1
|
Feng ZG, Geng ZJ, Song Q, Hu H, Tan XY, Zeng SY, Zhou RY, Ma X, Liu Y, Zhang Y. Metabolomics based analysis reveals the therapeutic effects of Incarvillea arguta (Royle) Royle aqueous extract against alcohol-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156639. [PMID: 40085992 DOI: 10.1016/j.phymed.2025.156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Alcohol-induced liver injury (ALI) poses a significant threat to global human health. The Chinese Yi medicine Liangtoumao (LTM), which originated from the whole plant of Incarvillea arguta Royle (Royle), has been widely used by the Yi ethnic group to prevent and treat ALI and other liver diseases. However, its effectiveness and mechanisms are still under-researched. PURPOSE The objective of our research is to investigate the chemical composition of LTM aqueous extract, evaluate its potential therapeutic intervention effect on ALI, and explore its mechanisms in rat models. METHODS The chemical components and constituents of LTM aqueous extract migrating to the blood were analyzed by UPLC-Q-TOF/MS. Sprague-Dawley rats subjected to chronic binge alcohol exposure were utilized to establish chronic ALI models and evaluate the therapeutic effects of LTM aqueous extract. Serum and spatial metabolomics analyses were used to investigate potential mechanisms. RESULTS A total of 60 chemical components in LTM aqueous extract were identified, with 67 absorbed into the blood, including 29 original compounds and 38 metabolites. Treatment with LTM aqueous extract remarkably alleviated hepatic lesions in livers of ALI rats, improved liver function, reduced oxidative stress and inflammation. Serum metabolomics and hepatic spatial metabolomics identified 30 and 215 differential metabolites, respectively. Metabolic pathways of glyoxylate and dicarboxylate, glycerophospholipid, linoleic acid, taurine and hypotaurine, and cysteine and methionine were closely related to the hepaprotective effects of LTM. CONCLUSION Our research confirmed significant effects of LTM on ALI prevention and treatment for the first time. Metabolomic findings revealed that LTM significantly influences various aspects of lipid metabolism. This study supports expanded mechanism investigations of LTM and explores its possibility as a potential ALI therapy.
Collapse
Affiliation(s)
- Zi-Ge Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Zang-Jia Geng
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Qin Song
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Hu Hu
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Xiao-Yan Tan
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Shang-Yu Zeng
- Urban Vocational College of Sichuan, Chengdu 610110, China
| | - Rong-Yu Zhou
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Mallardi D, Chimienti G, Maqoud F, Orlando A, Drago S, Malerba E, De Virgilio C, Akbarali HI, Russo F. The Dual Role of Exogenous Hydrogen Sulfide (H 2S) in Intestinal Barrier Mitochondrial Function: Insights into Cytoprotection and Cytotoxicity Under Non-Stressed Conditions. Antioxidants (Basel) 2025; 14:384. [PMID: 40298652 PMCID: PMC12024010 DOI: 10.3390/antiox14040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Hydrogen sulfide (H2S) is a critical gasotransmitter that plays a dual role in physiological and pathological processes, particularly in the gastrointestinal tract. While physiological levels of H2S exert cytoprotective effects, excessive concentrations can lead to toxicity, oxidative stress, and inflammation. The aim of this study was to investigate the dose-dependent effects of exogenous H2S on mitochondrial functions and biogenesis in intestinal epithelial cells under non-stressed conditions. Using a Caco-2 monolayer model, we evaluated the impact of sodium hydrosulfide (NaHS) at concentrations ranging from 1 × 10-7 M to 5 × 10-3 M on mitochondrial metabolism, redox balance, antioxidant defense, inflammatory responses, autophagy/mitophagy, and apoptosis. Our results demonstrated a biphasic response: low-to-moderate H2S concentrations (1 × 10-7 M-1.5 × 10-3 M) enhance mitochondrial biogenesis through PGC-1α activation, upregulating TFAM and COX-4 expression, and increasing the mtDNA copy number. In contrast, higher concentrations (2 × 10-3-5 × 10-3 M) impair mitochondrial function, induce oxidative stress, and promote apoptosis. These effects are associated with elevated reactive oxygen species (ROS) production, dysregulation of antioxidant enzymes, and COX-2-mediated inflammation. H2S-induced autophagy/mitophagy is a protective mechanism at intermediate concentrations but fails to mitigate mitochondrial damage at toxic levels. This study underscores the delicate balance between the cytoprotective and cytotoxic effects of exogenous H2S in intestinal cells, helping to develop new therapeutic approaches for gastrointestinal disorders.
Collapse
Affiliation(s)
- Domenica Mallardi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (D.M.); (F.M.); (A.O.); (S.D.); (E.M.)
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (G.C.); (C.D.V.)
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (D.M.); (F.M.); (A.O.); (S.D.); (E.M.)
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (D.M.); (F.M.); (A.O.); (S.D.); (E.M.)
| | - Simona Drago
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (D.M.); (F.M.); (A.O.); (S.D.); (E.M.)
| | - Eleonora Malerba
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (D.M.); (F.M.); (A.O.); (S.D.); (E.M.)
| | - Caterina De Virgilio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (G.C.); (C.D.V.)
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (D.M.); (F.M.); (A.O.); (S.D.); (E.M.)
| |
Collapse
|
3
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
4
|
Flori L, Piragine E, Calderone V, Testai L. Role of hydrogen sulfide in the regulation of lipid metabolism: Implications on cardiovascular health. Life Sci 2024; 341:122491. [PMID: 38336275 DOI: 10.1016/j.lfs.2024.122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The World Health Organization (WHO) defines obesity as an urgency for health and a social emergency. Today around 39 % of people is overweight, of these over 13 % is obese. It is well-consolidated that the adipose cells are deputy to lipid storage under caloric excess; however, despite the classical idea that adipose tissue has exclusively a passive function, now it is known to be deeply involved in the regulation of systemic metabolism in physiological as well as under obesogenic conditions, with consequences on cardiovascular health. Beside two traditional types of adipose cells (white and brown), recently the beige one has been highlighted as the consequence of the healthy remodeling of white adipocytes, confirming their metabolic adaptability. In this direction, pharmacological, nutraceutical and nutrient-based approaches are addressed to positively influence inflammation and metabolism, thus contributing to reduce the obese-associated cardiovascular risk. In this scenario, hydrogen sulfide emerges as a new mediator that may regulate crucial targets involved in the regulation of metabolism. The current evidence demonstrates that hydrogen sulfide may induce peroxisome proliferator activated receptor γ (PPARγ), a crucial mediator of adipogenesis, inhibit the phosphorylation of perlipin-1 (plin-1), a protein implicated in the lipolysis, and finally promote browning process, through the release of irisin from skeletal muscle. The results summarized in this review suggest an important role of hydrogen sulfide in the regulation of metabolism and in the prevention/treatment of obese-associated cardiovascular diseases and propose new insight on the putative mechanisms underlying the release of hydrogen sulfide or its biosynthesis, delineating a further exciting field of application.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120 Pisa, Italy.
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120 Pisa, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120 Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120 Pisa, Italy.
| |
Collapse
|
5
|
Li K, Uyanga VA, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Allicin Promotes Glucose Uptake by Activating AMPK through CSE/H 2S-Induced S-Sulfhydration in a Muscle-Fiber Dependent Way in Broiler Chickens. Mol Nutr Food Res 2024; 68:e2300622. [PMID: 38339885 DOI: 10.1002/mnfr.202300622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 02/12/2024]
Abstract
SCOPE Allicin, a product of enzymatic reaction when garlic is injured, plays an important role in maintaining glucose homeostasis in mammals. However, the effect of allicin on glucose homeostasis in the state of insulin resistance remains to be elucidated. This study investigates the effect of allicin on glucose metabolism using different muscle fibers in a chicken model. METHODS AND RESULTS Day-old male Arbor Acres broilers are randomly divided into three groups and fed a basal diet supplemented with 0, 150, or 300 mg kg-1 allicin for 42 days. Results show that allicin improves the zootechnical performance of broilers at the finishing stage. The glucose loading test (2 g kg-1 body mass) indicates the regulatory role of allicin on glucose homeostasis. In vitro results demonstrate allicin increases glutathione (GSH) level and the expression of cystathionine γ lyase (CSE), leading to endogenous hydrogen sulfide (H2S) production in M. pectoralis major (PM) muscle-derived myotubes. Allicin stimulates adenosine monophosphate-activated protein kinase (AMPK) S-sulfhydration and AMPK phosphorylation to promote glucose uptake, which is suppressed in the presence of d,l-propargylglycine (PAG, a CSE inhibitor). CONCLUSION This study demonstrates that allicin induces AMPK S-sulfhydration and AMPK phosphorylation to promote glucose uptake via the CSE/H2S system in a muscle fiber-dependent manner.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Victoria A Uyanga
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271000, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|
6
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Species in Human Diseases. Antioxid Redox Signal 2023; 39:1000-1023. [PMID: 37440317 DOI: 10.1089/ars.2023.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Reactive sulfur species (RSS) have been recently recognized as redox molecules no less important than reactive oxygen species or reactive nitrogen species. They possess regulatory and protective properties and are involved in various metabolic processes, thereby contributing to the maintenance of human health. It has been documented that many disorders, including neurological, cardiovascular, and respiratory diseases, diabetes mellitus (DM), and cancer, are related to the disruption of RSS homeostasis. Recent Advances: There is still a growing interest in the role of RSS in human diseases. Since a decrease in hydrogen sulfide or other RSS has been reported in many disorders, safe and efficient RSS donors have been developed and tested under in vitro conditions or on animal models. Critical Issues: Cardiovascular diseases and DM are currently the most common chronic diseases worldwide due to stressful and unhealthy lifestyles. In addition, because of high prevalence and aging of the population, neurological disorders including Parkinson's disease and Alzheimer's disease as well as respiratory diseases are a formidable challenge for health care systems. From this point of view, the knowledge of the role of RSS in these disorders and RSS modulation options are important and could be useful in therapeutic strategies. Future Directions: Improvement and standardization of analytical methods used for RSS estimation are crucial for the use of RSS as diagnostic biomarkers. Finding good, safe RSS donors applicable for therapeutic purposes could be useful as primary or adjunctive therapy in many common diseases. Antioxid. Redox Signal. 39, 1000-1023.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bilska-Wilkosz
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Michał Kozdrowicki
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Górny
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
Li K, Wang M, Wang R, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Hydrogen Sulfide Regulates Glucose Uptake in Skeletal Muscles via S-Sulfhydration of AMPK in Muscle Fiber Type-Dependent Way. J Nutr 2023; 153:2878-2892. [PMID: 37611831 DOI: 10.1016/j.tjnut.2023.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The effect of hydrogen sulfide (H2S) on glucose homeostasis remains to be elucidated, especially in the state of insulin resistance. OBJECTIVES In the present study, we aimed to investigate H2S-regulated glucose uptake in the M. pectoralis major (PM) muscle (which mainly consists of fast-twitch glycolytic fibers) and M. biceps femoris (BF) muscle (which mainly consists of slow-twitch oxidative fibers) of the chicken, a potential model of insulin resistance. METHODS Chicks were subjected to intraperitoneal injection of sodium hydrosulfide (NaHS, 50 μmol/kg body mass/day) twice a day to explore glucose homeostasis. In vitro, myoblasts from PM and BF muscles were used to detect glucose uptake and utilization. Effects of AMP-activated protein kinase (AMPK) phosphorylation, AMPK S-sulfhydration, and mitogen-activated protein kinase (MAPK) pathway induction by NaHS were detected. RESULTS NaHS enhanced glucose uptake and utilization in chicks (P < 0.05). In myoblasts from PM muscle, NaHS (100 μM) increased glucose uptake by activating AMPK S-sulfhydration, AMPK phosphorylation, and the AMPK/p38 MAPK pathway (P < 0.05). However, NaHS decreased glucose uptake in myoblasts from BF muscle by suppressing the p38 MAPK pathway (P < 0.05). Moreover, NaHS increased S-sulfhydration and, in turn, the phosphorylation of AMPK (P < 0.05). CONCLUSIONS This study reveals the role of H2S in enhancing glucose uptake and utilization in chicks. The results suggest that NaHS is involved in glucose uptake in skeletal muscle in a fiber type-dependent way. The AMPK/p38 pathway and protein S-sulfhydration promote glucose uptake in fast-twitch glycolytic muscle fibers, which provides a muscle fiber-specific potential therapeutic target to ameliorate glucose metabolism.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Minghui Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Ruxia Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
8
|
Wang H, Bai Q, Ma G. The biological functions of protein S-sulfhydration in eukaryotes and the ever-increasing understanding of its effects on bacteria. Microbiol Res 2023; 271:127366. [PMID: 36989759 DOI: 10.1016/j.micres.2023.127366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
As a critical endogenous signaling molecule, hydrogen sulfide may induce reversible post-translational modifications on cysteine residues of proteins, generating a persulfide bond known as S-sulfhydration. A systemic overview of the biofunctions of S-sulfhydration will equip us better to characterize its regulatory roles in antioxidant defense, inflammatory response, and cell fate, as well as its pathological mechanisms related to cardiovascular, neurological, and multiple organ diseases, etc. Nevertheless, the understanding of S-sulfhydration is mostly built on mammalian cells and animal models. We subsequently summarized the mediation effects of this specific post-transcriptional modification on physiological processes and virulence in bacteria. The high-sensitivity and high-throughput detection technologies are required for studying the signal transduction mechanism of H2S and protein S-sulfhydration modification. Herein, we reviewed the establishment and development of different approaches to assess S-sulfhydration, including the biotin-switch method, modified biotin-switch method, alkylation-based cysteine-labelled assay, and Tag-switch method. Finally, we discussed the limitations of the impacts of S-sulfhydration in pathogens-host interactions and envisaged the challenges to design drugs and antibiotics targeting the S-sulfhydrated proteins in the host or pathogens.
Collapse
|
9
|
Huang S, Chen X, Pan J, Zhang H, Ke J, Gao L, Yu Chang AC, Zhang J, Zhang H. Hydrogen sulfide alleviates heart failure with preserved ejection fraction in mice by targeting mitochondrial abnormalities via PGC-1α. Nitric Oxide 2023; 136-137:12-23. [PMID: 37182786 DOI: 10.1016/j.niox.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
AIM Increasing evidence has proposed that mitochondrial abnormalities may be an important factor contributing to the development of heart failure with preserved ejection fraction (HFpEF). Hydrogen sulfide (H2S) has been suggested to play a pivotal role in regulating mitochondrial function. Therefore, the present study was designed to explore the protective effect of H2S on mitochondrial dysfunction in a multifactorial mouse model of HFpEF. METHODS Wild type, 8-week-old, male C57BL/6J mice or cardiomyocyte specific-Cse (Cystathionine γ-lyase, a major H2S-producing enzyme) knockout mice (CSEcko) were given high-fat diet (HFD) and l-NAME (an inhibitor of constitutive nitric oxide synthases) or standardized chow. After 4 weeks, mice were randomly administered with NaHS (a conventional H2S donor), ZLN005 (a potent transcriptional activator of PGC-1α) or vehicle. After additional 4 weeks, echocardiogram and mitochondrial function were evaluated. Expression of PGC-1α, NRF1 and TFAM in cardiomyocytes was assayed by western blot. RESULTS Challenging with HFD and l-NAME in mice not only caused HFpEF but also inhibited the production of endogenous H2S in a time-dependent manner. Meanwhile the expression of PGC-1α and mitochondrial function in cardiomyocytes were impaired. Supplementation with NaHS not only upregulated the expression of PGC-1α, NRF1 and TFAM in cardiomyocytes but also restored mitochondrial function and ultrastructure, conferring an obvious improvement in cardiac diastolic function. In contrast, cardiac deletion of CSE gene aggravated the inhibition of PGC-1α-NRF1-TFAM pathway, mitochondrial abnormalities and diastolic dysfunction. The deleterious effect observed in CSEcko HFpEF mice was partially counteracted by pre-treatment with ZLN005 or supplementation with NaHS. CONCLUSION Our findings have demonstrated that H2S ameliorates left ventricular diastolic dysfunction by restoring mitochondrial abnormalities via upregulating PGC-1α and its downstream targets NRF1 and TFAM, suggesting the therapeutic potential of H2S supplementation in multifactorial HFpEF.
Collapse
Affiliation(s)
- Shuying Huang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaonan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiahan Ke
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Huili Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Li Y, Yang S, Jin X, Li D, Lu J, Wang X, Wu M. Mitochondria as novel mediators linking gut microbiota to atherosclerosis that is ameliorated by herbal medicine: A review. Front Pharmacol 2023; 14:1082817. [PMID: 36733506 PMCID: PMC9886688 DOI: 10.3389/fphar.2023.1082817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of cardiovascular disease (CVD) and is characterized by endothelial damage, lipid deposition, and chronic inflammation. Gut microbiota plays an important role in the occurrence and development of AS by regulating host metabolism and immunity. As human mitochondria evolved from primordial bacteria have homologous characteristics, they are attacked by microbial pathogens as target organelles, thus contributing to energy metabolism disorders, oxidative stress, and apoptosis. Therefore, mitochondria may be a key mediator of intestinal microbiota disorders and AS aggravation. Microbial metabolites, such as short-chain fatty acids, trimethylamine, hydrogen sulfide, and bile acids, also affect mitochondrial function, including mtDNA mutation, oxidative stress, and mitophagy, promoting low-grade inflammation. This further damages cellular homeostasis and the balance of innate immunity, aggravating AS. Herbal medicines and their monomers can effectively ameliorate the intestinal flora and their metabolites, improve mitochondrial function, and inhibit atherosclerotic plaques. This review focuses on the interaction between gut microbiota and mitochondria in AS and explores a therapeutic strategy for restoring mitochondrial function and intestinal microbiota disorders using herbal medicines, aiming to provide new insights for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yujuan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Jin
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Min Wu,
| |
Collapse
|
11
|
Trummer M, Galardon E, Mayer B, Steiner G, Stamm T, Kloesch B. Polysulfides derived from the hydrogen sulfide and persulfide donor P* inhibit IL-1β-mediated inducible nitric oxide synthase signaling in ATDC5 cells: are CCAAT/enhancer-binding proteins β and δ involved in the anti-inflammatory effects of hydrogen sulfide and polysulfides? Nitric Oxide 2022; 129:41-52. [DOI: 10.1016/j.niox.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
12
|
Lee JH, Im SS. Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 2022; 55:481-487. [PMID: 36195563 PMCID: PMC9623240 DOI: 10.5483/bmbrep.2022.55.10.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver. [BMB Reports 2022; 55(10): 481-487].
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
13
|
β3 Relaxant Effect in Human Bladder Involves Cystathionine γ-Lyase-Derived Urothelial Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11081480. [PMID: 36009199 PMCID: PMC9405273 DOI: 10.3390/antiox11081480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
It is now well established that the urothelium does not act as a passive barrier but contributes to bladder homeostasis by releasing several signaling molecules in response to physiological and chemical stimuli. Here, we investigated the potential contribution of the hydrogen sulfide (H2S) pathway in regulating human urothelium function in β3 adrenoceptor-mediated relaxation. The relaxant effect of BRL 37344 (0.1–300 µM), a selective β3 adrenoceptor agonist, was evaluated in isolated human bladder strips in the presence or absence of the urothelium. The relaxant effect of BRL 37344 was significantly reduced by urothelium removal. The inhibition of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), significantly reduced the BRL 37344 relaxing effect to the same extent as that given by urothelium removal, suggesting a role for CSE-derived H2S. β3 adrenoceptor stimulation in the human urothelium or in T24 urothelial cells markedly increased H2S and cAMP levels that were reverted by a blockade of CSE and β3 adrenoceptor antagonism. These findings demonstrate a key role for urothelium CSE-derived H2S in the β3 effect on the human bladder through the modulation of cAMP levels. Therefore, the study establishes the relevance of urothelial β3 adrenoceptors in the regulation of bladder tone, supporting the use of β3 agonists in patients affected by an overactive bladder.
Collapse
|
14
|
Hydrogen Sulfide Regulates Irisin and Glucose Metabolism in Myotubes and Muscle of HFD-Fed Diabetic Mice. Antioxidants (Basel) 2022; 11:antiox11071369. [PMID: 35883859 PMCID: PMC9311985 DOI: 10.3390/antiox11071369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022] Open
Abstract
Irisin, a novel myokine, is secreted by the muscle following proteolytic cleavage of fibronectin type III domain containing 5 (FNDC5) and is considered a novel regulator of glucose homeostasis. Cystathionine γ-lyase (CSE) produces hydrogen sulfide (H2S) and is involved in glucose homeostasis. We examined the hypothesis that H2S deficiency leads to decreased FNDC5 and irisin secretion, and thereby alters glucose metabolism. High-fat diet-fed mice exhibited elevated blood glucose and significantly reduced levels of CSE, H2S, and PGC-1α, with decreased FNDC5/irisin levels and increased oxidative stress in the muscle compared with those of normal diet-fed mice (control). High glucose or palmitate decreases CSE/PGC-1α/FNDC5 levels and glucose uptake in myotubes. Inhibitors (propargylglycine and aminooxyacetate) of H2S producing enzymes or CSE siRNA significantly decreased levels of H2S and FNDC5 along with PGC-1α; similar H2S-deficient conditions also resulted in decreased GLUT4 and glucose uptake. The levels of H2S, PGC-1α, and FNDC5 and glucose uptake were significantly upregulated after treatment with l-cysteine or an H2S donor. Myoblast differentiation showed upregulation of PGC-1α and FNDC5, which was consistent with the increased expression of CSE/H2S. These findings suggest that the upregulation of H2S levels can have beneficial effects on glucose homeostasis via activation of the PGC-1α/FNDC5/irisin signaling pathway.
Collapse
|
15
|
Gröger M, Hogg M, Abdelsalam E, Kress S, Hoffmann A, Stahl B, Calzia E, Wachter U, Vogt JA, Wang R, Merz T, Radermacher P, McCook O. Effects of Sodium Thiosulfate During Resuscitation From Trauma-and-Hemorrhage in Cystathionine-γ-Lyase Knockout Mice With Diabetes Type 1. Front Med (Lausanne) 2022; 9:878823. [PMID: 35572988 PMCID: PMC9106371 DOI: 10.3389/fmed.2022.878823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sodium thiosulfate (STS) is a recognized drug with antioxidant and H2S releasing properties. We recently showed that STS attenuated organ dysfunction and injury during resuscitation from trauma-and-hemorrhage in CSE-ko mice, confirming its previously described organ-protective and anti-inflammatory properties. The role of H2S in diabetes mellitus type 1 (DMT1) is controversial: genetic DMT1 impairs H2S biosynthesis, which has been referred to contribute to endothelial dysfunction and cardiomyopathy. In contrast, development and severity of hyperglycemia in streptozotocin(STZ)-induced DMT1 was attenuated in CSE-ko mice. Therefore, we tested the hypothesis whether STS would also exert organ-protective effects in CSE-ko mice with STZ-induced DMT1, similar to our findings in animals without underlying co-morbidity. Methods Under short-term anesthesia with sevoflurane and analgesia with buprenorphine CSE-ko mice underwent DMT1-induction by single STZ injection (100 μg⋅g-1). Seven days later, animals underwent blast wave-induced blunt chest trauma and surgical instrumentation followed by 1 h of hemorrhagic shock (MAP 35 ± 5 mmHg). Resuscitation comprised re-transfusion of shed blood, lung-protective mechanical ventilation, fluid resuscitation and continuous i.v. norepinephrine together with either i.v. STS (0.45 mg⋅g-1) or vehicle (n = 9 in each group). Lung mechanics, hemodynamics, gas exchange, acid-base status, stable isotope-based metabolism, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, chemokines, and immunoblotting. Results Diabetes mellitus type 1 was associated with more severe circulatory shock when compared to our previous study using the same experimental design in CSE-ko mice without co-morbidity. STS did not exert any beneficial therapeutic effect. Most of the parameters measured of the inflammatory response nor the tissue expression of marker proteins of the stress response were affected either. Conclusion In contrast to our previous findings in CSE-ko mice without underlying co-morbidity, STS did not exert any beneficial therapeutic effect in mice with STZ-induced DMT1, possibly due to DMT1-related more severe circulatory shock. This result highlights the translational importance of both integrating standard ICU procedures and investigating underlying co-morbidity in animal models of shock research.
Collapse
Affiliation(s)
- Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Melanie Hogg
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Essam Abdelsalam
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Sandra Kress
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Bettina Stahl
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Ulrich Wachter
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Josef A. Vogt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Rui Wang
- Faculty of Science, York University, Toronto, ON, Canada
| | - Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
16
|
Effect of Exogenous Hydrogen Sulfide and Polysulfide Donors on Insulin Sensitivity of the Adipose Tissue. Biomolecules 2022; 12:biom12050646. [PMID: 35625574 PMCID: PMC9138799 DOI: 10.3390/biom12050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) and inorganic polysulfides are important signaling molecules; however, little is known about their role in adipose tissue. We examined the effect of H2S and polysulfides on insulin sensitivity of the adipose tissue in rats. Plasma glucose, insulin, non-esterified fatty acids, and glycerol were measured after administration of H2S and the polysulfide donors, Na2S and Na2S4, respectively. In addition, the effect of Na2S and Na2S4 on insulin-induced glucose uptake and inhibition of lipolysis was studied in adipose tissue explants ex vivo. Na2S and Na2S4 administered in vivo at a single dose of 100 μmol/kg had no effect on plasma glucose and insulin concentrations. In addition, Na2S and Na2S4 did not modify the effect of insulin on plasma glucose, fatty acids, and glycerol concentrations. Na2S and Na2S4had no effect on the antilipolytic effect of insulin in adipose tissue explants ex vivo. The effect of insulin on 2-deoxyglucose uptake by adipose tissue was impaired in obese rats which was accompanied by lower insulin-induced tyrosine phosphorylation of IRS-1 and Akt. Na2S4, but not Na2S, improved insulin signaling and increased insulin-stimulated 2-deoxyglucose uptake by adipose tissue of obese rats. The results suggest that polysulfides may normalize insulin sensitivity, at least in the adipose tissue, in obesity/metabolic syndrome.
Collapse
|
17
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
18
|
Chen HJ, Qian L, Li K, Qin YZ, Zhou JJ, Ji XY, Wu DD. Hydrogen sulfide-induced post-translational modification as a potential drug target. Genes Dis 2022. [PMID: 37492730 PMCID: PMC10363594 DOI: 10.1016/j.gendis.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the three known gas signal transducers, and since its potential physiological role was reported, the literature on H2S has been increasing. H2S is involved in processes such as vasodilation, neurotransmission, angiogenesis, inflammation, and the prevention of ischemia-reperfusion injury, and its mechanism remains to be further studied. At present, the role of post-translational processing of proteins has been considered as a possible mechanism for the involvement of H2S in a variety of physiological processes. Current studies have shown that H2S is involved in S-sulfhydration, phosphorylation, and S-nitrosylation of proteins, etc. This paper focuses on the effects of protein modification involving H2S on physiological and pathological processes, looking forward to providing guidance for subsequent research.
Collapse
|
19
|
Mateus I, Prip-Buus C. Hydrogen sulphide in liver glucose/lipid metabolism and non-alcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13680. [PMID: 34519030 PMCID: PMC9285505 DOI: 10.1111/eci.13680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND For a long time, hydrogen sulphide (H2 S) was considered only as a toxic gas, inhibiting mitochondrial respiration at the level of cytochrome c oxidase, and an environmental pollutant. Nowadays, H2 S is recognized as the third mammalian gasotransmitter, playing an important role in inflammation, septic shock, ischaemia reperfusion events, cardiovascular disease and more recently in liver physiology and chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD). METHODS This narrative review is based on literature search using PubMed. RESULTS From a bioenergetic perspective, H2 S is a very unique molecule, serving as a mitochondrial poison at high concentrations or as an inorganic mitochondrial substrate at low concentrations. By using transgenic animal models to specifically modulate liver H2 S biosynthesis or exogenous compounds that release H2 S, several studies demonstrated that H2 S is a key player in liver glucose and lipid metabolism. Liver H2 S content and biosynthesis were also altered in NAFLD animal models with the in vivo administration of H2 S-releasing molecules preventing the further escalation into non-alcoholic-steatohepatitis. Liver steady-state levels of H2 S, and hence its cell signalling properties, are controlled by a tight balance between its biosynthesis, mainly through the transsulphuration pathway, and its mitochondrial oxidation via the sulphide oxidizing unit. However, studies investigating mitochondrial H2 S oxidation in liver dysfunction still remain scarce. CONCLUSIONS Since H2 S emerges as a key regulator of liver metabolism and metabolic flexibility, further understanding the physiological relevance of mitochondrial H2 S oxidation in liver energy homeostasis and its potential implication in chronic liver diseases are of great interest.
Collapse
Affiliation(s)
- Inês Mateus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - Carina Prip-Buus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| |
Collapse
|
20
|
Characterization of hyperglycemia due to sub-chronic administration of red ginseng extract via comparative global proteomic analysis. Sci Rep 2021; 11:12374. [PMID: 34117292 PMCID: PMC8196207 DOI: 10.1038/s41598-021-91664-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) is commonly used as an herbal remedy worldwide. Few studies have explored the possible physiological changes in the liver although patients often self-medicate with ginseng preparations, which may lead to exceeding the recommended dose for long-term administration. Here, we analyzed changes in the hepatic proteins of mouse livers using quantitative proteomics after sub-chronic administration of Korean red ginseng (KRG) extract (control group and 0.5, 1.0, and 2.0 g/kg KRG) using tandem mass tag (TMT) 6-plex technology. The 1.0 and 2.0 g/kg KRG groups exhibited signs of liver injury, including increased levels of aspartate transaminase (AST) and alanine aminotransferase (ALT) in the serum. Furthermore, serum glucose levels were significantly higher following KRG administration compared with the control group. Based on the upregulated proteins found in the proteomic analysis, we found that increased cystathionine beta-synthase (CBS) and cystathionine gamma-lyase (CSE) levels promoted greater hydrogen sulfide (H2S) synthesis in the liver. This investigation provides novel evidence that sub-chronic administration of KRG can elevate H2S production by increasing protein expression of CBS and CSE in the liver.
Collapse
|
21
|
Comas F, Moreno-Navarrete JM. The Impact of H 2S on Obesity-Associated Metabolic Disturbances. Antioxidants (Basel) 2021; 10:antiox10050633. [PMID: 33919190 PMCID: PMC8143163 DOI: 10.3390/antiox10050633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last several decades, hydrogen sulfide (H2S) has gained attention as a new signaling molecule, with extensive physiological and pathophysiological roles in human disorders affecting vascular biology, immune functions, cellular survival, metabolism, longevity, development, and stress resistance. Apart from its known functions in oxidative stress and inflammation, new evidence has emerged revealing that H2S carries out physiological functions by targeting proteins, enzymes, and transcription factors through a post-translational modification known as persulfidation. This review article provides a critical overview of the current state of the literature addressing the role of H2S in obesity-associated metabolic disturbances, with particular emphasis on its mechanisms of action in obesity, diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Correspondence: ; Tel.: +(34)-872-98-70-87
| |
Collapse
|
22
|
Chen HJ, Ngowi EE, Qian L, Li T, Qin YZ, Zhou JJ, Li K, Ji XY, Wu DD. Role of Hydrogen Sulfide in the Endocrine System. Front Endocrinol (Lausanne) 2021; 12:704620. [PMID: 34335475 PMCID: PMC8322845 DOI: 10.3389/fendo.2021.704620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S), as one of the three known gaseous signal transduction molecules in organisms, has attracted a surging amount of attention. H2S is involved in a variety of physiological and pathological processes in the body, such as dilating blood vessels (regulating blood pressure), protecting tissue from ischemia-reperfusion injury, anti-inflammation, carcinogenesis, or inhibition of cancer, as well as acting on the hypothalamus and pancreas to regulate hormonal metabolism. The change of H2S concentration is related to a variety of endocrine disorders, and the change of hormone concentration also affects the synthesis of H2S. Understanding the effect of biosynthesis and the concentration of H2S on the endocrine system is useful to develop drugs for the treatment of hypertension, diabetes, and other diseases.
Collapse
Affiliation(s)
- Hao-Jie Chen
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Lei Qian
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jing-Jing Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ke Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
23
|
Sun HJ, Wu ZY, Nie XW, Bian JS. The Role of H 2S in the Metabolism of Glucose and Lipids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:51-66. [PMID: 34302688 DOI: 10.1007/978-981-16-0991-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucose and lipids are essential elements for maintaining the body's homeostasis, and their dysfunction may participate in the pathologies of various diseases, particularly diabetes, obesity, metabolic syndrome, cardiovascular ailments, and cancers. Among numerous endogenous mediators, the gasotransmitter hydrogen sulfide (H2S) plays a central role in the maintenance of glucose and lipid homeostasis. Current evidence from both pharmacological studies and transgenic animal models suggest a complex relationship between H2S and metabolic dysregulation, especially in diabetes and obesity. This notion is achieved through tissue-specific expressions and actions of H2S on target metabolic and hormone organs including the pancreas, skeletal muscle, livers, and adipose. In this chapter, we will summarize the roles and mechanisms of H2S in several metabolic organs/tissues that are necessary for glucose and lipid metabolic homeostasis. In addition, future research directions and valuable therapeutic avenues around the pharmacological regulation of H2S in glycolipid metabolism disorder will be also discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,National University of Singapore (Suzhou) Research Institute, Suzhou, China.
| |
Collapse
|
24
|
Abstract
This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.
Collapse
|
25
|
Yang CT, Devarie-Baez NO, Hamsath A, Fu XD, Xian M. S-Persulfidation: Chemistry, Chemical Biology, and Significance in Health and Disease. Antioxid Redox Signal 2020; 33:1092-1114. [PMID: 31547682 PMCID: PMC7583347 DOI: 10.1089/ars.2019.7889] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: S-Persulfidation generates persulfide adducts (RSSH) on both small molecules and proteins. This process is believed to be critical in the regulation of biological functions of reactive sulfur species such as H2S, as well as in signal transduction. S-Persulfidation also plays regulatory roles in human health and diseases. Recent Advances: Some mechanisms underlying the generation of low-molecular-weight persulfides and protein S-persulfidation in living organisms have been uncovered. Some methods for the specific delivery of persulfides and the detection of persulfides in biological systems have been developed. These advances help to pave the road to better understand the functions of S-persulfidation. Critical Issues: Persulfides are highly reactive and unstable. Currently, their identification relies on trapping them by S-alkylation, but this is not always reliable due to rapid sulfur exchange reactions. Therefore, the presence, identity, and fates of persulfides in biological environments are sometimes difficult to track. Future Directions: Further understanding the fundamental chemistry/biochemistry of persulfides and development of more reliable detection methods are needed. S-Persulfidation in specific protein targets is essential in organismal physiological health and human disease states. Besides cardiovascular and neuronal systems, the roles of persulfidation in other systems need to be further explored. Contradictory results of persulfidation in biology, especially in cancer, need to be clarified.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Protein Modification and Degradation Key Lab of Guangzhou and Guangdong, Key Laboratory of Molecular Clinical Pharmacology in School of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, China.,Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Nelmi O Devarie-Baez
- Department of Chemistry, Washington State University-Tri Cities, Richland, Washington, USA
| | - Akil Hamsath
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Xiao-Dong Fu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Protein Modification and Degradation Key Lab of Guangzhou and Guangdong, Key Laboratory of Molecular Clinical Pharmacology in School of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
26
|
Jeddi S, Gheibi S, Carlström M, Kashfi K, Ghasemi A. Long-term co-administration of sodium nitrite and sodium hydrosulfide inhibits hepatic gluconeogenesis in male type 2 diabetic rats: Role of PI3K-Akt-eNOS pathway. Life Sci 2020; 265:118770. [PMID: 33212150 DOI: 10.1016/j.lfs.2020.118770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE A deficiency in hydrogen sulfide (H2S) and nitric oxide (NO) contributes to the development of type 2 diabetes (T2D). An inhibitory effect on liver gluconeogenesis has been reported in rats with T2D with co-administration of sodium nitrite and sodium hydrosulfide (NaSH); the underlying mechanisms have however not yet been elucidated. The aim of this study is to determine the long-term effects of co-administering sodium nitrite and NaSH on expression of genes involved in liver gluconeogenesis in rats with T2D. METHODS T2D was induced using a high fat diet combined with low-dose of streptozotocin (30 mg/kg). Rats were divided into 5 groups (n = 7/group): Control, T2D, T2D + nitrite, T2D + NaSH, and T2D + nitrite+NaSH. Nitrite (50 mg/L) and NaSH (0.28 mg/kg) were administered for 9 weeks. Intraperitoneal pyruvate tolerance test (PTT) was performed at the end of the ninth week and mRNA expressions of PI3K, Akt, eNOS, PEPCK, G6Pase, and FBPase were measured in the liver. RESULTS Co-administration of nitrite and NaSH decreased elevated serum glucose concentrations during PTT. Compared to T2D + nitrite, co-administration of nitrite and NaSH resulted in significant increases in mRNA expression of PI3K, Akt, and eNOS and significant decreases in mRNA expression of G6Pase and FBPase but had no effect on PEPCK expression. CONCLUSION Long-term NaSH administration at low-dose, potentiated the inhibitory effects of nitrite on mRNA expression of key liver gluconeogenic enzymes in rats with T2D. This inhibitory effect of nitrite and NaSH co-administration on gluconeogenesis were associated with increased gene expression of PI3K, Akt, and eNOS in the liver.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Lu S, Ma Z, Gu Y, Li P, Chen Y, Bai M, Zhou H, Yang X, Jiang H. Downregulation of glucose‐6‐phosphatase expression contributes to fluoxetine‐induced hepatic steatosis. J Appl Toxicol 2020; 41:1232-1240. [PMID: 33179799 DOI: 10.1002/jat.4109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Shuanghui Lu
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Zhiyuan Ma
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
- Affiliated Hangzhou First People's Hospital, College of Medicine Zhejiang University Hangzhou China
| | - Yong Gu
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Ping Li
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Yingchun Chen
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Mengru Bai
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
- Affiliated Hangzhou First People's Hospital, College of Medicine Zhejiang University Hangzhou China
| | - Hui Zhou
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Xi Yang
- The First Affiliated Hospital, College of Medicine Zhejiang University Hangzhou China
| | - Huidi Jiang
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| |
Collapse
|
28
|
Piragine E, Calderone V. Pharmacological modulation of the hydrogen sulfide (H 2 S) system by dietary H 2 S-donors: A novel promising strategy in the prevention and treatment of type 2 diabetes mellitus. Phytother Res 2020; 35:1817-1846. [PMID: 33118671 DOI: 10.1002/ptr.6923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) represents the most common age-related metabolic disorder, and its management is becoming both a health and economic issue worldwide. Moreover, chronic hyperglycemia represents one of the main risk factors for cardiovascular complications. In the last years, the emerging evidence about the role of the endogenous gasotransmitter hydrogen sulfide (H2 S) in the pathogenesis and progression of T2DM led to increasing interest in the pharmacological modulation of endogenous "H2 S-system". Indeed, H2 S directly contributes to the homeostatic maintenance of blood glucose levels; moreover, it improves impaired angiogenesis and endothelial dysfunction under hyperglycemic conditions. Moreover, H2 S promotes significant antioxidant, anti-inflammatory, and antiapoptotic effects, thus preventing hyperglycemia-induced vascular damage, diabetic nephropathy, and cardiomyopathy. Therefore, H2 S-releasing molecules represent a promising strategy in both clinical management of T2DM and prevention of macro- and micro-vascular complications associated to hyperglycemia. Recently, growing attention has been focused on dietary organosulfur compounds. Among them, garlic polysulfides and isothiocyanates deriving from Brassicaceae have been recognized as H2 S-donors of great pharmacological and nutraceutical interest. Therefore, a better understanding of the therapeutic potential of naturally occurring H2 S-donors may pave the way to a more rational use of these nutraceuticals in the modulation of H2 S homeostasis in T2DM.
Collapse
Affiliation(s)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Paul BD, Snyder SH, Kashfi K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol 2020; 38:101772. [PMID: 33137711 PMCID: PMC7606857 DOI: 10.1016/j.redox.2020.101772] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023] Open
Abstract
Hydrogen sulfide (H2S) was once considered to have only toxic properties, until it was discovered to be an endogenous signaling molecule. The effects of H2S are dose dependent, with lower concentrations being beneficial and higher concentrations, cytotoxic. This scenario is especially true for the effects of H2S on mitochondrial function, where higher concentrations of the gasotransmitter inhibit the electron transport chain, and lower concentrations stimulate bioenergetics in multiple ways. Here we review the role of H2S in mitochondrial function and its effects on cellular physiology. Hydrogen sulfide (H2S) plays central roles in mitochondrial homeostasis. Both excess H2S and a paucity of H2S have deleterious effects. One of the modes by which H2S signals in mitochondria is by sulfhydrating target proteins. Administering H2S (where scarcity of H2S occurs) or inhibiting H2S production (in case of excess H2S) may be beneficial.
Collapse
Affiliation(s)
- Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, USA.
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, USA; Department of Psychiatry and Behavioral Sciences, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, 10016, USA.
| |
Collapse
|
30
|
Bioenergetic effects of hydrogen sulfide suppress soluble Flt-1 and soluble endoglin in cystathionine gamma-lyase compromised endothelial cells. Sci Rep 2020; 10:15810. [PMID: 32978411 PMCID: PMC7519095 DOI: 10.1038/s41598-020-72371-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial dysfunction is a hallmark of preeclampsia, a life-threatening complication of pregnancy characterised by hypertension and elevated soluble Fms-Like Tyrosine Kinase-1 (sFlt-1). Dysregulation of hydrogen sulfide (H2S) by inhibition of cystathionine γ-lyase (CSE) increases sFlt-1 and soluble endoglin (sEng) release. We explored whether compromise in CSE/H2S pathway is linked to dysregulation of the mitochondrial bioenergetics and oxidative status. We investigated whether these effects were linked to CSE-induced sFlt-1 and sEng production in endothelial cells. Here, we demonstrate that CSE/H2S pathway sustain endothelial mitochondrial bioenergetics and loss of CSE increases the production of mitochondrial-specific superoxide. As a compensatory effect, low CSE environment enhances the reliance on glycolysis. The mitochondrial-targeted H2S donor, AP39, suppressed the antiangiogenic response and restored the mitochondrial bioenergetics in endothelial cells. AP39 revealed that upregulation of sFlt-1, but not sEng, is independent of the mitochondrial H2S metabolising enzyme, SQR. These data provide new insights into the molecular mechanisms for antiangiogenic upregulation in a mitochondrial-driven environment. Targeting H2S to the mitochondria may be of therapeutic benefit in the prevention of endothelial dysfunction associated with preeclampsia.
Collapse
|
31
|
Pan Y, Fu M, Chen X, Guo J, Chen B, Tao X. Dietary methionine restriction attenuates renal ischaemia/reperfusion-induced myocardial injury by activating the CSE/H2S/ERS pathway in diabetic mice. J Cell Mol Med 2020; 24:9890-9897. [PMID: 32790060 PMCID: PMC7520309 DOI: 10.1111/jcmm.15578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022] Open
Abstract
Methionine restrictive diet may alleviate ischaemia/reperfusion (I/R)‐induced myocardial injury, but its underlying mechanism remains unclear. HE staining was performed to evaluate the myocardial injury caused by I/R and the effect of methionine‐restricted diet (MRD) in I/R mice. IHC and Western blot were carried out to analyse the expression of CSE, CHOP and active caspase3 in I/R mice and hypoxia/reoxygenation (H/R) cells. TUNEL assay and flow cytometry were used to assess the apoptotic status of I/R mice and H/R cells. MTT was performed to analyse the proliferation of H/R cells. H2S assay was used to evaluate the concentration of H2S in the myocardial tissues and peripheral blood of I/R mice. I/R‐induced mediated myocardial injury and apoptosis were partially reversed by methionine‐restricted diet (MRD) via the down‐regulation of CSE expression and up‐regulation of CHOP and active caspase3 expression. The decreased H2S concentration in myocardial tissues and peripheral blood of I/R mice was increased by MRD. Accordingly, in a cellular model of I/R injury established with H9C2 cells, cell proliferation was inhibited, cell apoptosis was increased, and the expressions of CSE, CHOP and active caspase3 were dysregulated, whereas NaHS treatment alleviated the effect of I/R injury in H9C2 cells in a dose‐dependent manner. This study provided a deep insight into the mechanism underlying the role of MRD in I/R‐induced myocardial injury.
Collapse
Affiliation(s)
- Yuanyuan Pan
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Minghuan Fu
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaohan Chen
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Guo
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Biao Chen
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xuefei Tao
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
32
|
Zhang H, Huang Y, Chen S, Tang C, Wang G, Du J, Jin H. Hydrogen sulfide regulates insulin secretion and insulin resistance in diabetes mellitus, a new promising target for diabetes mellitus treatment? A review. J Adv Res 2020; 27:19-30. [PMID: 33318863 PMCID: PMC7728586 DOI: 10.1016/j.jare.2020.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022] Open
Abstract
Background Insulin resistance and impaired insulin secretion lead to disorders of glucose metabolism, which contributes to the development of diabetes. Hydrogen sulfide (H2S), a novel gasotransmitter, is found to play important roles in regulation of glucose metabolism homeostasis. Aim of Review This study aimed to summarize and discuss current data about the function of H2S in insulin secretion and insulin resistance regulation as well as the underlying mechanisms. Key Scientific Concepts of Review H2S could be endogenously produced in islet β cells, liver, adipose, skeletal muscles, and the hypothalamus, and regulates local and systemic glucose metabolism. It is reported that H2S suppresses insulin secretion, promotes or reduces the apoptosis of islet β cells. It plays important roles in the regulation of insulin sensitivity in insulin responsive tissues. H2S inhibits glucose uptake and glycogen storage, and promotes or inhibits gluconeogenesis, mitochondrial biogenesis and mitochondrial bioenergetics in the liver. In adipose tissue, several investigators indicated that H2S promoted glucose uptake in adipocytes, while other studies reported that H2S inhibits this process. H2S has also been shown to promote adipogenesis, inhibit lipolysis, and regulate adiponectin and MCP-1 secretion from adipocytes. In skeletal muscle, H2S increases glucose uptake and improves insulin sensitivity. It is also observed that H2S modulates circadian-clock genes in muscle. Hypothalamic CBS/H2S pathway reduces obesity and improves insulin sensitivity via the brain-adipose interaction. Most studies indicated plasma H2S levels decreased in diabetic patients. However, the mechanisms by which H2S regulates systemic glucose metabolism remain unclear. Whether H2S acts as a new promising target for diabetes mellitus treatment merits further studies.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.,Research Unit of Clinical Diagnosis and Treatment of Pediatric Syncope and Cardiovascular Diseases, Chinese Academy of Medical Sciences, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100091, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100083, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.,Research Unit of Clinical Diagnosis and Treatment of Pediatric Syncope and Cardiovascular Diseases, Chinese Academy of Medical Sciences, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100083, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.,Research Unit of Clinical Diagnosis and Treatment of Pediatric Syncope and Cardiovascular Diseases, Chinese Academy of Medical Sciences, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100083, China
| |
Collapse
|
33
|
Loiselle JJ, Yang G, Wu L. Hydrogen sulfide and hepatic lipid metabolism - a critical pairing for liver health. Br J Pharmacol 2020; 177:757-768. [PMID: 30499137 PMCID: PMC7024709 DOI: 10.1111/bph.14556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) is the most recently recognized gasotransmitter, influencing a wide range of physiological processes. As a critical regulator of metabolism, H2 S has been suggested to be involved in the pathology of many diseases, particularly obesity, diabetes and cardiovascular disorders. Its involvement in liver health has been brought to light more recently, particularly through knockout animal models, which show severe hepatic lipid accumulation upon ablation of H2 S metabolic pathways. A complex relationship between H2 S and lipid metabolism in the liver is emerging, which has significant implications for liver disease establishment and/or progression, regardless of the disease-causing agent. In this review, we discuss the critical importance of H2 S in hepatic lipid metabolism. We then describe the animal models so far related with H2 S and lipid-associated liver disease, as well as H2 S-based treatments available. Finally, we highlight important considerations for future studies and identify areas in which much still remains to be determined. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Julie J Loiselle
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- School of Human KineticsLaurentian UniversitySudburyCanada
- Health Sciences North Research InstituteSudburyCanada
| | - Guangdong Yang
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- Department of Chemistry and BiochemistryLaurentian UniversitySudburyCanada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- School of Human KineticsLaurentian UniversitySudburyCanada
- Health Sciences North Research InstituteSudburyCanada
| |
Collapse
|
34
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
35
|
Merz T, Denoix N, Wigger D, Waller C, Wepler M, Vettorazzi S, Tuckermann J, Radermacher P, McCook O. The Role of Glucocorticoid Receptor and Oxytocin Receptor in the Septic Heart in a Clinically Relevant, Resuscitated Porcine Model With Underlying Atherosclerosis. Front Endocrinol (Lausanne) 2020; 11:299. [PMID: 32477273 PMCID: PMC7239997 DOI: 10.3389/fendo.2020.00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
The pathophysiology of sepsis-induced myocardial dysfunction is not resolved to date and comprises inflammation, barrier dysfunction and oxidative stress. Disease-associated reduction of tissue cystathionine-γ-lyase (CSE) expression, an endogenous H2S-producing enzyme, is associated with oxidative stress, barrier dysfunction and organ injury. CSE-mediated cardio-protection has been suggested to be related the upregulation of oxytocin receptor (OTR). CSE can also mediate glucocorticoid receptor (GR) signaling, which is important for normal heart function. A sepsis-related loss of cardiac CSE expression associated with impaired organ function has been reported previously. The aim of this current post hoc study was to investigate the role of cardiac GR and OTR after polymicrobial sepsis in a clinically relevant, resuscitated, atherosclerotic porcine model. Anesthetized and instrumented FBM (Familial Hypercholesterolemia Bretoncelles Meishan) pigs with high fat diet-induced atherosclerosis underwent poly-microbial septic shock (n = 8) or sham procedure (n = 5), and subsequently received intensive care therapy with fluid and noradrenaline administration for 24 h. Cardiac protein expression and mRNA levels were analyzed. Systemic troponin, a marker of cardiac injury, was significantly increased in septic animals in contrast to sham, whereas OTR and GR expression in septic hearts were reduced, along with a down-regulation of anti-inflammatory GR target genes and the antioxidant transcription factor NRF2. These results suggest a potential interplay between GR, CSE, and OTR in sepsis-mediated oxidative stress, inflammation and cardiac dysfunction.
Collapse
Affiliation(s)
- Tamara Merz
- Ulm University Medical Center, Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
- *Correspondence: Tamara Merz
| | - Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Daniela Wigger
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wepler
- Ulm University Medical Center, Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
- Clinic for Anesthesia, Ulm University Medical Center, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Ulm University Medical Center, Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
| | - Oscar McCook
- Ulm University Medical Center, Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
| |
Collapse
|
36
|
Tao S, Zhou T, Saelao P, Wang Y, Zhu Y, Li T, Zhou H, Wang J. Intrauterine Growth Restriction Alters the Genome-Wide DNA Methylation Profiles in Small Intestine, Liver and Longissimus Dorsi Muscle of Newborn Piglets. Curr Protein Pept Sci 2019; 20:713-726. [PMID: 30678618 DOI: 10.2174/1389203720666190124165243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 01/20/2023]
Abstract
Intrauterine growth restriction (IUGR) remains a major problem in swine production since the associated low birth weight leads to high rates of pre-weaning morbidity and mortality, and permanent retardation of growth and development. The underlying regulatory mechanisms from the aspects of epigenetic modification has received widespread attention. Studies explore the changes in genome wide methylation in small intestine (SI), liver and longissimus dorsi muscle (LDM) between IUGR and normal birth weight (NBW) newborn piglets using a methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) approach. The data demonstrated that methylated peaks were prominently distributed in distal intergenic regions and the quantities of peaks in IUGR piglets were more than that of NBW piglets. IUGR piglets had relatively high methylated level in promoters, introns and coding exons in all the three tissues. Through KEGG pathway analysis of differentially methylated genes found that 33, 54 and 5 differentially methylated genes in small intestine, liver and longissimus dorsi muscle between NBW and IUGR piglets, respectively, which are related to development and differentiation, carbohydrate and energy metabolism, lipid metabolism, protein turnover, immune response, detoxification, oxidative stress and apoptosis pathway. The objective of this review is to assess the impact of differentially methylation status on developmental delay, metabolic disorders and immune deficiency of IUGR piglets.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianjiao Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Yuhua Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
37
|
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J 2019; 33:13098-13125. [PMID: 31648556 PMCID: PMC6894098 DOI: 10.1096/fj.201901304r] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide can signal through 3 distinct mechanisms: 1) reduction and/or direct binding of metalloprotein heme centers, 2) serving as a potent antioxidant through reactive oxygen species/reactive nitrogen species scavenging, or 3) post-translational modification of proteins by addition of a thiol (-SH) group onto reactive cysteine residues: a process known as persulfidation. Below toxic levels, hydrogen sulfide promotes mitochondrial biogenesis and function, thereby conferring protection against cellular stress. For these reasons, increases in hydrogen sulfide and hydrogen sulfide-producing enzymes have been implicated in several human disease states. This review will first summarize our current understanding of hydrogen sulfide production and metabolism, as well as its signaling mechanisms; second, this work will detail the known mechanisms of hydrogen sulfide in the mitochondria and the implications of its mitochondrial-specific impacts in several pathologic conditions.-Murphy, B., Bhattacharya, R., Mukherjee, P. Hydrogen sulfide signaling in mitochondria and disease.
Collapse
Affiliation(s)
- Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
38
|
Hydrogen Sulfide as a Novel Regulatory Factor in Liver Health and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3831713. [PMID: 30805080 PMCID: PMC6360590 DOI: 10.1155/2019/3831713] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been recognized as a toxic gas and environment pollutant. However, increasing evidence suggests that H2S acts as a novel gasotransmitter and plays important roles in a variety of physiological and pathological processes in mammals. H2S is involved in many hepatic functions, including the regulation of oxidative stress, glucose and lipid metabolism, vasculature, mitochondrial function, differentiation, and circadian rhythm. In addition, H2S contributes to the pathogenesis and treatment of a number of liver diseases, such as hepatic fibrosis, liver cirrhosis, liver cancer, hepatic ischemia/reperfusion injury, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, hepatotoxicity, and acute liver failure. In this review, the biosynthesis and metabolism of H2S in the liver are summarized and the role and mechanism of H2S in liver health and disease are further discussed.
Collapse
|
39
|
Effects of Hydrogen Sulfide on Carbohydrate Metabolism in Obese Type 2 Diabetic Rats. Molecules 2019; 24:molecules24010190. [PMID: 30621352 PMCID: PMC6337247 DOI: 10.3390/molecules24010190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022] Open
Abstract
Hydrogen sulfide (H2S) is involved in the pathophysiology of type 2 diabetes. Inhibition and stimulation of H2S synthesis has been suggested to be a potential therapeutic approach for type 2 diabetes. The aim of this study was therefore to determine the effects of long-term sodium hydrosulfide (NaSH) administration as a H2S releasing agent on carbohydrate metabolism in type 2 diabetic rats. Type 2 diabetes was established using high fat-low dose streptozotocin. Rats were treated for 9 weeks with intraperitoneal injections of NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg). Serum glucose was measured weekly for one month and then at the end of the study. Serum insulin was measured before and after the treatment. At the end of the study, glucose tolerance, pyruvate tolerance and insulin secretion were determined and blood pressure was measured. In diabetic rats NaSH at 1.6–5.6 mg/kg increased serum glucose (11%, 28%, and 51%, respectively) and decreased serum insulin, glucose tolerance, pyruvate tolerance and in vivo insulin secretion. In controls, NaSH only at 5.6 mg/kg increased serum glucose and decreased glucose tolerance, pyruvate tolerance and insulin secretion. Chronic administration of NaSH in particular at high doses impaired carbohydrate metabolism in type 2 diabetic rats.
Collapse
|
40
|
Guo W, Li D, You Y, Li W, Hu B, Zhang S, Miao L, Xian M, Zhu Y, Shen X. Cystathionine γ-lyase deficiency aggravates obesity-related insulin resistance via FoxO1-dependent hepatic gluconeogenesis. FASEB J 2018; 33:4212-4224. [PMID: 30526049 DOI: 10.1096/fj.201801894r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hepatic gluconeogenesis makes a significant contribution to the pathogenesis of obesity and its related insulin resistance. Cystathionine γ-lyase (CSE; also cystathionase), a principal hydrogen sulfide (H2S)-synthesizing enzyme in the liver, is involved in glucose and lipid metabolism disorders. However, the roles and precise mechanisms of CSE/H2S in obesity and its related insulin resistance remain obscure. Here we show that CSE knockout exacerbated high-fat diet-induced mouse obesity as well as its related insulin resistance. Further study elucidated that the inhibition of insulin and AMPK signaling pathways by CSE deficiency resulted in nuclear accumulation of Forkhead box protein O1 and subsequently promoted hepatic gluconeogenesis. These phenomena can be reversed by NaHS supplementation. However, in wild-type mice, NaHS treatment ameliorates high fat diet-induced obesity and metabolism disorders, indicating that maintaining an appropriate level of H2S is critical for its mutual change of positive and negative effects of obesity-associated insulin resistance. Our study reveals a double-edged sword effect and a novel mechanism for CSE/H2S in obesity associated with insulin resistance and provides evidence for CSE/H2S as a promising therapeutic potential target for obesity-related insulin resistance.-Guo, W., Li, D., You, Y., Li, W., Hu, B., Zhang, S., Miao, L., Xian, M., Zhu, Y., Shen, X. Cystathionine γ-lyase deficiency aggravates obesity-related insulin resistance via FoxO1-dependent hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wanzhen Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lei Miao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Pozsgai G, Bátai IZ, Pintér E. Effects of sulfide and polysulfides transmitted by direct or signal transduction-mediated activation of TRPA1 channels. Br J Pharmacol 2018; 176:628-645. [PMID: 30292176 PMCID: PMC6346070 DOI: 10.1111/bph.14514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous mediator in various physiological and pathological processes, including neuroimmune modulation, metabolic pathways, cardiovascular system, tumour growth, inflammation and pain. Now the hydrogen polysulfides (H2Sn) have been recognised as signalling molecules modulating ion channels, transcription factors and protein kinases. Transient receptor potential (TRP) cation channels can be activated by mechanical, thermal or chemical triggers. Here, we review the current literature regarding the biological actions of sulfide and polysulfide compounds mediated by TRP channels with special emphasis on the role of TRPA1, best known as ion channels in nociceptors. However, the non‐neuronal TRPA1 channels should also be considered to play regulatory roles. Although sulfide and polysulfide effects in different pathological circumstances and TRPA1‐mediated processes have been investigated intensively, our review attempts to present the first comprehensive overview of the potential crosstalk between TRPA1 channels and sulfide‐activated signalling pathways. Linked Articles This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc
Collapse
Affiliation(s)
- Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - István Zoárd Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
42
|
Merz T, Wepler M, Nußbaum B, Vogt J, Calzia E, Wang R, Szabo C, Radermacher P, McCook O. Cystathionine-γ-lyase expression is associated with mitochondrial respiration during sepsis-induced acute kidney injury in swine with atherosclerosis. Intensive Care Med Exp 2018; 6:43. [PMID: 30343340 PMCID: PMC6195873 DOI: 10.1186/s40635-018-0208-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Sepsis is associated with disturbed glucose metabolism and reduced mitochondrial activity and biogenesis, ultimately leading to multiple organ dysfunction, e.g., acute kidney injury (AKI). Cystathionine-γ-lyase (CSE), the major cardiovascular source of endogenous H2S release, is implicated in the regulation of glucose metabolism and mitochondrial activity through a PGC1α-dependent mechanism, and critical for kidney function. Atherosclerosis is associated with mitochondrial dysfunction and reduced CSE expression. Thus, the aim of this post hoc study was to test the hypothesis whether there is an interplay between CSE expression and kidney dysfunction, mitochondrial activity, and oxidative/nitrosative stress in porcine septic AKI with underlying coronary artery disease. Methods This study is a post hoc analysis of material from anesthetized and instrumented swine with a high fat diet-induced hypercholesterolemia and atherosclerosis undergoing faecal peritonitis-induced septic shock or sham procedure and intensive care (comprising fluid resuscitation and continuous i.v. noradrenaline (NoA) infusion) for 24 h. Glucose metabolism was quantified from blood 13C6-glucose and expiratory 13CO2/12CO2 isotope enrichment during 13C6-glucose infusion. Mitochondrial activity was determined by high-resolution respirometry. CSE and PGC1α expression, as well as nitrotyrosine formation and albumin extravasation, were quantified by immunohistochemistry of formalin-fixed kidney paraffin sections. Results Sepsis was associated with lactic acidosis (p = 0.004) and AKI (50% fall of creatinine clearance (CrCl), p = 0.019). While both whole-body glucose production (p = 0.004) and oxidation (p = 0.006) were increased, kidney tissue mitochondrial respiration was reduced (p = 0.028), coinciding with decreased CSE (p = 0.003) and PGC1α (p = 0.003) expression. Albumin extravasation (p = 0.011) and nitrotyrosine formation (p = 0.008) were increased in septic kidneys. Conclusions Sepsis-induced AKI is associated with disturbed mitochondrial respiration and biogenesis, which may be aggravated by oxidative and nitrosative stress. Our results confirm previous data in murine septic shock and porcine hemorrhage and resuscitation on the crucial role of CSE for barrier integrity and kidney function. Electronic supplementary material The online version of this article (10.1186/s40635-018-0208-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| | - Martin Wepler
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.,Klinik für Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Benedikt Nußbaum
- Klinik für Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Josef Vogt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Rui Wang
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, 601 Harborside Drive, Galveston, TX, 77555, USA.,Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| |
Collapse
|
43
|
Abstract
SIGNIFICANCE Among many endogenous mediators, the gasotransmitter hydrogen sulfide (H2S) plays an important role in the regulation of glucose homeostasis. In this article we discuss different functional roles of H2S in several metabolic organs/tissues required in the maintenance of glucose homeostasis. Recent Advances: New evidence has emerged revealing the insulin sensitizing role of H2S in adipose tissue and skeletal muscle biology. In addition, H2S was demonstrated to be a potent stimulator of gluconeogenesis via the induction and stimulation of various glucose-producing pathways in the liver. CRITICAL ISSUES Similar to its other physiological effects, H2S exhibits paradoxical characteristics in the regulation of glucose homeostasis: (1) H2S stimulates glucose production via activation of gluconeogenesis and glycogenolysis in hepatocytes, yet inhibits lipolysis in adipocytes; (2) H2S stimulates glucose uptake into adipocytes and skeletal muscle but inhibits glucose uptake into hepatocytes; (3) H2S inhibits insulin secretion from pancreatic β cells, yet sensitizes insulin signaling and insulin-triggered response in adipose tissues and skeletal muscle. It is also unclear the impact H2S may have on glucose metabolism and utilization by other vital organs, such as the brain. FUTURE DIRECTIONS Recent reports and ongoing studies lay the foundation for a general, although highly incomplete, understanding of the effect of H2S on regulating glucose homeostasis. In this review, we describe the molecular mechanisms and physiological outcomes of the gasotransmitter H2S on organs and tissues required for homeostatic maintenance of blood glucose. Future directions highlighting the H2S-mediated homeostatic control of glucose metabolism under physiological and insulin-resistant conditions are also discussed. Antioxid. Redox Signal. 28, 1463-1482.
Collapse
Affiliation(s)
- Ashley Untereiner
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Lingyun Wu
- 2 Cardiovascular & Metabolic Research Unit and School of Human Kinetics, Laurentian University , Sudbury, Canada .,3 Health Sciences North Research Institute , Sudbury, Canada
| |
Collapse
|
44
|
Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol 2018; 175:1146-1156. [PMID: 28432761 PMCID: PMC5866969 DOI: 10.1111/bph.13825] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H2 S was not clear. Recently, a novel post-translational modification induced by H2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca2+ channels, transient receptor potential channels and ATP-sensitive K+ channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H2 S-related drugs in the future. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Pharmacology, School of PharmacyNantong UniversityNantongChina
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Shuang Zhao
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| | - Yi Han
- Department of GeriatricsFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| |
Collapse
|
45
|
Hydrogen sulfide in the regulation of insulin secretion and insulin sensitivity: Implications for the pathogenesis and treatment of diabetes mellitus. Biochem Pharmacol 2018; 149:60-76. [DOI: 10.1016/j.bcp.2018.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
|
46
|
Merz T, Vogt JA, Wachter U, Calzia E, Szabo C, Wang R, Radermacher P, McCook O. Impact of hyperglycemia on cystathionine-γ-lyase expression during resuscitated murine septic shock. Intensive Care Med Exp 2017; 5:30. [PMID: 28616781 PMCID: PMC5471286 DOI: 10.1186/s40635-017-0140-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cystathionine-γ-lyase (CSE) was shown to have a regulatory role in glucose metabolism. Circulatory shock can induce metabolic stress, thereby leading to hyperglycemia and mitochondrial dysfunction. In vitro data suggest an effect of high glucose on CSE expression. Therefore, the aim of this study was to investigate the effects of hyperglycemia on CSE expression in resuscitated murine septic shock. METHODS Normo- (80-150 mg/dl) and hyperglycemic (>200 mg/dl) male C57/BL6J mice (n = 5-6 per group) underwent cecal ligation and puncture (CLP)-induced polymicrobial sepsis or sham procedure (n = 6 per group) and, 15 h afterwards, were anesthetized again, surgically instrumented and received intensive care treatment, including antibiotics, lung protective mechanical ventilation, circulatory support, and intravenous (i.v.) glucose infusion (50% as stable-isotope labeled 1,2,3,4,5,6-13C6 glucose). Blood and breath gas were sampled hourly to quantify parameters of glucose metabolism. 5 h later, mice were sacrificed and organs were harvested. The liver mitochondrial respiratory activity was determined via high resolution respirometry; CSE, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and adipocyte differentiation-related protein (ADRP) expression was immunohistochemically investigated. RESULTS In sepsis combined with hyperglycemia the least CSE and PGC1α expression could be detected, along with reduced mitochondrial respiratory activity, and enhanced ADRP expression, a marker of lipid droplet formation, in the liver. A novel in vivo finding is the CSE translocation from the cytosol to the nucleus triggered by metabolic stress. CONCLUSIONS A relationship between CSE and glucose metabolism was established, which, when dysregulated, may contribute to fatty liver disease and hepatic steatosis.
Collapse
Affiliation(s)
- Tamara Merz
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081 Ulm, Germany
| | - Josef A. Vogt
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081 Ulm, Germany
- Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Ulrich Wachter
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081 Ulm, Germany
- Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081 Ulm, Germany
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX USA
| | - Rui Wang
- Department of Biology, Laurentian University, Sudbury, ON Canada
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081 Ulm, Germany
| | - Oscar McCook
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081 Ulm, Germany
| |
Collapse
|
47
|
Cao X, Wu Z, Xiong S, Cao L, Sethi G, Bian JS. The role of hydrogen sulfide in cyclic nucleotide signaling. Biochem Pharmacol 2017; 149:20-28. [PMID: 29158149 DOI: 10.1016/j.bcp.2017.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is recognized as an endogenous gaseous transmitter alongside nitric oxide (NO) and carbon monoxide (CO). By integrating into multiple signaling pathways, H2S elicits biological functions in various mammalian systems. Among these pathways, cyclic nucleotide signaling has gradually gained attention in the past decade. Based on current evidence, it seems that H2S may differentially affect the activity of resting adenylyl cyclases (ACs) and activated ACs, therefore playing a dual role in the regulation of cyclic adenosine monophosphate (cAMP) mediated signaling. However, how H2S achieves the differential regulation on ACs remains unknown at molecular level. In the context of cyclic guanosine monophosphate (cGMP) regulation, H2S augments its downstream signaling at least through three different mechanisms: (1) H2S potentiates the response of soluble guanylyl cyclases (sGCs) to NO; (2) H2S inhibits activity of phosphodiesterases (PDEs); and (3) H2S enhances the production of NO. By regulating cyclic nucleotide signaling, H2S possesses therapeutic potentials particularly for hypertension and cardiac injury which have also been discussed in the current review. Nevertheless, a detailed portrayal of H2S mediated interaction with target proteins is still required for a better understanding of the role of this important gaseous mediator in regulating cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Siping Xiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Song Bian
- Life Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
48
|
Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact 2017; 277:21-32. [DOI: 10.1016/j.cbi.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022]
|
49
|
Katsouda A, Szabo C, Papapetropoulos A. Reduced adipose tissue H 2S in obesity. Pharmacol Res 2017; 128:190-199. [PMID: 28982640 DOI: 10.1016/j.phrs.2017.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule synthesized by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Given that H2S exerts significant effects on bioenergetics and metabolism, the goal of the current study was to determine the expression of H2S-producing enzymes in adipose tissues in models of obesity and metabolic disruption. Mice fed a western diet expressed lower mRNA levels of all three enzymes in epididymal fat (EWAT), while only CSE and 3-MST were reduced in brown adipose tissue (BAT). At the protein level 3-MST was reduced in all fat depots studied. Using db/db mice, a genetic model of obesity, we found that CSE, CBS and 3-MST mRNA were reduced in white fat, while only CSE was reduced in BAT. CBS and CSE protein levels were suppressed in all three fat depots. In a model of age-related weight gain, no reduction in the mRNA of any of the enzymes was noted. Smaller amounts of 3-MST protein were found in EWAT, while both CSE and 3-MST were reduced in BAT. Tissue levels of H2S were lower in WAT in HFD mice; both WAT and BAT contained lower H2S amounts in db/db animals. Taken together, our data suggest that obesity is associated with a decreased expression of H2S-synthesizing enzymes and reduced H2S levels in adipose tissues of mice. We propose that the reduction in H2S may contribute to the metabolic response associated with obesity. Further work is needed to determine whether restoring H2S levels may have a beneficial effect on obesity-associated metabolic alterations.
Collapse
Affiliation(s)
- Antonia Katsouda
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
50
|
Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M. Recent Development of Hydrogen Sulfide Releasing/Stimulating Reagents and Their Potential Applications in Cancer and Glycometabolic Disorders. Front Pharmacol 2017; 8:664. [PMID: 29018341 PMCID: PMC5623001 DOI: 10.3389/fphar.2017.00664] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022] Open
Abstract
As an important endogenous gaseous signaling molecule, hydrogen sulfide (H2S) exerts various effects in the body. A variety of pathological changes, such as cancer, glycometabolic disorders, and diabetes, are associated with altered endogenous levels of H2S, especially decreased. Therefore, the supplement of H2S is of great significance for the treatment of diseases containing the above pathological changes. At present, many efforts have been made to increase the in vivo levels of H2S by administration of gaseous H2S, simple inorganic sulfide salts, sophisticated synthetic slow-releasing controllable H2S donors or materials, and using H2S stimulating agents. In this article, we reviewed the recent development of H2S releasing/stimulating reagents and their potential applications in two common pathological processes including cancer and glycometabolic disorders.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Li Chen
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shi Xu
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Jacob J Day
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Xiang Li
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|