moreno-Arribas MV, Bartolomé B, Peñalvo JL, Pérez-Matute P, Motilva MJ. Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer's Disease. Nutrients 2020; 12:E3082. [PMID: 33050383 PMCID: PMC7600228 DOI: 10.3390/nu12103082] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to the most common form of dementia in elderly people. Modifiable dietary and lifestyle factors could either accelerate or ameliorate the aging process and the risk of developing AD and other age-related morbidities. Emerging evidence also reports a potential link between oral and gut microbiota alterations and AD. Dietary polyphenols, in particular wine polyphenols, are a major diver of oral and gut microbiota composition and function. Consequently, wine polyphenols health effects, mediated as a function of the individual's oral and gut microbiome are considered one of the recent greatest challenges in the field of neurodegenerative diseases as a promising strategy to prevent or slow down AD progression. This review highlights current knowledge on the link of oral and intestinal microbiome and the interaction between wine polyphenols and microbiota in the context of AD. Furthermore, the extent to which mechanisms bacteria and polyphenols and its microbial metabolites exert their action on communication pathways between the brain and the microbiota, as well as the impact of the molecular mediators to these interactions on AD patients, are described.
Collapse
Affiliation(s)
- M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - José L. Peñalvo
- Institute of Tropical Medicine, Unit Noncommunicable Diseases, Natl Str 155, B-2000 Antwerp, Belgium;
| | | | - Maria José Motilva
- Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, Autovía del Camino de Santiago LO-20 Exit 13, 26007 Logroño, Spain;
| |
Collapse
|
4
|
Binge and Subchronic Exposure to Ketamine Promote Memory Impairments and Damages in the Hippocampus and Peripheral Tissues in Rats: Gallic Acid Protective Effects. Neurotox Res 2020; 38:274-286. [DOI: 10.1007/s12640-020-00215-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
|
5
|
Zhu JX, Shan JL, Hu WQ, Zeng JX, Shu JC. Gallic acid activates hippocampal BDNF-Akt-mTOR signaling in chronic mild stress. Metab Brain Dis 2019; 34:93-101. [PMID: 30280285 DOI: 10.1007/s11011-018-0328-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
Abstract
Gallic acid (3,4,5-trihydroxybenzoic acid) is a naturally occurring polyphenolic compound. Previous study has shown that gallic acid possessed significant antidepressant-like activity in mice, which was partly mediated by increasing serotonin and catecholamine levels. The main aim of the present study is to investigate the possible effects of gallic acid on brain-derived neurotrophic factor (BDNF) signaling activation. Mice were exposed to chronic mild stress (CMS) and orally administrated with gallic acid for four weeks. The behavioral results showed that gallic acid not only reversed the decreased sucrose preference, but also attenuated the increased immobility time. In addition, gallic acid promoted both the BDNF and p-TrkB levels in the hippocampus induced by CMS. Moreover, the results also demonstrated that the inactivated Akt-mTOR signaling pathway, as well as its downstream effectors induced by CMS was activated again by gallic acid. Last, immunofluorescence detection indicated that gallic acid reversed the newborn neurons inhibition in the dentate gyrus by CMS. In conclusion, these results show that the activation of the hippocampal BDNF-Akt-mTOR signaling is involved in the antidepressant-like effects of gallic acid.
Collapse
Affiliation(s)
- Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, People's Republic of China
| | - Jia-Ling Shan
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, People's Republic of China
| | - Wei-Qiong Hu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, People's Republic of China
| | - Jin-Xiang Zeng
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, People's Republic of China
| | - Ji-Cheng Shu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, People's Republic of China.
| |
Collapse
|
6
|
de Melo MFFT, Pereira DE, Moura RDL, da Silva EB, de Melo FALT, Dias CDCQ, Silva MDCA, de Oliveira MEG, Viera VB, Pintado MME, Dos Santos SG, Soares JKB. Maternal Supplementation With Avocado ( Persea americana Mill.) Pulp and Oil Alters Reflex Maturation, Physical Development, and Offspring Memory in Rats. Front Neurosci 2019; 13:9. [PMID: 30728763 PMCID: PMC6351466 DOI: 10.3389/fnins.2019.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Avocado (Persea americana Mill.) is an oleaginous fruit source of fatty acids with high levels of neuroprotective phytocomplexes. The objective of this study was to evaluate the development of reflex and somatic maturation, fatty acid profiles in the brain, and memory in different stages of life in the offspring of dams supplemented with avocado pulp and oil during gestation and lactation. The dams were randomly divided into three groups (n = 15 pups/group), and recieved by gavage supplementation: control group (CG)-distilled water; Avocado Oil (AO)-3,000 mg avocado oil/kg animal weight, and Avocado Pulp (AP)-3,000 mg avocado pulp/kg animal weight. We performed the following tests: Analysis of Somatic Development and Ontogeny of Postnatal Reflex (T0 to T21), the Open Field Habituation Test and the Object Recognition Test (ORT) in the adolescent (T45) and adult (T90) phases. The cerebral fatty acids content was evaluated at times T0, T21, T45, and T90. The results were analyzed using the statistical program GraphPad Prism and significant statistics were considered when p < 0.05. Acceleration of reflex maturation and reflex ontogeny was observed in the offspring of AO and AP fed dams, with the results being more pronounced in the pulp fed group (p < 0.05). All groups presented a decrease in the ambulation parameter in the second exposure to the Open Field Habituation Test, at T45 and T90 (p < 0.05). In the ORT, the AO and AP offspring presented memory improvements in the short and long term in the adult and adolescent phases (p < 0.05). The results of the brain fatty acid profiles presented higher polyunsaturated fatty acids (PUFA) content in the AO and AP groups at T21, T45, and T90. The docosahexaenoic fatty acid (DHA) content was higher at T21 (AO and AP), at T45 (AO and AP), and at T90 (AP) (p < 0.05). The arachidonic acid (ARA) content was higher at T45 (AO and AP), and at T90 (AO) (p < 0.05). Maternal supplementation with avocado oil and pulp anticipates reflex maturation and somatic postnatal development, and improves memory during the adolescent and adult phases.
Collapse
Affiliation(s)
- Marilia Ferreira Frazão Tavares de Melo
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Diego Elias Pereira
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Renally de Lima Moura
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Elisiane Beatriz da Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | | | - Celina de Castro Querino Dias
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Maciel da Costa Alves Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Maria Elieidy Gomes de Oliveira
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Bromatology, Department of Nutrition, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | | | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| |
Collapse
|
7
|
Tombini M, Sicari M, Pellegrino G, Ursini F, Insardá P, Di Lazzaro V. Nutritional Status of Patients with Alzheimer's Disease and Their Caregivers. J Alzheimers Dis 2018; 54:1619-1627. [PMID: 27636839 DOI: 10.3233/jad-160261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malnutrition is one of the most important conditions that negatively affects the health of elder people, particularly in patients with dementia. OBJECTIVE To provide an assessment of nutritional status of patients affected by Alzheimer's disease (AD) living at home and of their caregivers by means of Mini Nutritional Assessment (MNA), and to explore the influence of different factors on nutrition. METHODS 90 patients affected by AD living at home and 90 age- and sex-matched caregivers were enrolled. Patients and caregivers, coming from an urban-rural fringe of Southern Italy, were assessed using full MNA, Mini-Mental State Examination, Geriatric Depression Scale- short form, Activity of Daily Living, and Instrumental Activities of Daily Living scales. RESULTS Malnutrition was found with high prevalence in patients affected by AD of different severity (more than 95% of patients were malnourished or at risk of malnutrition), and associated with reduced functional status. An altered nutrition was also recognized with high rate in the group of caregivers (23.3% were malnourished and 41.1% at risk of malnutrition) and the worse nutritional condition was correlated with higher age and lower functional and cognitive status and education. A positive correlation between MNA score of AD patients and caregivers was found. CONCLUSION Corrective measures should be taken in order to early identify nutritional deficiencies and risk of malnutrition observed with high rate in both groups of AD patients and their caregivers; in these subjects a nutrition education program and intervention policies are mandatory to restore nutritional status.
Collapse
Affiliation(s)
- Mario Tombini
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University, Rome, Italy
| | - Maura Sicari
- Centro Nutrizione Clinica e Umana, Reggio Calabria, Italy
| | - Giovanni Pellegrino
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University, Rome, Italy.,Multimodal Functional Imaging Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Francesca Ursini
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University, Rome, Italy
| | | | - Vincenzo Di Lazzaro
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
8
|
Martínez-Huélamo M, Rodríguez-Morató J, Boronat A, de la Torre R. Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection. Antioxidants (Basel) 2017; 6:E73. [PMID: 28954417 PMCID: PMC5745483 DOI: 10.3390/antiox6040073] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
Strong adherence to a Mediterranean diet is associated with improved cognitive function and a lower prevalence of mild cognitive impairment. Olive oil and red wine are rich sources of polyphenols which are responsible in part for the beneficial effects on cognitive functioning. Polyphenols induce endogenous antioxidant defense mechanisms by modulating transcription factors such as the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This review discusses the scientific data supporting the modulating effect of olive oil and red wine polyphenols on Nrf2 expression, and the potential health benefits associated with cognitive functioning.
Collapse
Affiliation(s)
- Miriam Martínez-Huélamo
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Jose Rodríguez-Morató
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain.
| | - Anna Boronat
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
| | - Rafael de la Torre
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, Andres-Lacueva C, Bánáti D, Barberger-Gateau P, Bowman GL, Caberlotto L, Clarke R, Hogervorst E, Kiliaan AJ, Lucca U, Manach C, Minihane AM, Mitchell ES, Perneczky R, Perry H, Roussel AM, Schuermans J, Sijben J, Spencer JPE, Thuret S, van de Rest O, Vandewoude M, Wesnes K, Williams RJ, Williams RSB, Ramirez M. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev 2017; 35:222-240. [PMID: 27713095 DOI: 10.1016/j.arr.2016.09.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline.
Collapse
Affiliation(s)
- David Vauzour
- University of East Anglia, Norwich Medical School, Norwich NR4 7UQ, United Kingdom
| | - Maria Camprubi-Robles
- Abbott Nutrition R&D, Abbott Laboratories, Camino de Purchil 68, 18004 Granada, Spain
| | | | | | - Diána Bánáti
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200 Brussels, Belgium
| | | | - Gene L Bowman
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Laura Caberlotto
- The Microsoft Research-University of Trento, Centre for Computational and Systems Biology (COSBI), Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Robert Clarke
- Oxford University, Richard Doll Building, Old Road Campus, Roosevelt Drive, OX3 7LF Oxford, United Kingdom
| | - Eef Hogervorst
- Loughborough University, Brockington Building, Asby Road, LE11 3TU Loughborough, United Kingdom
| | - Amanda J Kiliaan
- Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ugo Lucca
- IRCCS-Instituto di Richerche Farmacologiche Mario Negri, Via G. La Masa 19, 20156 Milan, Italy
| | - Claudine Manach
- INRA, UMR 1019, Human Nutrition Unit, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Anne-Marie Minihane
- University of East Anglia, Norwich Medical School, Norwich NR4 7UQ, United Kingdom
| | | | - Robert Perneczky
- Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Hugh Perry
- University of Southampton, Tremona Road, SO16 6YD Southampton, United Kingdom
| | - Anne-Marie Roussel
- Joseph Fourier University, Domaine de la Merci, 38706 La Tronche, France
| | - Jeroen Schuermans
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200 Brussels, Belgium.
| | - John Sijben
- Nutricia Research, Nutricia Advances Medical Nutrition, P.O. Box 80141, 3508TC Utrecht, The Netherlands
| | - Jeremy P E Spencer
- University of Reading, Whiteknights, P.O. Box 217, RG6 6AH Reading, Berkshire, United Kingdom
| | - Sandrine Thuret
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU London, United Kingdom
| | - Ondine van de Rest
- Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | | - Keith Wesnes
- Wesnes Cognition Ltd., Little Paddock, Streatley on Thames RG8 9RD, United Kingdom; Department of Psychology, Northumbria University, Newcastle, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia; Medicinal Plant Research Group, Newcastle University, United Kingdom
| | | | - Robin S B Williams
- Royal Holloway, University of London, Egham, TW20 0EX Surrey, United Kingdom
| | - Maria Ramirez
- Abbott Nutrition R&D, Abbott Laboratories, Camino de Purchil 68, 18004 Granada, Spain
| |
Collapse
|
10
|
Gasperotti M, Passamonti S, Tramer F, Masuero D, Guella G, Mattivi F, Vrhovsek U. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem Neurosci 2015; 6:1341-52. [PMID: 25891864 DOI: 10.1021/acschemneuro.5b00051] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Different polyphenol compounds are ingested when consuming a serving of fruits rich in polyphenols, spanning from one-phenol hydroxybenzoic acid to more complex polymeric compounds. Only a minor quantity of the polyphenols (5-10%) is absorbed. The remainder reaches the colon and is extensively metabolized by gut microbiota to low-molecular weight metabolites. Their subsequent tissue distribution is still undefined, although these microbial metabolites are currently believed to play a role in human health and disease states. To fill this knowledge gap, we performed a pharmacokinetics experiment in which a single bolus of 23 polyphenol microbial metabolites (total 2.7 μmol) was administered intravenously to rats to reliably reproduce a physiological postabsorption situation. Tissues and urine were collected shortly thereafter (15 s to 15 min) and were analyzed by UHPLC-MS/MS to quantitatively track these compounds. Remarkably, the brain was found to be a specific target organ for 10 of the 23 polyphenol metabolites injected, which significantly increased in the treated animals. In most cases, their appearance in the brain was biphasic, with an early wave at 2 min (4 compounds) and a second wave starting at 5 min; at 15 min, 9 compounds were still detectable. Most compounds were excreted into the urine. The concentrations in the brain of the treated animals were compared against those of the control group by Student's t test, with p-values < 0.1 considered to be statistically significant. These findings provide new perspectives for understanding the role of diet on brain chemistry. Our experimental approach has enabled us to obtain rich metabolomics information from a single experiment involving a limited number of animals.
Collapse
Affiliation(s)
- Mattia Gasperotti
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, via Sommarive 14, 38123 Trento, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| |
Collapse
|
11
|
Granzotto A, Zatta P. Resveratrol and Alzheimer's disease: message in a bottle on red wine and cognition. Front Aging Neurosci 2014; 6:95. [PMID: 24860502 PMCID: PMC4030174 DOI: 10.3389/fnagi.2014.00095] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/28/2014] [Indexed: 12/24/2022] Open
Abstract
Cognitive impairment is the final outcome of a complex network of molecular mechanisms ultimately leading to dementia. Despite major efforts aimed at unraveling the molecular determinants of dementia of Alzheimer type (DAT), effective disease-modifying approaches are still missing. An interesting and still largely unexplored avenue is offered by nutraceutical intervention. For instance, robust epidemiological data have suggested that moderate intake of red wine may protect against several age-related pathological conditions (i.e., cardiovascular diseases, diabetes, and cancer) as well as DAT-related cognitive decline. Wine is highly enriched in many polyphenols, including resveratrol. Resveratrol is a well recognized antioxidant which may modulate metal ion deregulation outcomes as well as main features of the Alzheimer’s disease (AD) brain. The review will discuss the potentiality of resveratrol as a neuroprotectant in dementia in relation to the oxidative stress produced by amyloid and metal dysmetabolism.
Collapse
Affiliation(s)
- Alberto Granzotto
- Molecular Neurology Unit, Center of Excellence on Aging (Ce.S.I.) Chieti, Italy
| | - Paolo Zatta
- CNR-Institute for Biomedical Technologies, Padua "Metalloproteins" Unit, Department of Biology, University of Padua Padua, Italy
| |
Collapse
|
12
|
Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.05.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|