1
|
Borisov VB, Forte E. Carbon Monoxide and Prokaryotic Energy Metabolism. Int J Mol Sci 2025; 26:2809. [PMID: 40141451 PMCID: PMC11942997 DOI: 10.3390/ijms26062809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Carbon monoxide (CO) plays a multifaceted role in both physiology and pathophysiology. At high levels, it is lethal to humans due to its tight binding to globins and cytochrome c oxidase. At low doses, CO can exhibit beneficial effects; it serves as an endogenous signaling molecule and possesses antibacterial properties, which opens up possibilities for its use as an antimicrobial agent. For this purpose, research is in progress to develop metal-based CO-releasing molecules, metal-free organic CO prodrugs, and CO-generating hydrogel microspheres. The energy metabolism of prokaryotes is a key point that may be targeted by CO to kill invading pathogens. The cornerstone of prokaryotic energy metabolism is a series of membrane-bound enzyme complexes, which constitute a respiratory chain. Terminal oxidases, at the end of this chain, contain hemes and are therefore potential targets for CO. However, this research area is at its very early stage. The impact of CO on bacterial energy metabolism may also provide a basis for biotechnological applications in which this gas is present. This review discusses the molecular basis of the effects of CO on microbial growth and aerobic respiration supported by different terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, I-00185 Rome, Italy;
| |
Collapse
|
2
|
Tripathy S, Bhattamisra SK. Cellular signalling of melatonin and its role in metabolic disorders. Mol Biol Rep 2025; 52:193. [PMID: 39903334 DOI: 10.1007/s11033-025-10306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Melatonin released from the pineal gland plays an important role in maintaining the light/dark cycle. Melatonin exerts its effects on various organs through receptor and nonreceptor pathways. Recently, the role of melatonin in various metabolic disorders has been investigated. This review focuses on the molecular pathways associated with melatonin and its role in metabolic disorders. In humans, melatonin acts through two G protein-coupled receptors (MT1 and MT2). Melatonin modulates insulin release, such as elevated insulin levels in the evening compared to morning hours, exerts cardioprotective effects through the cGMP pathway and nitric oxide production in endothelial cells, and controls oxidative stress and apoptosis in myocardial tissue. Melatonin through MT2 receptors increases lipolysis and thermogenesis, which have a positive effect on weight reduction in obese individuals. Currently, most drugs that target melatonin receptors are primarily used to treat neurological disorders. A detailed investigation to explore the role of melatonin and its signalling pathway in peripheral organs is essential to develop therapeutic molecules for managing metabolic disorders.
Collapse
Affiliation(s)
- Snehasis Tripathy
- IMT Pharmacy College, Sai Bihar, Gopalpur, Puri, Odisha, 752004, India
| | - Subrat Kumar Bhattamisra
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, Bihar, 824236, India.
| |
Collapse
|
3
|
Nastasi MR, Borisov VB, Forte E. Membrane-Bound Redox Enzyme Cytochrome bd-I Promotes Carbon Monoxide-Resistant Escherichia coli Growth and Respiration. Int J Mol Sci 2024; 25:1277. [PMID: 38279276 PMCID: PMC10815991 DOI: 10.3390/ijms25021277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
4
|
Xia AY, Zhu H, Zhao ZJ, Liu HY, Wang PH, Ji LD, Xu J. Molecular Mechanisms of the Melatonin Receptor Pathway Linking Circadian Rhythm to Type 2 Diabetes Mellitus. Nutrients 2023; 15:nu15061406. [PMID: 36986139 PMCID: PMC10052080 DOI: 10.3390/nu15061406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Night-shift work and sleep disorders are associated with type 2 diabetes (T2DM), and circadian rhythm disruption is intrinsically involved. Studies have identified several signaling pathways that separately link two melatonin receptors (MT1 and MT2) to insulin secretion and T2DM occurrence, but a comprehensive explanation of the molecular mechanism to elucidate the association between these receptors to T2DM, reasonably and precisely, has been lacking. This review thoroughly explicates the signaling system, which consists of four important pathways, linking melatonin receptors MT1 or MT2 to insulin secretion. Then, the association of the circadian rhythm with MTNR1B transcription is extensively expounded. Finally, a concrete molecular and evolutionary mechanism underlying the macroscopic association between the circadian rhythm and T2DM is established. This review provides new insights into the pathology, treatment, and prevention of T2DM.
Collapse
Affiliation(s)
- An-Yu Xia
- Department of Clinical Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhu
- Department of Internal Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhi-Jia Zhao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hong-Yi Liu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Peng-Hao Wang
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- Correspondence: (L.-D.J.); (J.X.)
| | - Jin Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- Correspondence: (L.-D.J.); (J.X.)
| |
Collapse
|
5
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 PMCID: PMC9553107 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
6
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Carbon monoxide and β-cell function: Implications for type 2 diabetes mellitus. Biochem Pharmacol 2022; 201:115048. [PMID: 35460631 DOI: 10.1016/j.bcp.2022.115048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
Carbon monoxide (CO), a member of the multifunctional gasotransmitters family produced by heme oxygenases (i.e., HO-1 and HO-2), has received significant attention because of its involvement in carbohydrate metabolism. Experimental evidence indicates that both HO-2- and HO-1-derived CO stimulate insulin secretion, but the latter mainly acts as a compensatory response in pre-diabetes conditions. CO protects pancreatic β-cell against cytokine- and hypoxia-induced apoptosis and promotes β-cell regeneration. CO cross-talks with nitric oxide (NO) and hydrogen sulfide (H2S), other important gasotransmitters in carbohydrate metabolism, in regulating β-cell function and insulin secretion. These data speak in favor of the potential therapeutic application of CO in type 2 diabetes mellitus (T2DM) and preventing the progression of pre-diabetes to diabetes. Either CO (as both gaseous form and CO-releasing molecule) or pharmacological formulations made of natural HO inducers (i.e., bioactive components originating from plant-based foods) are potential candidates for developing CO-based therapeutics in T2DM. Future studies are needed to assess the safety/efficacy and potential therapeutic applications of CO in T2DM.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Liebman C, Loya S, Lawrence M, Bashoo N, Cho M. Stimulatory responses in α- and β-cells by near-infrared (810 nm) photobiomodulation. JOURNAL OF BIOPHOTONICS 2022; 15:e202100257. [PMID: 34837336 DOI: 10.1002/jbio.202100257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Significant efforts have been committed to better understand and regulate insulin secretion as it has direct implications on diabetes. The first phase of biphasic insulin secretion in response to glucose lasts about 10 minutes, followed by a more sustained release persisting several hours. Attenuated insulin release in the first phase is typically associated with abnormal β-cells. While near-infrared photobiomodulation (PBM) demonstrates potential for multiple therapeutic applications, photostimulatory effects on α- and β-cells remain to be further elucidated. Herein, we demonstrate that 810 nm PBM exposure at fluence of 9 J/cm2 can elevate the intracellular reactive oxygen species within 15 minutes following photostimulation. In addition, calcium spiking showed an approximately 3-fold increase in both ATC1 (α-cells) and BTC6 (β-cells) and correlates with hormone secretion in response to PBM stimulation. Our findings could lay a foundation for the development of non-biologic therapeutics that can augment islet transplantation.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Sheccid Loya
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
8
|
Roles of cADPR and NAADP in pancreatic beta cell signalling. Cell Calcium 2022; 103:102562. [DOI: 10.1016/j.ceca.2022.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
|
9
|
He W, Zhou H, He X. Aloperine protects beta-cells against streptozocin-induced injury to attenuate diabetes by targeting NOS1. Eur J Pharmacol 2021; 916:174721. [PMID: 34954231 DOI: 10.1016/j.ejphar.2021.174721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
Type 1 diabetes (T1D) is a metabolic dysfunction characterized by the selective destruction of islet β-cells, with oxidative stress playing an essential role in the manifestation of this disease state. Aloperine (ALO) represents the main active alkaloid extracted from the traditional Chinese herbal Sophora alopecuroidesL. and features outstanding antioxidative properties. In this study, T1D was induced by a single high dose streptozotocin (STZ, 150 mg/kg, intraperitoneal) in mice. Diabetic animals were intragastrically administered ALO at a dose of 50 mg/kg/day. Notably, treatment of ALO (50 mg/kg/day) for seven consecutive days could observably reverse the onset of diabetes induced by STZ accompanied by weight gain, lower blood glucose levels, and relief of β-cells damage. Our in vitro study further demonstrated that ALO protected β-cells from STZ/hydrogen peroxide-induced oxidative damage as manifested by increased expression of MnSOD and CAT. Furthermore, a network pharmacology study revealed that NOS1 represented the main target of ALO. Mechanistic studies subsequently showed that treatment of ALO increased the expression of NOS1, whereas NOS2 was decreased. Moreover, a docking study carried out suggested that ALO could fit into the binding pocket of human NOS1 and molecular dynamics simulation further validated this docking event. Collectively, the administration of ALO prior to diabetes could be a viable approach to the prevention of β-cell injury. This study may offer a novel potential herbal medicine against T1D and may further help improve the understanding of the underlying molecular mechanisms of ALO-mediated protection against oxidative stress.
Collapse
Affiliation(s)
- Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430043, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiaoyu He
- Branch of National Clinical Research Center for Metabolic Diseases, Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
10
|
Laurenti MC, Matveyenko A, Vella A. Measurement of Pulsatile Insulin Secretion: Rationale and Methodology. Metabolites 2021; 11:409. [PMID: 34206296 PMCID: PMC8305896 DOI: 10.3390/metabo11070409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Pancreatic β-cells are responsible for the synthesis and exocytosis of insulin in response to an increase in circulating glucose. Insulin secretion occurs in a pulsatile manner, with oscillatory pulses superimposed on a basal secretion rate. Insulin pulses are a marker of β-cell health, and secretory parameters, such as pulse amplitude, time interval and frequency distribution, are impaired in obesity, aging and type 2 diabetes. In this review, we detail the mechanisms of insulin production and β-cell synchronization that regulate pulsatile insulin secretion, and we discuss the challenges to consider when measuring fast oscillatory secretion in vivo. These include the anatomical difficulties of measuring portal vein insulin noninvasively in humans before the hormone is extracted by the liver and quickly removed from the circulation. Peripheral concentrations of insulin or C-peptide, a peptide cosecreted with insulin, can be used to estimate their secretion profile, but mathematical deconvolution is required. Parametric and nonparametric approaches to the deconvolution problem are evaluated, alongside the assumptions and trade-offs required for their application in the quantification of unknown insulin secretory rates from known peripheral concentrations. Finally, we discuss the therapeutical implication of targeting impaired pulsatile secretion and its diagnostic value as an early indicator of β-cell stress.
Collapse
Affiliation(s)
- Marcello C. Laurenti
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Aleksey Matveyenko
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
| |
Collapse
|
11
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
12
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
13
|
Kaczara P, Sitek B, Przyborowski K, Kurpinska A, Kus K, Stojak M, Chlopicki S. Antiplatelet Effect of Carbon Monoxide Is Mediated by NAD + and ATP Depletion. Arterioscler Thromb Vasc Biol 2020; 40:2376-2390. [PMID: 32787519 PMCID: PMC7505148 DOI: 10.1161/atvbaha.120.314284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives: Carbon monoxide (CO) produced by haem oxygenases or released by CO-releasing molecules (CORM) affords antiplatelet effects, but the mechanism involved has not been defined. Here, we tested the hypothesis that CO–induced inhibition of human platelet aggregation is mediated by modulation of platelet bioenergetics. Approach and Results: To analyze the effects of CORM-A1 on human platelet aggregation and bioenergetics, a light transmission aggregometry, Seahorse XFe technique and liquid chromatography tandem-mass spectrometry–based metabolomics were used. CORM-A1–induced inhibition of platelet aggregation was accompanied by the inhibition of mitochondrial respiration and glycolysis. Interestingly, specific inhibitors of these processes applied individually, in contrast to combined treatment, did not inhibit platelet aggregation considerably. A CORM-A1–induced delay of tricarboxylic acid cycle was associated with oxidized nicotinamide adenine dinucleotide (NAD+) depletion, compatible with the inhibition of oxidative phosphorylation. CORM-A1 provoked an increase in concentrations of proximal (before GAPDH [glyceraldehyde 3-phosphate dehydrogenase]), but not distal glycolysis metabolites, suggesting that CO delayed glycolysis at the level of NAD+–dependent GAPDH; however, GAPDH activity was directly not inhibited. In the presence of exogenous pyruvate, CORM-A1–induced inhibition of platelet aggregation and glycolysis were lost, but were restored by the inhibition of lactate dehydrogenase, involved in cytosolic NAD+ regeneration, pointing out to the key role of NAD+ depletion in the inhibition of platelet bioenergetics by CORM-A1. Conclusions: The antiplatelet effect of CO is mediated by inhibition of mitochondrial respiration—attributed to the inhibition of cytochrome c oxidase, and inhibition of glycolysis—ascribed to cytosolic NAD+ depletion.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, Djukic A, Draginic N, Andjic M, Arsenijevic N, Lukic ML, Jovicic N. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne) 2020; 11:30. [PMID: 32117058 PMCID: PMC7018709 DOI: 10.3389/fendo.2020.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Aims/Hypothesis: Galectin 3 appears to play a proinflammatory role in several inflammatory and autoimmune diseases. Also, there is evidence that galectin 3 plays a role in both type-1 and type-2 diabetes. During obesity, hematopoietic cell-derived galectin 3 induces insulin resistance. While the role of galectin 3 expressed in islet-invading immune cells in both type-1 and type-2 diabetes has been studied, the importance of the expression of this molecule on the target pancreatic β cells has not been defined. Methods: To clarify the role of galectin 3 expression in β cells during obesity-induced diabetogenesis, we developed transgenic mice selectively overexpressing galectin 3 in β cells and tested their susceptibility to obesity-induced type-2 diabetes. Obesity was induced with a 16-week high-fat diet regime. Pancreatic β cells were tested for susceptibility to apoptosis induced by non-esterified fatty acids and cytokines as well as parameters of oxidative stress. Results: Our results demonstrated that overexpression of galectin 3 increases β-cell apoptosis in HFD conditions and increases the percentage of proinflammatory F4/80+ macrophages in islets that express galectin 3 and TLR4. In isolated islets, we have shown that galectin 3 overexpression increases cytokine and palmitate-triggered β-cell apoptosis and also increases NO2--induced oxidative stress of β cells. Also, in pancreatic lymph nodes, macrophages were shifted toward a proinflammatory TNF-α-producing phenotype. Conclusions/Interpretation: By complementary in vivo and in vitro approaches, we have shown that galectin 3-overexpression facilitates β-cell damage, enhances cytokine and palmitate-triggered β-cell apoptosis, and increases NO2--induced oxidative stress in β cells. Further, the results suggest that increased expression of galectin 3 in the pancreatic β cells affects the metabolism of glucose and glycoregulation in mice on a high-fat diet, affecting both fasting glycemic values and glycemia after glucose loading.
Collapse
Affiliation(s)
- Ivica Petrovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nada Pejnovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sladjana Pavlovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ilija Jeftic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Djukic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
15
|
Laporte C, Tubbs E, Cristante J, Gauchez AS, Pesenti S, Lamarche F, Cottet-Rousselle C, Garrel C, Moisan A, Moulis JM, Fontaine E, Benhamou PY, Lablanche S. Human mesenchymal stem cells improve rat islet functionality under cytokine stress with combined upregulation of heme oxygenase-1 and ferritin. Stem Cell Res Ther 2019; 10:85. [PMID: 30867050 PMCID: PMC6416979 DOI: 10.1186/s13287-019-1190-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background Islets of Langerhans transplantation is a promising therapy for type 1 diabetes mellitus, but this technique is compromised by transplantation stresses including inflammation. In other tissues, co-transplantation with mesenchymal stem cells has been shown to reduce damage by improving anti-inflammatory and anti-oxidant defences. Therefore, we probed the protection afforded by bone marrow mesenchymal stem cells to islets under pro-inflammatory cytokine stress. Methods In order to evaluate the cytoprotective potential of mesenchymal stem cells on rat islets, co-cultures were exposed to the interleukin-1, tumour necrosis factor α and interferon γ cocktail for 24 h. Islet viability and functionality tests were performed. Reactive oxygen species and malondialdehyde were measured. Expression of stress-inducible genes acting as anti-oxidants and detoxifiers, such as superoxide dismutases 1 and 2, NAD(P)H quinone oxidoreductase 1, heme oxygenase-1 and ferritin H, was compared to non-stressed cells, and the corresponding proteins were measured. Data were analysed by a two-way ANOVA followed by a Holm-Sidak post hoc analysis. Results Exposure of rat islets to cytokines induces a reduction in islet viability and functionality concomitant with an oxidative status shift with an increase of cytosolic ROS production. Mesenchymal stem cells did not significantly increase rat islet viability under exposure to cytokines but protected islets from the loss of insulin secretion. A drastic reduction of the antioxidant factors heme oxygenase-1 and ferritin H protein levels was observed in islets exposed to the cytokine cocktail with a prevention of this effect by the presence of mesenchymal stem cells. Conclusions Our data evidenced that MSCs are able to preserve islet insulin secretion through a modulation of the oxidative imbalance mediated by heme and iron via heme oxygenase-1 and ferritin in a context of cytokine exposure. Electronic supplementary material The online version of this article (10.1186/s13287-019-1190-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Laporte
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.
| | - Emily Tubbs
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France
| | - Justine Cristante
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,Grenoble University Hospital, Grenoble, France
| | - Anne-Sophie Gauchez
- Biology Institute, Grenoble Alpes University Hospital, CS 10217, 38043, Grenoble Cedex 9, France
| | - Sandra Pesenti
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69600, Oullins, France
| | - Frédéric Lamarche
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France
| | - Catherine Garrel
- Biology Institute, Grenoble Alpes University Hospital, CS 10217, 38043, Grenoble Cedex 9, France
| | - Anaick Moisan
- Cell Therapy and Engineering Unit, EFS Auvergne-Rhône-Alpes, 464 Route de lancey - La Bâtie, 38330, Saint Ismier, France
| | - Jean-Marc Moulis
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,CEA-Grenoble, Bioscience and Biotechnology Institute (BIG), 38054, Grenoble, France
| | - Eric Fontaine
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,Grenoble University Hospital, Grenoble, France
| | - Pierre-Yves Benhamou
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,Grenoble University Hospital, Grenoble, France
| | - Sandrine Lablanche
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,Grenoble University Hospital, Grenoble, France
| |
Collapse
|
16
|
Haines DD, Tosaki A. Role of Heme Oxygenases in Cardiovascular Syndromes and Co-morbidities. Curr Pharm Des 2018; 24:2322-2325. [PMID: 30051777 PMCID: PMC6225334 DOI: 10.2174/1381612824666180727110353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Cardiovascular Diseases (CVD), are the leading cause of human mortality worldwide and the focus of the intensive investigation is to characterize their pathogenesis. This review examines contribution to CVD of heme oxygenases (HOs), heat shock protein enzymes, comprising 3 isoforms: HO-1 (inducible), HO-2 (constitutively expressed) and HO-3 (function presently undefined), which constitute a primary endogenous countermeasure to oxidative tissue damage. Their role as CVD countermeasures is considered in the context of atherosclerosis, consequences of which are the leading cause of CVD deaths and from which 5 major syndromes may develop, namely: coronary artery disease and stroke, peripheral artery disease, kidney disease, cardiopulmonary disease and cerebrovascular disease. Over 75% of CVD deaths result from Coronary artery disease and stroke, with the severity of these conditions correlating with a systemic increase of the endogenous antioxidant bilirubin, produced by HO degradation of heme. Peripheral artery disease, (PAD) resulting from constricted arteries of the extremities is a painful and disabling condition, the severity of which correlates with elevated serum HO. Whether this represents an adaptive response or the enzyme is a contributor to PAD, remains to be determined. CVD symptoms, particularly hypertension, damage the vasculature and filtering structures of the kidneys and may be ameliorated by HO inducers. Interestingly, constitutive renal expression of HO-2 indicates that the enzyme is vital for healthy kidney function. Right ventricular hypertrophy and increased vascular resistance in blood vessels of the lungs exhibit mutually reinforcing positive feedback to result in cardiopulmonary heart disease, with morbidity and mortality resulting from associated inflammation and may be decreased with HO-1 inducers. Cerebrovascular disease, a major CVD complication affecting brain vasculature, with resulting susceptibility to stroke, maybe potently ameliorated by HO-1 inducers. Conclusion: Each of the six major categories of CVD exhibit features of pathogenesis that hold potential as future therapeutic targets, for modulated heme oxygenase activity.
Collapse
Affiliation(s)
- David D. Haines
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|