1
|
Zeng C, Wu J, Li J. Pyruvate Kinase M2: A Potential Regulator of Cardiac Injury Through Glycolytic and Non-glycolytic Pathways. J Cardiovasc Pharmacol 2024; 84:1-9. [PMID: 38560918 PMCID: PMC11230662 DOI: 10.1097/fjc.0000000000001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
ABSTRACT Adult animals are unable to regenerate heart cells due to postnatal cardiomyocyte cycle arrest, leading to higher mortality rates in cardiomyopathy. However, reprogramming of energy metabolism in cardiomyocytes provides a new perspective on the contribution of glycolysis to repair, regeneration, and fibrosis after cardiac injury. Pyruvate kinase (PK) is a key enzyme in the glycolysis process. This review focuses on the glycolysis function of PKM2, although PKM1 and PKM2 both play significant roles in the process after cardiac injury. PKM2 exists in both low-activity dimer and high-activity tetramer forms. PKM2 dimers promote aerobic glycolysis but have low catalytic activity, leading to the accumulation of glycolytic intermediates. These intermediates enter the pentose phosphate pathway to promote cardiomyocyte proliferation and heart regeneration. Additionally, they activate adenosine triphosphate (ATP)-sensitive K + (K ATP ) channels, protecting the heart against ischemic damage. PKM2 tetramers function similar to PKM1 in glycolysis, promoting pyruvate oxidation and subsequently ATP generation to protect the heart from ischemic damage. They also activate KDM5 through the accumulation of αKG, thereby promoting cardiomyocyte proliferation and cardiac regeneration. Apart from glycolysis, PKM2 interacts with transcription factors like Jmjd4, RAC1, β-catenin, and hypoxia-inducible factor (HIF)-1α, playing various roles in homeostasis maintenance, remodeling, survival regulation, and neovascularization promotion. However, PKM2 has also been implicated in promoting cardiac fibrosis through mechanisms like sirtuin (SIRT) 3 deletion, TG2 expression enhancement, and activation of transforming growth factor-β1 (TGF-β1)/Smad2/3 and Jak2/Stat3 signals. Overall, PKM2 shows promising potential as a therapeutic target for promoting cardiomyocyte proliferation and cardiac regeneration and addressing cardiac fibrosis after injury.
Collapse
Affiliation(s)
- Chenxin Zeng
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Jiangfeng Wu
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China; and
| | - Junming Li
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
2
|
Dadson K, Thavendiranathan P, Hauck L, Grothe D, Azam MA, Stanley-Hasnain S, Mahiny-Shahmohammady D, Si D, Bokhari M, Lai PF, Massé S, Nanthakumar K, Billia F. Statins Protect Against Early Stages of Doxorubicin-induced Cardiotoxicity Through the Regulation of Akt Signaling and SERCA2. CJC Open 2022; 4:1043-1052. [PMID: 36562012 PMCID: PMC9764135 DOI: 10.1016/j.cjco.2022.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Doxorubicin-induced cardiomyopathy (DICM) is one of the complications that can limit treatment for a significant number of cancer patients. In animal models, the administration of statins can prevent the development of DICM. Therefore, the use of statins with anthracyclines potentially could enable cancer patients to complete their chemotherapy without added cardiotoxicity. The precise mechanism mediating the cardioprotection is not well understood. The purpose of this study is to determine the molecular mechanism by which rosuvastatin confers cardioprotection in a mouse model of DICM. Methods Rosuvastatin was intraperitoneally administered into adult male mice at 100 μg/kg daily for 7 days, followed by a single intraperitoneal doxorubicin injection at 10 mg/kg. Animals continued to receive rosuvastatin daily for an additional 14 days. Cardiac function was assessed by echocardiography. Optical calcium mapping was performed on retrograde Langendorff perfused isolated hearts. Ventricular tissue samples were analyzed by immunofluorescence microscopy, Western blotting, and quantitative polymerase chain reaction. Results Exposure to doxorubicin resulted in significantly reduced fractional shortening (27.4% ± 1.11% vs 40% ± 5.8% in controls; P < 0.001) and re-expression of the fetal gene program. However, we found no evidence of maladaptive cardiac hypertrophy or adverse ventricular remodeling in mice exposed to this dose of doxorubicin. In contrast, rosuvastatin-doxorubicin-treated mice maintained their cardiac function (39% ± 1.26%; P < 0.001). Mechanistically, the effect of rosuvastatin was associated with activation of Akt and phosphorylation of phospholamban with preserved sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (SERCA2)-mediated Ca2+ reuptake. These effects occurred independently of perturbations in ryanodine receptor 2 function. Conclusions Rosuvastatin counteracts the cardiotoxic effects of doxorubicin by directly targeting sarcoplasmic calcium cycling.
Collapse
Affiliation(s)
- Keith Dadson
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Hauck
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Ali Azam
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Shanna Stanley-Hasnain
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Daoyuan Si
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Mahmoud Bokhari
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Patrick F.H. Lai
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stéphane Massé
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,Corresponding author: Dr Filio Billia, Toronto General Hospital Research Institute, University Health Network, University of Toronto, 101 College St., Toronto, Ontario, M5G 1L7 Canada. Tel.: +1-416-340-4800 x6805; fax: +1-416-340-4012.
| |
Collapse
|
3
|
Ni L, Lin B, Hu L, Zhang R, Fu F, Shen M, Yang J, Shi D. Pyruvate Kinase M2 Protects Heart from Pressure Overload-Induced Heart Failure by Phosphorylating RAC1. J Am Heart Assoc 2022; 11:e024854. [PMID: 35656980 PMCID: PMC9238738 DOI: 10.1161/jaha.121.024854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Heart failure, caused by sustained pressure overload, remains a major public health problem. PKM (pyruvate kinase M) acts as a rate‐limiting enzyme of glycolysis. PKM2 (pyruvate kinase M2), an alternative splicing product of PKM, plays complex roles in various biological processes and diseases. However, the role of PKM2 in the development of heart failure remains unknown. Methods and Results Cardiomyocyte‐specific Pkm2 knockout mice were generated by crossing the floxed Pkm2 mice with α‐MHC (myosin heavy chain)‐Cre transgenic mice, and cardiac specific Pkm2 overexpression mice were established by injecting adeno‐associated virus serotype 9 system. The results showed that cardiomyocyte‐specific Pkm2 deletion resulted in significant deterioration of cardiac functions under pressure overload, whereas Pkm2 overexpression mitigated transverse aortic constriction‐induced cardiac hypertrophy and improved heart functions. Mechanistically, we demonstrated that PKM2 acted as a protein kinase rather than a pyruvate kinase, which inhibited the activation of RAC1 (rho family, small GTP binding protein)‐MAPK (mitogen‐activated protein kinase) signaling pathway by phosphorylating RAC1 in the progress of heart failure. In addition, blockade of RAC1 through NSC23766, a specific RAC1 inhibitor, attenuated pathological cardiac remodeling in Pkm2 deficiency mice subjected to transverse aortic constriction. Conclusions This study revealed that PKM2 attenuated overload‐induced pathological cardiac hypertrophy and heart failure, which provides an attractive target for the prevention and treatment of cardiomyopathies.
Collapse
Affiliation(s)
- Le Ni
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Bowen Lin
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Lingjie Hu
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | | | - Fengmei Fu
- Jinzhou Medical University Liaoning China
| | - Meiting Shen
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Jian Yang
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China.,Department of Cell Biology Tongji University School of Medicine Shanghai China.,Institute of Medical Genetics Tongji University Shanghai China
| | - Dan Shi
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| |
Collapse
|
4
|
Hattori Y, Hattori K, Machida T, Matsuda N. Vascular endotheliitis associated with infections: Its pathogenetic role and therapeutic implication. Biochem Pharmacol 2022; 197:114909. [PMID: 35021044 PMCID: PMC8743392 DOI: 10.1016/j.bcp.2022.114909] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Vascular endothelial cells are major participants in and regulators of immune responses and inflammation. Vascular endotheliitis is regarded as a host immune-inflammatory response of the endothelium forming the inner surface of blood vessels in association with a direct consequence of infectious pathogen invasion. Vascular endotheliitis and consequent endothelial dysfunction can be a principle determinant of microvascular failure, which would favor impaired perfusion, tissue hypoxia, and subsequent organ failure. Emerging evidence suggests the role of vascular endotheliitis in the pathogenesis of coronavirus disease 2019 (COVID-19) and its related complications. Thus, once initiated, vascular endotheliitis and resultant cytokine storm cause systemic hyperinflammation and a thrombotic phenomenon in COVID-19, leading to acute respiratory distress syndrome and widespread organ damage. Vascular endotheliitis also appears to be a contributory factor to vasculopathy and coagulopathy in sepsis that is defined as life-threatening organ dysfunction due to a dysregulated response of the host to infection. Therefore, protecting endothelial cells and reversing vascular endotheliitis may be a leading therapeutic goal for these diseases associated with vascular endotheliitis. In this review, we outline the etiological and pathogenic importance of vascular endotheliitis in infection-related inflammatory diseases, including COVID-19, and possible mechanisms leading to vascular endotheliitis. We also discuss pharmacological agents which may be now considered as potential endotheliitis-based treatment modalities for those diseases.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Inhibition of GTPase Rac1 expression by vitamin D mitigates pressure overload-induced cardiac hypertrophy. IJC HEART & VASCULATURE 2021; 37:100922. [PMID: 34917751 PMCID: PMC8645456 DOI: 10.1016/j.ijcha.2021.100922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022]
|
6
|
Buschmann K, Gramlich Y, Chaban R, Oelze M, Hink U, Münzel T, Treede H, Daiber A, Duerr GD. Disturbed Lipid Metabolism in Diabetic Patients with Manifest Coronary Artery Disease Is Associated with Enhanced Inflammation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010892. [PMID: 34682638 PMCID: PMC8535387 DOI: 10.3390/ijerph182010892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Background: Diabetic vasculopathy plays an important role in the pathophysiology of coronary artery disease (CAD) with oxidative stress as a strong mediator. This study aims to elucidate the underlying pathomechanisms of diabetic cardiac vasculopathy leading to coronary disease with an emphasis on the role of oxidative stress. Therefore, novel insights into antioxidant pathways might contribute to new strategies in the treatment and prevention of diabetic CAD. Methods: In 20 patients with insulin-dependent or non-insulin dependent diabetes mellitus (IDDM/NIDDM) and 39 non-diabetic (CTR) patients, myocardial markers of oxidative stress, vasoactive proteins, endothelial nitric oxide synthase (eNOS), activated phosphorylated eNOS (p-eNOS), and antioxidant enzymes, e.g., tetrahydrobiopterin generating dihydrofolate reductase (DHFR), heme oxygenase (HO-1), as well as serum markers of inflammation, e.g., E-selectin, interleukin-6 (IL-6), and lipid metabolism, e.g., high- and low-density lipoptrotein (HDL- and LDL-cholesterol) were determined in specimens of right atrial tissue and in blood samples from type 2 diabetic and non-diabetic patients undergoing coronary artery bypass graft (CABG) surgery. Results: IDDM/NIDDM increased markers of inflammation (e.g., E-selectin, p = 0.005 and IL-6, p = 0.051), decreased the phosphorylated myocardial p-eNOS (p = 0.032), upregulated the myocardial stress response protein HO-1 (p = 0.018), and enhanced the serum LDL-/HDL-cholesterol ratio (p = 0.019). However, the oxidative stress markers in the myocardium and the expression of vasoactive proteins (eNOS, DHFR) showed only marginal adverse changes in patients with IDDM/NIDDM. Conclusion: Dyslipidemia and myocardial inflammation seem to be the major determinants of diabetic CAD complications. Dysregulation in pro-oxidative enzymes might be attributable to the severity of CAD and oxidative stress levels in all included patients undergoing CABG.
Collapse
Affiliation(s)
- Katja Buschmann
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Yves Gramlich
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Ryan Chaban
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Matthias Oelze
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Ulrich Hink
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Thomas Münzel
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Hendrik Treede
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Andreas Daiber
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
- Correspondence: ; Tel.: +49-6131-17-0; Fax: +49-6131-17-3626
| |
Collapse
|
7
|
Xie Y, Chen L, Xu Z, Li C, Ni Y, Hou M, Chen L, Chang H, Yang Y, Wang H, He R, Chen R, Qian L, Luo Y, Zhang Y, Li N, Zhu Y, Ji M, Liu Y. Predictive Modeling of MAFLD Based on Hsp90α and the Therapeutic Application of Teprenone in a Diet-Induced Mouse Model. Front Endocrinol (Lausanne) 2021; 12:743202. [PMID: 34659125 PMCID: PMC8515197 DOI: 10.3389/fendo.2021.743202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS The heat shock protein (Hsp) 90α is induced by stress and regulates inflammation through multiple pathways. Elevated serum Hsp90α had been found in nonalcoholic steatohepatitis (NASH). Geranylgeranylacetone (GGA, also called teprenone) is a terpenoid derivative. It was reported to induce Hsp and alleviate insulin resistance. We aimed to evaluate the Hsp90α as a biomarker in predicting metabolic-associated fatty liver disease (MAFLD) and define the therapeutic effects of geranylgeranylacetone for the disease. METHODS A clinical study was conducted to analyze the elements associated with Hsp90α, and a predictive model of MAFLD was developed based on Hsp90α. The histopathological correlation between Hsp90α and MAFLD was investigated through a diet-induced mouse model. Furthermore, GGA was applied to the mouse model. RESULTS Serum Hsp90α was increased in patients with MAFLD. A positive linear relationship was found between age, glycosylated hemoglobin (HbA1c), MAFLD, and serum Hsp90α. Meanwhile, a negative linear relationship with body mass index (BMI) was found. A model using Hsp90α, BMI, HbA1c, and ALT was established for predicting MAFLD. The area under the receiver operating characteristic (ROC) curves was 0.94 (95% CI 0.909-0.971, p = 0.000). The sensitivity was 84.1%, and the specificity was 93.1%. In vitro experiments, GGA induced Hsp90α in steatosis cells. In the mice model, Hsp90α decreased in the GGA treatment group. Hepatic steatosis, inflammation, insulin resistance, and glucose intolerance were improved in the GGA-treated group. Serum Hsp90α was positively correlated with steatohepatitis activity according to hepatic histopathology. CONCLUSIONS Serum Hsp90α was elevated in MAFLD, and a positive correlation between serum Hsp90α and the grade of activity of steatohepatitis was observed. The model using BMI, HbA1c, and alanine aminotransferase (ALT) had a good value to predict MAFLD. The findings also revealed the effectiveness of GGA in the treatment of MAFLD.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yuxuan Yang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Rongbo He
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Rourou Chen
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Li Qian
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Luo
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Zhang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Na Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yuxiao Zhu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Minjun Ji, ; Yu Liu,
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Minjun Ji, ; Yu Liu,
| |
Collapse
|
8
|
Zhang Q, Dong J, Yu Z. Pleiotropic use of Statins as non-lipid-lowering drugs. Int J Biol Sci 2020; 16:2704-2711. [PMID: 33110390 PMCID: PMC7586431 DOI: 10.7150/ijbs.42965] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Statins, known as HMG-CoA reductase (HMGCR) inhibitors, have primarily been utilized for metabolic and angiographic medical applications because of their cholesterol-lowering effects. Similar to other drugs, statins may also induce a series of potential side effects. Statins inhibit the HMGCR (rate-limiting enzyme) activity in early stages of mevalonate pathway and then indirectly affect a number of intermediate products, including non-sterol isoprenoids (coenzyme Q10, dolichol etc.), which can result in impaired functions of body organs. Recently, scores of studies have uncovered additional functional mechanisms of statins in other diseases, such as diabetes mellitus, nervous system diseases, coronary heart disease, inflammation and cancers. This review aims to summarize the positive and adverse mechanisms of statin therapy. Statin care should be taken in the treatment of many diseases including cancers. Since the underlying mechanisms are not fully elucidated, future studies should spend more time and efforts on basic research to explore the mechanisms of statins.
Collapse
Affiliation(s)
- Qijia Zhang
- Digestive internal medicine and Department of infectious diseases, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Jianlong Dong
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ze Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| |
Collapse
|
9
|
Chang SN, Wu CK, Lai LP, Chiang FT, Hwang JJ, Tsai CT. The effect and molecular mechanism of statins on the expression of human anti-coagulation genes. Cell Mol Life Sci 2019; 76:3891-3898. [PMID: 31053884 PMCID: PMC11105704 DOI: 10.1007/s00018-019-03100-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022]
Abstract
Statins are potent lipid-lowering drugs. Large prospective clinical trials have shown the anti-thrombotic effect of statins, e.g., preventing deep vein thrombosis. However, the mechanism underlying the beneficial effect of statins in reducing thrombus formation remains to be established. We, thus, conduct this study to investigate the potential molecular mechanisms. The cultured human hepatoma cells (HepG2) were used as the in vitro model. The human protein C gene promoter was cloned into the luciferase reporter to study the transcriptional regulation of human protein C gene. Wistar rats fed with simvastatin (5 mg/kg day) were used as the in vivo model. We found that simvastatin increased the expression of protein C in hepatocytes (361 ± 64% and 313 ± 59% after 2 h and 6 h of stimulation, respectively, both p < 0.01). In the animal study, the serum protein C levels were increased in the simvastatin-treated group (7 ± 2.2 unit/ml vs 23.4 ± 19.3 unit/ml and 23.4 ± 18.2 unit/ml and 1 and 2 weeks of treatment, respectively, both p < 0.05). Regarding the possible molecular mechanism, we found that the level of hepatocyte nuclear factor 1α (HNF1α) was also increased in both the in vivo and in vitro models. We found that the protein C promoter activity was increased by simvastatin, and this effect was inhibited by HNF1α knockdown and constitutively active Rac1. Therefore, stains may modulate protein C expression through small GTPase Rac 1 and HNF1α.
Collapse
Affiliation(s)
- Sheng-Nan Chang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Cho-Kai Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Ling-Ping Lai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Fu-Tien Chiang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
- Division of Cardiology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Taipei, Taiwan
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
El-Achkar GA, Mrad MF, Mouawad CA, Badran B, Jaffa AA, Motterlini R, Hamade E, Habib A. Heme oxygenase-1-Dependent anti-inflammatory effects of atorvastatin in zymosan-injected subcutaneous air pouch in mice. PLoS One 2019; 14:e0216405. [PMID: 31071151 PMCID: PMC6508873 DOI: 10.1371/journal.pone.0216405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/19/2019] [Indexed: 01/15/2023] Open
Abstract
Statins exert pleiotropic and beneficial anti-inflammatory and antioxidant effects. We have previously reported that macrophages treated with statins increased the expression of heme oxygenase-1 (HO-1), an inducible anti-inflammatory and cytoprotective stress protein, responsible for the degradation of heme. In the present study, we investigated the effects of atorvastatin on inflammation in mice and analyzed its mechanism of action in vivo. Air pouches were established in 8 week-old female C57BL/6J mice. Atorvastatin (5 mg/kg, i.p.) and/or tin protoporphyrin IX (SnPPIX), a heme oxygenase inhibitor (12 mg/kg, i.p.), were administered for 10 days. Zymosan, a cell wall component of Saccharomyces cerevisiae, was injected in the air pouch to trigger inflammation. Cell number and levels of inflammatory markers were determined in exudates collected from the pouch 24 hours post zymosan injection by flow cytometry, ELISA and quantitative PCR. Analysis of the mice treated with atorvastatin alone displayed increased expression of HO-1, arginase-1, C-type lectin domain containing 7A, and mannose receptor C-type 1 in the cells of the exudate of the air pouch. Flow cytometry analysis revealed an increase in monocyte/macrophage cells expressing HO-1 and in leukocytes expressing MRC-1 in response to atorvastatin. Mice treated with atorvastatin showed a significant reduction in cell influx in response to zymosan, and in the expression of proinflammatory cytokines and chemokines such as interleukin-1α, monocyte chemoattractant protein-1 and prostaglandin E2. Co-treatment of mice with atorvastatin and tin protoporphyrin IX (SnPPIX), an inhibitor of heme oxygenase, reversed the inhibitory effect of statin on cell influx and proinflammatory markers, suggesting a protective role of HO-1. Flow cytometry analysis of air pouch cell contents revealed prevalence of neutrophils and to a lesser extent of monocytes/macrophages with no significant effect of atorvastatin treatment on the modification of their relative proportion. These findings identify HO-1 as a target for the therapeutic actions of atorvastatin and highlight its potential role as an in vivo anti-inflammatory agent.
Collapse
Affiliation(s)
- Ghewa A. El-Achkar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- INSERM U955, Equipe 12, University Paris-Est, Faculty of Medicine, Créteil, France
| | - May F. Mrad
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Charbel A. Mouawad
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Roberto Motterlini
- INSERM U955, Equipe 12, University Paris-Est, Faculty of Medicine, Créteil, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
- * E-mail: (AH); (EH)
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l’Inflammation, Sorbonne Paris Cité, Laboratoire d’Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université de Paris, Paris, France
- * E-mail: (AH); (EH)
| |
Collapse
|
11
|
Henninger C, Pohlmann S, Ziegler V, Ohlig J, Schmitt J, Fritz G. Distinct contribution of Rac1 expression in cardiomyocytes to anthracycline-induced cardiac injury. Biochem Pharmacol 2019; 164:82-93. [PMID: 30936017 DOI: 10.1016/j.bcp.2019.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
Cardiotoxicity is the dose limiting adverse effect of anthracycline-based anticancer therapy. Inhibitor studies point to Rac1 as therapeutic target to prevent anthracycline-induced cardiotoxicity. Yet, supporting genetic evidence is still missing and the pathophysiological relevance of different cardiac cell types is unclear. Here, we employed a tamoxifen-inducible cardiomyocyte-specific rac1 knock-out mouse model (Rac1flox/flox/MHC-MerCreMer) to investigate the impact of Rac1 expression in cardiomyocytes on cardiac injury following doxorubicin treatment. Distinctive stress responses resulting from doxorubicin treatment were observed, including upregulation of systemic markers of inflammation (IL-6, IL-1α, MCP-1), cardiac damage (ANP, BNP), DNA damage (i.e. DNA double-strand breaks (DSB)), DNA damage response (DDR) and cell death. Measuring the acute doxorubicin response, the serum level of MCP-1 was elevated, cardiac mRNA expression of Hsp70 was reduced and cardiac DDR was specifically enhanced in Rac1 deficient mice. The frequency of apoptotic heart cells remained unaffected by Rac1. Employing a subactue model, the number of doxorubicin-induced DSB was significantly reduced if Rac1 is absent. Yet, the doxorubicin-triggered increase in serum ANP and BNP levels remained unaffected by Rac1. Overall, knock-out of rac1 in cardiomyocytes confers partial protection against doxorubicin-induced cardiac injury. Hence, the data provide first genetic evidence supporting the view that pharmacological targeting of Rac1 is useful to widen the therapeutic window of anthracycline-based anticancer therapy by alleviating acute/subacute cardiomyocyte damage. Furthermore, considering published data obtained from the use of pharmacological Rac1 inhibitors, the results of our study indicate that Rac1-regulated functions of cardiac cell types others than cardiomyocytes additionally influence the adverse outcomes of anthracycline treatment on the heart.
Collapse
Affiliation(s)
- Christian Henninger
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Stephanie Pohlmann
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Verena Ziegler
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Jan Ohlig
- Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Joachim Schmitt
- Institute of Pharmacology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
|
13
|
DiNicolantonio JJ, McCarty MF, O’Keefe JH. Antioxidant bilirubin works in multiple ways to reduce risk for obesity and its health complications. Open Heart 2018; 5:e000914. [PMID: 30364545 PMCID: PMC6196942 DOI: 10.1136/openhrt-2018-000914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - James H O’Keefe
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
14
|
Schröder K, Weissmann N, Brandes RP. Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Free Radic Biol Med 2017; 109:22-32. [PMID: 28336130 DOI: 10.1016/j.freeradbiomed.2017.03.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 01/25/2023]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
15
|
Qi W, Tian L, An W, Wu Q, Liu J, Jiang C, Yang J, Tang B, Zhang Y, Xie K, Wang X, Li Z, Wu W. Curing the Toxicity of Multi-Walled Carbon Nanotubes through Native Small-molecule Drugs. Sci Rep 2017; 7:2815. [PMID: 28588210 PMCID: PMC5460272 DOI: 10.1038/s41598-017-02770-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
With the development and application of nanotechnology, large amounts of nanoparticles will be potentially released to the environment and possibly cause many severe health problems. Although the toxicity of nanoparticles has been investigated, prevention and treatment of damages caused by nanoparticles have been rarely studied. Therefore, isotope tracing and improved CT imaging techniques were used to investigate the biodistribution influence between oMWCNTs(oxidized multi-walled carbon nanotubes) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/or simvastatin (TD) in vivo. What’s more, biochemical indices in plasma and tissue histology were measured to further study therapeutic effects on the damages of oMWCNTs in mice. Isotope tracing and improved CT imaging results showed that low dosages of DOPC and TD didn’t affect the distribution of oMWCNTs in mice; conversely, the distribution and metabolism of DOPC and TD were influenced by oMWCNTs. Moreover, DOPC and/or TD improved the biocompatibility of oMWCNTs in erythrocyte suspension in vitro. Biochemical index and histopathological results indicated that DOPC and TD didn’t prevent injuries caused by oMWCNTs effectively. But TD showed a good therapeutic effect for damages. This study is the first to investigate prevention and treatment effects of drugs on damages caused by oMWCNTs and provides new insights and breakthroughs for management of nanoparticles on health hazards.
Collapse
Affiliation(s)
- Wei Qi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China.
| | - Longlong Tian
- Lanzhou University, Lanzhou City, 730000, Gansu Province, P.R. China
| | - Wenzhen An
- Lanzhou University, Lanzhou City, 730000, Gansu Province, P.R. China
| | - Qiang Wu
- Lanzhou University, Lanzhou City, 730000, Gansu Province, P.R. China
| | - Jianli Liu
- Lanzhou University Second Hospital, Lanzhou City, 730000, Gansu Province, P.R. China
| | - Can Jiang
- Non-power Nuclear Technology Research & Development Center, Hubei University of Science and Technology, Xianning City, 437000, Hubei Province, P.R. China
| | - Jun Yang
- Institue of Applied and Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China
| | - Bing Tang
- Institue of Applied and Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China
| | - Yafeng Zhang
- Institue of Applied and Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China
| | - Kangjun Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China
| | - Xinling Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, P.R. China
| | - Zhan Li
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P.R. China.
| | - Wangsuo Wu
- Lanzhou University, Lanzhou City, 730000, Gansu Province, P.R. China.
| |
Collapse
|
16
|
Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases. Healthcare (Basel) 2016; 4:healthcare4030060. [PMID: 27571113 PMCID: PMC5041061 DOI: 10.3390/healthcare4030060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA), generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients.
Collapse
|
17
|
McCarty MF. Asymmetric Dimethylarginine Is a Well Established Mediating Risk Factor for Cardiovascular Morbidity and Mortality-Should Patients with Elevated Levels Be Supplemented with Citrulline? Healthcare (Basel) 2016; 4:healthcare4030040. [PMID: 27417628 PMCID: PMC5041041 DOI: 10.3390/healthcare4030040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
The arginine metabolite asymmetric dimethylarginine (ADMA) is a competitive inhibitor and uncoupler of endothelial nitric oxide synthase (eNOS), an enzyme that acts in multifarious ways to promote cardiovascular health. This phenomenon likely explains, at least in part, why elevated ADMA has been established as an independent risk factor for cardiovascular events, ventricular hypertrophy, and cardiovascular mortality. Fortunately, the suppressive impact of ADMA on eNOS activity can be offset by increasing intracellular arginine levels with supplemental citrulline. Although the long-term impact of supplemental citrulline on cardiovascular health in patients with elevated ADMA has not yet been studied, shorter-term clinical studies of citrulline administration demonstrate effects suggestive of increased NO synthesis, such as reductions in blood pressure and arterial stiffness, improved endothelium-dependent vasodilation, increased erection hardness, and increased ejection fractions in patients with heart failure. Supplemental citrulline could be a practical option for primary or secondary prevention of cardiovascular events and mortality, as it is inexpensive, has a mild flavor, and is well tolerated in doses (3-6 g daily) that can influence eNOS activity. Large and long-term clinical trials, targeting patients at high risk for cardiovascular events in whom ADMA is elevated, are needed to evaluate citrulline's potential for aiding cardiovascular health.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Dr., Apt. 316, Carlsbad, CA 92009, USA.
| |
Collapse
|
18
|
Steven S, Münzel T, Daiber A. Exploiting the Pleiotropic Antioxidant Effects of Established Drugs in Cardiovascular Disease. Int J Mol Sci 2015; 16:18185-223. [PMID: 26251902 PMCID: PMC4581241 DOI: 10.3390/ijms160818185] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life worldwide. Arterial vessels are a primary target for endothelial dysfunction and atherosclerosis, which is accompanied or even driven by increased oxidative stress. Recent research in this field identified different sources of reactive oxygen and nitrogen species contributing to the pathogenesis of endothelial dysfunction. According to lessons from the past, improvement of endothelial function and prevention of cardiovascular disease by systemic, unspecific, oral antioxidant therapy are obviously too simplistic an approach. Source- and cell organelle-specific antioxidants as well as activators of intrinsic antioxidant defense systems might be more promising. Since basic research demonstrated the contribution of different inflammatory cells to vascular oxidative stress and clinical trials identified chronic inflammatory disorders as risk factors for cardiovascular events, atherosclerosis and cardiovascular disease are closely associated with inflammation. Therefore, modulation of the inflammatory response is a new and promising approach in the therapy of cardiovascular disease. Classical anti-inflammatory therapeutic compounds, but also established drugs with pleiotropic immunomodulatory abilities, demonstrated protective effects in various models of cardiovascular disease. However, results from ongoing clinical trials are needed to further evaluate the value of immunomodulation for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Steven
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | - Thomas Münzel
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | - Andreas Daiber
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| |
Collapse
|
19
|
Tykhomyrov AA, Nedzvetsky VS, Bardachenko NI, Grinenko TV, Kuryata OV. Statin treatment decreases serum angiostatin levels in patients with ischemic heart disease. Life Sci 2015; 134:22-9. [DOI: 10.1016/j.lfs.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/22/2015] [Accepted: 05/17/2015] [Indexed: 11/25/2022]
|
20
|
Guo Y, Kenney SR, Muller CY, Adams S, Rutledge T, Romero E, Murray-Krezan C, Prekeris R, Sklar LA, Hudson LG, Wandinger-Ness A. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Mol Cancer Ther 2015. [PMID: 26206334 DOI: 10.1158/1535-7163.mct-15-0419] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion, and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high-throughput screening and computational shape homology approaches, we identified R-ketorolac as a Cdc42 and Rac1 inhibitor, distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip) and primary patient-derived ovarian cancer cells show that R-ketorolac is a robust inhibitor of growth factor or serum-dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small-molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration, and invasion. In summary, we provide evidence for R-ketorolac as a direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiologic responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA-approved drug, racemic ketorolac, that can be used in humans.
Collapse
Affiliation(s)
- Yuna Guo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - S Ray Kenney
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Carolyn Y Muller
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Sarah Adams
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Teresa Rutledge
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Elsa Romero
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Cristina Murray-Krezan
- Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Larry A Sklar
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Laurie G Hudson
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
21
|
Yang Q, Qi X, Li Y. The preventive effect of atorvastatin on atrial fibrillation: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 2014; 14:99. [PMID: 25117689 PMCID: PMC4135360 DOI: 10.1186/1471-2261-14-99] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/04/2014] [Indexed: 11/12/2022] Open
Abstract
Background A number of clinical and experimental studies have investigated the effect of atorvastatin on atrial fibrillation (AF), but the results are equivocal. This meta-analysis was performed to evaluate whether atorvastatin can reduce the risk of AF in different populations. Methods We searched PubMed, EMBASE and the Cochrane Database for all published studies that examined the effect of atorvastatin therapy on AF up to April 2014. A random effects model was used when there was substantial heterogeneity and a fixed effects model when there was negligible heterogeneity. Results Eighteen published studies including 9952 patients with sinus rhythm were identified for inclusion in the analysis. Ten studies investigated primary prevention of AF by atorvastatin in patients without AF, seven studies investigated secondary prevention of atorvastatin in patients with AF, and one study investigated mixed populations of patients. Overall, atorvastatin was associated with a decreased risk of AF (odds ratio (OR) 0.51, 95% confidence interval (CI) 0.36–0.70, P < 0.0001). However, subgroup analyses showed that in the primary prevention subgroup (OR 0.55, 95% CI 0.38–0.81, P = 0.002), atorvastatin reduced the risk of new-onset AF in patients after coronary surgery (OR 0.44, 95% CI 0.29–0.68, P = 0.0002), but had no beneficial effect in patients without coronary surgery (OR 0.97, 95% CI 0.59–1.58, P = 0.89); in the secondary prevention subgroup, atorvastatin had no beneficial effect on AF recurrence in patients with electrical cardioversion (EC) (OR 0.57, 95% CI 0.25–1.32, P = 0.19) or without EC (OR 0.38, 95% CI 0.14–1.06, P = 0.06). Conclusions This meta-analysis suggests that atorvastatin has an overall protective effect against AF. However, this preventive effect was not seen in all types of AF. Atorvastatin was significantly associated with a decreased risk of new-onset AF in patients after coronary surgery. Moreover, atorvastatin did not prove to exert a significant protective effect against the AF recurrences in both patients who had experienced sinus rhythm restoration by means of EC and those who had obtained cardioversion by means of drug therapy. Thus, further prospective studies are warranted.
Collapse
Affiliation(s)
| | - Xiaoyong Qi
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China.
| | | |
Collapse
|
22
|
Marinković G, Kroon J, Hoogenboezem M, Hoeben KA, Ruiter MS, Kurakula K, Otermin Rubio I, Vos M, de Vries CJM, van Buul JD, de Waard V. Inhibition of GTPase Rac1 in endothelium by 6-mercaptopurine results in immunosuppression in nonimmune cells: new target for an old drug. THE JOURNAL OF IMMUNOLOGY 2014; 192:4370-8. [PMID: 24670805 DOI: 10.4049/jimmunol.1302527] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Azathioprine and its metabolite 6-mercaptopurine (6-MP) are well established immunosuppressive drugs. Common understanding of their immunosuppressive properties is largely limited to immune cells. However, in this study, the mechanism underlying the protective role of 6-MP in endothelial cell activation is investigated. Because 6-MP and its derivative 6-thioguanosine-5'-triphosphate (6-T-GTP) were shown to block activation of GTPase Rac1 in T lymphocytes, we focused on Rac1-mediated processes in endothelial cells. Indeed, 6-MP and 6-T-GTP decreased Rac1 activation in endothelial cells. As a result, the compounds inhibited TNF-α-induced downstream signaling via JNK and reduced activation of transcription factors c-Jun, activating transcription factor-2 and, in addition, NF κ-light-chain-enhancer of activated B cells (NF-κB), which led to decreased transcription of proinflammatory cytokines. Moreover, 6-MP and 6-T-GTP selectively decreased TNF-α-induced VCAM-1 but not ICAM-1 protein levels. Rac1-mediated generation of cell membrane protrusions, which form docking structures to capture leukocytes, also was reduced by 6-MP/6-T-GTP. Consequently, leukocyte transmigration was inhibited after 6-MP/6-T-GTP treatment. These data underscore the anti-inflammatory effect of 6-MP and 6-T-GTP on endothelial cells by blocking Rac1 activation. Our data provide mechanistic insight that supports development of novel Rac1-specific therapeutic approaches against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Goran Marinković
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Lipid-lowering treatment with statins is one of the most effective therapeutic strategies in cardiovascular medicine because they reduce cardiovascular risk in both primary and secondary prevention. Despite the well-established links between low-density lipoprotein and cardiovascular risk, the clinical benefit from statin treatment is not fully explained by their lipid-lowering potential. A number of pleiotropic effects of statins have been described over the past decade, and their ability to suppress global oxidative stress is probably one of the most important mechanisms by which they exert their beneficial effects on the cardiovascular system. In this Forum, there are review articles discussing the molecular mechanisms by which statins modify redox signaling in the vasculature and the heart. They exert direct effects on the vascular wall and the myocardium or indirect by targeting the interactions between the cardiovascular system and adipose tissue or circulating cell types. The review articles in this Forum follow a translational approach and link the molecular mechanisms by which statins modify cardiovascular redox signaling with their clinical benefit in the prevention and treatment of cardiovascular diseases.
Collapse
|