1
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
2
|
Yin X, Lin L, Fang F, Zhang B, Shen C. Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease. Stem Cells Int 2023; 2023:6500831. [PMID: 38034060 PMCID: PMC10686715 DOI: 10.1155/2023/6500831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.
Collapse
Affiliation(s)
- Xiaorong Yin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lizhi Lin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fang Fang
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Cheng Shen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Kim J, Shanmugasundaram A, Lee CB, Kim JR, Park JJ, Kim ES, Lee BK, Lee DW. Enhanced cardiomyocyte structural and functional anisotropy through synergetic combination of topographical, conductive, and mechanical stimulation. LAB ON A CHIP 2023; 23:4540-4551. [PMID: 37771289 DOI: 10.1039/d3lc00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Drug-induced cardiotoxicity, a significant concern in the pharmaceutical industry, often results in the withdrawal of drugs from the market. The main cause of drug-induced cardiotoxicity is the use of immature cardiomyocytes during in vitro drug screening procedures. Over time, several methods such as topographical, conductive, and mechanical stimulation have been proposed to enhance both maturation and contractile properties of these cardiomyocytes. However, the synergistic effects of integrating topographical, conductive, and mechanical stimulation for cardiomyocyte maturation remain underexplored and poorly understood. To address this limitation, herein, we propose a grooved polydimethylsiloxane (PDMS) membrane embedded with silver nanowires (AgNWs-E-PDMS). The proposed AgNWs-E-PDMS membrane enhances the maturation of cardiomyocytes and provides a more accurate evaluation of drug-induced cardiotoxicity. When subjected to 10% tensile stress on the AgNWs-E-PDMS membrane, cardiomyocytes displayed substantial enhancements. Specifically, the contraction force, sarcomere length, and connexin-43 (Cx43) expression are increased by 2.0-, 1.5-, and 2.4-times, respectively, compared to the control state. The practical feasibility of the proposed device as a drug screening platform is demonstrated by assessing the adverse effects of lidocaine on cardiomyocytes. The contraction force and beat rate of lidocaine treated cardiomyocytes cultured on the AgNWs-E-PDMS membrane under mechanical stimulation decreased to 0.9 and 0.64 times their initial values respectively, compared to 0.6 and 0.51 times in the control state. These less pronounced changes in the contraction force and beat rate signify the superior drug response in the cardiomyocytes, a result of their enhanced maturation and growth on the AgNWs-E-PDMS membrane combined with mechanical stimulation.
Collapse
Affiliation(s)
- Jongyun Kim
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Arunkumar Shanmugasundaram
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheong Bin Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jae Rim Kim
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jeong Jae Park
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bong-Kee Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Khanna A, Ayan B, Undieh AA, Yang YP, Huang NF. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. J Mol Cell Cardiol 2022; 169:13-27. [PMID: 35569213 PMCID: PMC9385403 DOI: 10.1016/j.yjmcc.2022.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Three-dimensional (3D) bioprinting of cellular or biological components are an emerging field to develop tissue structures that mimic the spatial, mechanochemical and temporal characteristics of cardiovascular tissues. 3D multi-cellular and multi-domain organotypic biological constructs can better recapitulate in vivo physiology and can be utilized in a variety of applications. Such applications include in vitro cellular studies, high-throughput drug screening, disease modeling, biocompatibility analysis, drug testing and regenerative medicine. A major challenge of 3D bioprinting strategies is the inability of matrix molecules to reconstitute the complexity of the extracellular matrix and the intrinsic cellular morphologies and functions. An important factor is the inclusion of a vascular network to facilitate oxygen and nutrient perfusion in scalable and patterned 3D bioprinted tissues to promote cell viability and functionality. In this review, we summarize the new generation of 3D bioprinting techniques, the kinds of bioinks and printing materials employed for 3D bioprinting, along with the current state-of-the-art in engineered cardiovascular tissue models. We also highlight the translational applications of 3D bioprinting in engineering the myocardium cardiac valves, and vascular grafts. Finally, we discuss current challenges and perspectives of designing effective 3D bioprinted constructs with native vasculature, architecture and functionality for clinical translation and cardiovascular regeneration.
Collapse
|
5
|
Murphy SA, Chen EZ, Tung L, Boheler KR, Kwon C. Maturing heart muscle cells: Mechanisms and transcriptomic insights. Semin Cell Dev Biol 2021; 119:49-60. [PMID: 33952430 PMCID: PMC8653577 DOI: 10.1016/j.semcdb.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte (CM) maturation is the transformation of differentiated fetal CMs into adult CMs that involves changes in morphology, cell function and metabolism, and the transcriptome. This process is, however, incomplete and ultimately arrested in pluripotent stem cell-derived CMs (PSC-CMs) in culture, which hinders their broad biomedical application. For this reason, enormous efforts are currently being made with the goal of generating mature PSC-CMs. In this review, we summarize key aspects of maturation observed in native CMs and discuss recent findings on the factors and mechanisms that regulate the process. Particular emphasis is put on transcriptional regulation and single-cell RNA-sequencing analysis that has emerged as a key tool to study time-series gene regulation and to determine the maturation state. We then discuss different biomimetic strategies to enhance PSC-CM maturation and discuss their effects at the single cell transcriptomic and functional levels.
Collapse
Affiliation(s)
- Sean A Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elaine Zhelan Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Kenneth R Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Gao Y, Wu S, Pan J, Zhang K, Li X, Xu Y, Jin C, He X, Shi J, Ma L, Wu F, Yao Y, Wang P, He Q, Lan F, Zhang H, Tian M. CRISPR/Cas9-edited triple-fusion reporter gene imaging of dynamics and function of transplanted human urinary-induced pluripotent stem cell-derived cardiomyocytes. Eur J Nucl Med Mol Imaging 2021; 48:708-720. [PMID: 33216174 DOI: 10.1007/s00259-020-05087-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE To investigate the post-transplantation behaviour and therapeutic efficacy of human urinary-induced pluripotent stem cell-derived cardiomyocytes (hUiCMs) in infarcted heart. METHODS We used clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9) technology to integrate a triple-fusion (TF) reporter gene into the AAVS1 locus in human urine-derived hiPSCs (hUiPSCs) to generate TF-hUiPSCs that stably expressed monomeric red fluorescent protein for fluorescence imaging, firefly luciferase for bioluminescence imaging (BLI) and herpes simplex virus thymidine kinase for positron emission tomography (PET) imaging. RESULTS Transplanted cardiomyocytes derived from TF-hUiPSCs (TF-hUiCMs) engrafted and proliferated in the infarcted heart as monitored by both BLI and PET imaging and significantly improved cardiac function. Under ischaemic conditions, TF-hUiCMs enhanced cardiomyocyte (CM) glucose metabolism and promoted angiogenic activity. CONCLUSION This study established a CRISPR/Cas9-mediated multimodality reporter gene imaging system that can determine the dynamics and function of TF-hUiCMs in myocardial infarction, which is helpful for investigating the application of stem cell therapy.
Collapse
Affiliation(s)
- Yuanxue Gao
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jiayue Pan
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Yangyang Xu
- College of Chemical & Biological Engineering, Zhejiang University, Zhejiang, 310027, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Xiao He
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jingjing Shi
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Lijuan Ma
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yao Yao
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Ping Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Zhejiang, 310027, Hangzhou, China
- College of Biomedical Engineering and Instrument Science of Zhejiang University, Zhejiang, 310027, Hangzhou, China
| | - Qinggang He
- College of Chemical & Biological Engineering, Zhejiang University, Zhejiang, 310027, Hangzhou, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Zhejiang, 310027, Hangzhou, China.
- College of Biomedical Engineering and Instrument Science of Zhejiang University, Zhejiang, 310027, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Zhejiang, 310009, Hangzhou, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Zhejiang, 310009, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Zhejiang, 310027, Hangzhou, China.
| |
Collapse
|
7
|
Zhang Y, Hu W, Ma K, Zhang C, Fu X. Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Rev Rep 2020; 15:680-689. [PMID: 31197578 DOI: 10.1007/s12015-019-09900-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the most crucial branches of regenerative medicine is cell therapy, in which cellular material is injected into the patient to initiate the regenerative process. Cells obtained by reprogramming of the patient's own cells offer ethical and clinical advantages could provide a new source of material for therapeutic applications. Studies to date have shown that only a subset of differentiated cell types can be reprogrammed. Among these, keratinocytes, which are the most abundant proliferating cell type in the epidermis, have gained increasing attention as both donor and target cells for reprogramming and have become a new focus of regenerative medicine. As target cells for the treatment of skin defects, keratinocytes can be differentiated or reprogrammed from embryonic stem cells, induced pluripotent stem cells, fibroblasts, adipose tissue stem cells, and mesenchymal cells. As donor cells, keratinocytes can be reprogrammed or direct reprogrammed into a number of cell types, including induced pluripotent stem cells, neural cells, and Schwann cells. In this review, we discuss recent advances in keratinocyte reprogramming, focusing on the induction methods, potential molecular mechanisms, conversion efficiency, and safety for clinical applications. Graphical Abstract KCs as target cells can be reprogrammed or differentiated from fibroblasts, iPSCs, ATSCs, and mesenchymal cells. And as donor cells, KCs can be reprogrammed or directly reprogrammded into iPSCs, neural cells, Schwann cells, and epidermal stem cells.
Collapse
Affiliation(s)
- Yuehou Zhang
- School of Medicine, NanKai University, 94 Wei Jin Road, NanKai District, Tianjin, 300071, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Wenzhi Hu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
8
|
Brovold M, Almeida JI, Pla-Palacín I, Sainz-Arnal P, Sánchez-Romero N, Rivas JJ, Almeida H, Dachary PR, Serrano-Aulló T, Soker S, Baptista PM. Naturally-Derived Biomaterials for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1077:421-449. [PMID: 30357702 PMCID: PMC7526297 DOI: 10.1007/978-981-13-0947-2_23] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naturally-derived biomaterials have been used for decades in multiple regenerative medicine applications. From the simplest cell microcarriers made of collagen or alginate, to highly complex decellularized whole-organ scaffolds, these biomaterials represent a class of substances that is usually first in choice at the time of electing a functional and useful biomaterial. Hence, in this chapter we describe the several naturally-derived biomaterials used in tissue engineering applications and their classification, based on composition. We will also describe some of the present uses of the generated tissues like drug discovery, developmental biology, bioprinting and transplantation.
Collapse
Affiliation(s)
- Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Joana I Almeida
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Iris Pla-Palacín
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Pilar Sainz-Arnal
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
- Aragon Health Sciences Institute (IACS), Zaragoza, Spain
| | | | - Jesus J Rivas
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Helen Almeida
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Pablo Royo Dachary
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Liver Transplant Unit, Gastroenterology Department, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Trinidad Serrano-Aulló
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Liver Transplant Unit, Gastroenterology Department, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.
| | - Pedro M Baptista
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain.
- Center for Biomedical Research Network Liver and Digestive Diseases (CIBERehd), Zaragoza, Spain.
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
- Biomedical and Aerospace Engineering Department, Universidad Carlos III de Madrid, Madrid, Spain.
- Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
9
|
Jiang A, Chen Y, Shi L, Li F. Differentiation of brown adipose-derived stem cells into cardiomyocyte-like cells is regulated by a combination of low 5-azacytidine concentration and bone morphogenetic protein 4. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5514-5524. [PMID: 31949639 PMCID: PMC6963047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/27/2018] [Indexed: 06/10/2023]
Abstract
Adipose-derived stem cells (ADSCs) could be an ideal candidate for seed cells to regenerate damaged heart tissue. This study examined and compared the cardio-myogenic differentiation efficacy of neonatal rat brown ADSCs (rbADSCs) treated with either 5-azacytidine (5-AZA), bone morphogenetic protein 4 (BMP4), or lower doses of both molecules. Briefly, by investigating the protein expression of cardiac-specific markers (i.e., cardiac troponin-I, α-sarcomeric actinin, sarcoplasmic reticulum Ca2+-ATPase, and connexin 43), our data indicated that rbADSCs could be differentiated into cardiomyocyte-like cells by all three treatments. By quantitatively measuring the number of cells with positive staining for the above markers, we found that the low-dose combined treatment showed higher differentiation efficiency compared to standard dose 5-AZA and BMP4 treatment. Similarly, the expression levels of these proteins as determined by western blotting were higher in the low-dose combination group than in the standard dose 5-AZA and BMP4 groups. Also, the combined strategy maintained the decreased cell viability caused by cytotoxicity of 5-AZA, probably through reducing the ratio of apoptotic rbADSCs. Furthermore, the extracellular regulated protein kinase (ERK) signaling pathways participate in the differentiation process, but the observed effects between the BMP4 and 5-Aza treatments are quite different.
Collapse
Affiliation(s)
- Aixia Jiang
- Department of Cardiology, Shanghai Jiao Tong University School of Medicine-Affiliated Shanghai Children's Medical Centre Shanghai, China
| | - Yiwei Chen
- Department of Cardiology, Shanghai Jiao Tong University School of Medicine-Affiliated Shanghai Children's Medical Centre Shanghai, China
| | - Lin Shi
- Department of Cardiology, Shanghai Jiao Tong University School of Medicine-Affiliated Shanghai Children's Medical Centre Shanghai, China
| | - Fen Li
- Department of Cardiology, Shanghai Jiao Tong University School of Medicine-Affiliated Shanghai Children's Medical Centre Shanghai, China
| |
Collapse
|
10
|
Park JS, Kim HK, Kang EY, Cho R, Oh YM. Potential Therapeutic Strategy in Chronic Obstructive Pulmonary Disease Using Pioglitazone-Augmented Wharton's Jelly-Derived Mesenchymal Stem Cells. Tuberc Respir Dis (Seoul) 2018; 82:158-165. [PMID: 30302955 PMCID: PMC6435932 DOI: 10.4046/trd.2018.0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Background A recent study reported that mesenchymal stem cells possess potential cellular therapeutic properties for treating patients with chronic obstructive pulmonary disease, which is characterized by emphysema. We examined the potential therapeutic effect of Wharton's Jelly-derived mesenchymal stem cells (WJMSCs), following pretreatment with pioglitazone, in lung regeneration mouse emphysema models. Methods We used two mouse emphysema models, an elastase-induced model and a cigarette smoke-induced model. We intravenously injected WJMSCs (1×104/mouse) to mice, pretreated or not, with pioglitazone for 7 days. We measured the emphysema severity by mean linear intercepts (MLI) analysis using lung histology. Results Pioglitazone pretreated WJMSCs (pioWJMSCs) were associated with greater lung regeneration than non-augmented WJMSCs in the two mouse emphysema models. In the elastase-induced emphysema model, the MLIs were 59.02±2.42 µm (n=6), 72.80±2.87 µm (n=6), for pioWJMSCs injected mice, and non-augmented WJMSCs injected mice, respectively (p<0.01). Both pioWJMSCs and non-augmented WJMSCs showed regenerative effects in the cigarette smoke emphysema model (MLIs were 41.25±0.98 [n=6] for WJMSCs and38.97±0.61 µm [n=6] for pioWJMSCs) compared to smoking control mice (51.65±1.36 µm, n=6). The mean improvement of MLI appeared numerically better in pioWJMSCs than in non-augmented WJMSCs injected mice, but the difference did not reach the level of statistical significance (p=0.071). Conclusion PioWJMSCs may produce greater lung regeneration, compared to non-augmented WJMSCs, in a mouse emphysema model.
Collapse
Affiliation(s)
| | - Hyun Kuk Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | | | | | - Yeon Mok Oh
- Asan Institute for Life Sciences, Seoul, Korea.,Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul, Korea.,Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
11
|
Geng X, Liu B, Liu J, Liu D, Lu Y, Sun X, Liang K, Kong B. Interfacial tissue engineering of heart regenerative medicine based on soft cell-porous scaffolds. J Thorac Dis 2018; 10:S2333-S2345. [PMID: 30123574 DOI: 10.21037/jtd.2018.01.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myocardial infarction (MI), occurs when the coronary artery is occluded resulting in the hypoxia of areas in heart tissue, is increasing in recent years because of the population ageing and lifestyle changes. Currently, there is no ideal therapeutic scheme because of the limitation of MI therapeutic strategies due to the lack of regenerative ability of the heart cells in adult humans. Recent advances in tissue engineering and regenerative medicine brings hope to the MI therapy and current studies are focusing on restoring the function and structure of damaged tissue by delivering exogenous cells or stimulating endogenous heart cells. However, attempts to directly inject stem cells or cardiomyocytes to the infract zone often lead to rapid cell death and abundant cell loss. To address this challenge, various soft repair cells and porous scaffold materials have been integrated to improve cell retention and engraftment and preventing left ventricle (LV) dilatation. In this article, we will review the current method for heart regeneration based on soft cell-porous scaffold interfacial tissue engineering including common stem cell types, biomaterials, and cardiac patch and will discuss potential future directions in this area.
Collapse
Affiliation(s)
- Xiwen Geng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.,National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.,Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250014, China
| | - Jiaqing Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Dong Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yupeng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250014, China.,School of Materials Science and Engineering, Shandong University, Jinan 250014, China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kang Liang
- School of Chemical Engineering, and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Lu M, Xu L, Wang M, Guo T, Luo F, Su N, Yi S, Chen T. miR‑149 promotes the myocardial differentiation of mouse bone marrow stem cells by targeting Dab2. Mol Med Rep 2018; 17:8502-8509. [PMID: 29693140 DOI: 10.3892/mmr.2018.8903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/20/2018] [Indexed: 11/05/2022] Open
Abstract
To investigate the role of microRNA (miR)‑149 in the cardiac differentiation of mouse bone marrow mesenchymal stem cells (MSCs) in vitro, MSCs were infected with a lentivirus overexpressing miR‑149 and the effect on cardiac differentiation was determined. The quantitative polymerase chain reaction results demonstrated that miR‑149 promoted the expression of cardiac‑specific markers in MSCs. Western blotting and a luciferase activity assay demonstrated that disabled homolog 2 (Dab2) was a direct target of miR‑149. Dab2 ectopic expression and Wnt/β‑catenin signaling pathway inhibition was able to reverse the increased expression of cardiac‑specific markers induced by miR‑149. In conclusion, miR‑149 was able to target Dab2 and promote the cardiac differentiation of mouse MSCs in vitro, which depended upon the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Mingjun Lu
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Lingling Xu
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Min Wang
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Tao Guo
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Fuquan Luo
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Nan Su
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Shanghui Yi
- Department of Preventive Medicine, Medical School of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Tao Chen
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
13
|
Gibbs BC, Shenje L, Andersen P, Miyamoto M, Kwon C. β1-integrin is a cell-autonomous factor mediating the Numb pathway for cardiac progenitor maintenance. Biochem Biophys Res Commun 2018; 500:256-260. [PMID: 29653101 DOI: 10.1016/j.bbrc.2018.04.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022]
Abstract
Proper control of multipotent/stem cell number and fate is essential for ensuing organ formation during development. β1-integrin, a subfamily of cell surface receptors, has a conserved role in maintenance of multipotent/stem cells, including renal progenitor cells, follicle stem cells, epidermal stem cells and neural stem cells. However, it remains unclear whether β1-integrin has a role in cardiac progenitor cell (CPC) development. Here we show that a mesodermal deletion of β1-integrin decreases Isl1+ cell number in the second pharyngeal arch (PA2), where CPCs undergo renewal and expansion. Mesp1 lineage-specific mosaicism revealed that β1-integrin-deleted Isl1+ cells do not proliferate in the PA2. Consistently, β1-integrin-deleted Isl1+ CPCs failed to expand in vitro, independent of PA2 cells. β1-integrin co-localized and physically associated with Numb, a crucial regulator of CPC renewal and expansion. Importantly, Numb/Numbl-deleted CPCs showed dramatic reduction in β1-integrin levels. These findings suggest that β1-integrin is a key mediator of the Numb pathway in CPC maintenance.
Collapse
Affiliation(s)
- Brian C Gibbs
- Division of Cardiology, Department of Medicine, Institute for Cell Engineering, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lincoln Shenje
- Division of Cardiology, Department of Medicine, Institute for Cell Engineering, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Institute for Cell Engineering, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Institute for Cell Engineering, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Institute for Cell Engineering, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Cho GS, Lee DI, Tampakakis E, Murphy S, Andersen P, Uosaki H, Chelko S, Chakir K, Hong I, Seo K, Chen HSV, Chen X, Basso C, Houser SR, Tomaselli GF, O'Rourke B, Judge DP, Kass DA, Kwon C. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy. Cell Rep 2017; 18:571-582. [PMID: 28076798 DOI: 10.1016/j.celrep.2016.12.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs). Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which manifests predominantly in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases.
Collapse
Affiliation(s)
- Gun-Sik Cho
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong I Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideki Uosaki
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen Chelko
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Khalid Chakir
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ingie Hong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kinya Seo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Huei-Sheng Vincent Chen
- Del E. Webb Neuroscience, Aging & Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Xiongwen Chen
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Cristina Basso
- Department of Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140 USA; Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Padova, Italy
| | - Steven R Houser
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Gordon F Tomaselli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Use of a neonatal rat system as a bioincubator to generate adult-like mature cardiomyocytes from human and mouse pluripotent stem cells. Nat Protoc 2017; 12:2097-2109. [PMID: 28880277 DOI: 10.1038/nprot.2017.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pluripotent stem cells (PSCs), including induced PSCs, hold great potential for personalized disease modeling, drug testing and cell-based therapeutics. However, cells differentiated from PSCs remain immature in a dish, and thus there are serious caveats to their use in modeling adult-onset diseases such as cardiomyopathies and Alzheimer's disease. By taking advantage of knowledge gained about mammalian development and from bioinformatics analyses, we recently developed a neonatal rat system that enables maturation of PSC-derived cardiomyocytes into cardiomyocytes analogous to those seen in adult animals. Here we describe a detailed protocol that describes how to initiate the in vitro differentiation of mouse and human PSCs into cardiac progenitor cells, followed by intramyocardial delivery of the progenitor cells into neonatal rat hearts, in vivo incubation and analysis. The entire process takes ∼6 weeks, and the resulting cardiomyocytes can be analyzed for morphology, function and gene expression. The neonatal system provides a valuable tool for understanding the maturation and pathogenesis of adult human heart muscle cells, and this concept may be expanded to maturing other PSC-derived cell types, including those containing mutations that lead to the development of diseases in the adult.
Collapse
|
16
|
Beierlein JM, McNamee LM, Walsh MJ, Kaitin KI, DiMasi JA, Ledley FD. Landscape of Innovation for Cardiovascular Pharmaceuticals: From Basic Science to New Molecular Entities. Clin Ther 2017; 39:1409-1425.e20. [PMID: 28652015 DOI: 10.1016/j.clinthera.2017.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE This study examines the complete timelines of translational science for new cardiovascular therapeutics from the initiation of basic research leading to identification of new drug targets through clinical development and US Food and Drug Administration (FDA) approval of new molecular entities (NMEs) based on this research. METHODS This work extends previous studies by examining the association between the growth of research on drug targets and approval of NMEs associated with these targets. Drawing on research on innovation in other technology sectors, where technological maturity is an important determinant in the success or failure of new product development, an analytical model was used to characterize the growth of research related to the known targets for all 168 approved cardiovascular therapeutics. FINDINGS Categorizing and mapping the technological maturity of cardiovascular therapeutics reveal that (1) there has been a distinct transition from phenotypic to targeted methods for drug discovery, (2) the durations of clinical and regulatory processes were significantly influenced by changes in FDA practice, and (3) the longest phase of the translational process was the time required for technology to advance from initiation of research to a statistically defined established point of technology maturation (mean, 30.8 years). IMPLICATIONS This work reveals a normative association between metrics of research maturation and approval of new cardiovascular therapeutics and suggests strategies for advancing translational science by accelerating basic and applied research and improving the synchrony between the maturation of this research and drug development initiatives.
Collapse
Affiliation(s)
- Jennifer M Beierlein
- Center for Integration of Science and Industry, Department of Natural & Applied Sciences, Bentley University, Waltham, Massachusetts
| | - Laura M McNamee
- Center for Integration of Science and Industry, Department of Natural & Applied Sciences, Bentley University, Waltham, Massachusetts
| | - Michael J Walsh
- Center for Integration of Science and Industry, Department of Natural & Applied Sciences, Bentley University, Waltham, Massachusetts
| | - Kenneth I Kaitin
- Tufts Center for the Study of Drug Development, Tufts University School of Medicine, Boston, Massachusetts
| | - Joseph A DiMasi
- Tufts Center for the Study of Drug Development, Tufts University School of Medicine, Boston, Massachusetts
| | - Fred D Ledley
- Center for Integration of Science and Industry, Department of Natural & Applied Sciences, Bentley University, Waltham, Massachusetts; Department of Management, Bentley University, Waltham, Massachusetts.
| |
Collapse
|
17
|
Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs. Sci Rep 2016; 6:37637. [PMID: 27917881 PMCID: PMC5137163 DOI: 10.1038/srep37637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022] Open
Abstract
The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics, epigenomics, and bioinformatics that inform on genetic pathways directing tissue development and function. When possible, population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American, Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype, verified teratoma formation, pluripotency biomarkers, and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural, pancreatic, and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential.
Collapse
|
18
|
Uosaki H, Taguchi YH. Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2016; 14:207-215. [PMID: 27431744 PMCID: PMC4996857 DOI: 10.1016/j.gpb.2016.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 12/12/2022]
Abstract
Understanding how human cardiomyocytes mature is crucial to realizing stem cell-based heart regeneration, modeling adult heart diseases, and facilitating drug discovery. However, it is not feasible to analyze human samples for maturation due to inaccessibility to samples while cardiomyocytes mature during fetal development and childhood, as well as difficulty in avoiding variations among individuals. Using model animals such as mice can be a useful strategy; nonetheless, it is not well-understood whether and to what degree gene expression profiles during maturation are shared between humans and mice. Therefore, we performed a comparative gene expression analysis of mice and human samples. First, we examined two distinct mice microarray platforms for shared gene expression profiles, aiming to increase reliability of the analysis. We identified a set of genes displaying progressive changes during maturation based on principal component analysis. Second, we demonstrated that the genes identified had a differential expression pattern between adult and earlier stages (e.g., fetus) common in mice and humans. Our findings provide a foundation for further genetic studies of cardiomyocyte maturation.
Collapse
Affiliation(s)
- Hideki Uosaki
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Y-H Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
19
|
Jastrzebska E, Tomecka E, Jesion I. Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 2015; 75:67-81. [PMID: 26298640 DOI: 10.1016/j.bios.2015.08.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 12/26/2022]
Abstract
Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.
Collapse
Affiliation(s)
- Elzbieta Jastrzebska
- Institute of Biotechnology, Department of Microbioanalytics, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Ewelina Tomecka
- Institute of Biotechnology, Department of Microbioanalytics, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Jesion
- Department of Animal Environment Biology, Faculty of Animal Science, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
20
|
Andersen P, Kwon C. Ex Vivo Culture of Pharyngeal Arches to Study Heart and Muscle Progenitors and Their Niche. J Vis Exp 2015:e52876. [PMID: 26274057 DOI: 10.3791/52876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The pharyngeal mesoderm of developing embryos contributes to broad regions of head and heart musculature. We have developed a novel method to study head and heart progenitor cell development with pharyngeal arches (also known as branchial arches) ex vivo. Using this method, we have recently described that the second pharyngeal arch contains self-renewing heart progenitors and serves as a microenvironment for expansion of the progenitors during mouse heart development. The progenitor cells remain undifferentiated and expansive inside the arch, but quickly become functional cardiomyocytes as they migrate out of the arch. We also reported that first pharyngeal arch contains muscle progenitors giving rise to myotubes after leaving the arch. Here, we demonstrate the procedure for the dissection and ex vivo culture of first and second pharyngeal arches from developing mouse embryos. The method enables one to study head and heart progenitor/muscle development, including cardiomyocyte and myotube formation in detail ex vivo.
Collapse
Affiliation(s)
- Peter Andersen
- Division of Cardiology, Institute for Cell Engineering, Johns Hopkins University School of Medicine
| | - Chulan Kwon
- Division of Cardiology, Institute for Cell Engineering, Johns Hopkins University School of Medicine;
| |
Collapse
|
21
|
Csöbönyeiová M, Polák Š, Danišovič L. Perspectives of induced pluripotent stem cells for cardiovascular system regeneration. Exp Biol Med (Maywood) 2015; 240:549-556. [PMID: 25595188 PMCID: PMC4935267 DOI: 10.1177/1535370214565976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for basic research and regenerative medicine. They offer the same advantages as embryonic stem cells (ESCs) and moreover new perspectives for personalized medicine. iPSCs can be generated from adult somatic tissues by over-expression of a few defined transcription factors, including Oct4, Sox2, Klf4, and c-myc. For regenerative medicine in particular, the technology provides great hope for patients with incurable diseases or potentially fatal disorders such as heart failure. The endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for myocardial loss occurring after myocardial infarction. Recent discoveries have demonstrated that iPSCs have the potential to significantly advance future cardiovascular regenerative therapies. Moreover, iPSCs can be generated from somatic cells of patients with genetic basis for their disease. This human iPSC derivates offer tremendous potential for new disease models. This paper reviews current applications of iPSCs in cardiovascular regenerative medicine and discusses progress in modeling cardiovascular diseases using iPSCs-derived cardiac cells.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- Institute of Histology and Embryology, Comenius University in Bratislava, 81108 Bratislava, Slovak Republic
| | - Štefan Polák
- Institute of Histology and Embryology, Comenius University in Bratislava, 81108 Bratislava, Slovak Republic
| | - L'uboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovak Republic
| |
Collapse
|
22
|
Mosadegh B, Xiong G, Dunham S, Min JK. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 2015; 10:034002. [DOI: 10.1088/1748-6041/10/3/034002] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Potential of 5-azacytidine induction decidual stromal cells from maternal human term placenta towards cardiomyocyte-like cells in serum-free medium. Cell Tissue Bank 2015; 16:477-85. [PMID: 25589450 DOI: 10.1007/s10561-015-9493-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/05/2015] [Indexed: 01/02/2023]
Abstract
Decidual stromal cells (DSCs) from maternal term placenta represent a potential source of cells for the treatment of cardiovascular and graft-versus-host diseases. However, it is not clear whether DSCs could be induced towards cardiomyocyte-like differentiation. We chose the placentas which should bred male new-baby. We isolated DSCs from placenta by tissue adherence. The morphology, immunophenotype, and multi-lineage potential were analyzed. Karyotype analysis (G-band) was performed to determine the source and karyotype stability of DSCs. DSCs were induced by 5-azacytidine. Expression of Myf5, α-cardiac actin, Cardiac troponin T (cTnT) and GAPDH was assessed by PCR, and cTnT expression was also analyzed by immunofluorescence. Karyotype analyses indicated that cells were derived from the maternal matrix. After induction with 5-azacytidine, DSCs expressed the cardiac-specific markers Myf5, myogenin and cTnT, indicating differentiation towards cardiomyocyte-like cells.
Collapse
|
24
|
Kirk JA, Paolocci N. New redox-related arrows in the arsenal of cardiac disease treatment. Antioxid Redox Signal 2014; 21:1945-8. [PMID: 25211226 DOI: 10.1089/ars.2014.6124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While great strides have been made to improve the poor prognosis with cardiac disease, heart failure in particular, cardiac affections still remain the most prevalent, difficult-to-treat, and costly human pathologies in the western world. At rest, the heart produces a significant oxidative environment inside diverse cell compartments, due to its high-energy demand. Cardiac cells have an exquisite control system to deal with this constant redox stress. However, persistent hemodynamic alterations can compromise these mechanisms, fueling further myocardial redox imbalance and dysfunction. Still, this would be a one-sided and incomplete view, because the physiological role of reactive oxygen species (ROS) should be considered as well. Indeed, ROS are multipurpose agents, serving signaling and cell defense tasks too, and, similar to antioxidants, these functions can be highly compartmentalized within the cell. The present Forum was designed to collect cutting-edge research concerning when and how to effectively counter excessive oxidative burden to preserve cardiac structure and/or to improve function, under conditions of ordinary or extraordinary stress. Another major objective was to unravel old and new intersections between different myocardial processes by which ROS may act as "on" or "off" switches, and in doing so, dictating function, always with an eye on possible, immediate therapeutic applications, as suggested by the title of the Forum itself, that is, Cardiac Therapeutics.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | |
Collapse
|