1
|
Pinto JR, Deepika Bhat K, Bose B, Sudheer Shenoy P. Irisin: muscle's novel player in endoplasmic reticulum stress and disease. Mol Cell Biochem 2025; 480:3605-3619. [PMID: 39984795 DOI: 10.1007/s11010-025-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/02/2025] [Indexed: 02/23/2025]
Abstract
Irisin, an exercise-induced myokine, exhibits elevated levels during physical activity, yet its role in modulating the unfolded protein response (UPR) remains poorly understood. This comprehensive review pioneers an in-depth examination of irisin-mediated endoplasmic reticulum (ER) stress mitigation across various diseases. We provide a nuanced characterization of irisin's molecular profile, biological activity, and significance as a skeletal muscle-derived cytokine analogue. Our discussion elucidates the complex interplay between exercise, irisin signalling, and metabolic outcomes, highlighting key molecular interactions driving salutary effects. Moreover, we delineate the UPR's role as a critical ER stress countermeasure and underscore irisin's pivotal function in alleviating this stress, revealing potential therapeutic avenues for disease management. Exercise-induced release of irisin ameliorates ER stress through AMPK phosphorylation during various diseases (Icon image source: www.flaticon.com ).
Collapse
Affiliation(s)
- Joel Rimson Pinto
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - K Deepika Bhat
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
2
|
Zhang X, Xu C, Ji L, Zhang H. Endoplasmic reticulum stress in acute pancreatitis: Exploring the molecular mechanisms and therapeutic targets. Cell Stress Chaperones 2025; 30:119-129. [PMID: 40107566 PMCID: PMC11995708 DOI: 10.1016/j.cstres.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Acute pancreatitis (AP) is associated with multiple cellular mechanisms that trigger and or are triggered by the inflammatory injury and death of the acinar cells. One of the key mechanisms is the endoplasmic reticulum (ER) stress, which manifests as an accumulation of misfolded proteins within ER, an event that has proinflammatory and proapoptotic consequences. Hence, the degree of cell insult during AP could considerably depend on the signaling pathways that are upregulated during ER stress and its resulting dyshomeostasis such as C/EBP homologous protein (CHOP), cJUN NH2-terminal kinase (JNK), nuclear factor kappa B (NF-κB), and NOD-like receptor protein 3 (NLRP3) inflammasome. Exploring these molecular pathways is an interesting area for translational medicine as it may lead to identifying new therapeutic targets in AP. This review of the literature aims to shed light on the different roles of ER stress in the etiopathogenesis and pathogenesis of AP. Then, it specifically focuses on the therapeutic implications of ER stress in this context.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China
| | - Chenchen Xu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong, China
| | - LiJuan Ji
- Department of Internal Medicine, Weicheng People's Hospital, Weifang, Shandong, China
| | - Haiwei Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
3
|
Tang N, Li W, Shang H, Yang Z, Chen Z, Shi G. Irisin-mediated KEAP1 degradation alleviates oxidative stress and ameliorates pancreatitis. Immunol Res 2025; 73:37. [PMID: 39821708 DOI: 10.1007/s12026-024-09588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive. Our study aims to elucidate irisin expression in AP patients and investigate its mechanism of action to propose a novel treatment strategy for AP. Serum irisin levels in 65 AP patients were quantified using an enzyme-linked immunosorbent assay and correlated with disease severity scores. Core genes implicated in AP-related oxidative stress were identified and screened via bioinformatics analysis. The therapeutic efficacy of irisin in AP was confirmed using a murine cerulein-induced AP model. The intrinsic mechanism of irisin's antioxidative stress action was investigated and verified in pancreatic AR42J cells (Supplementary Fig. 1). Common targets shared by irisin and AP were further validated using a molecular docking model which was constructed for virtual docking analysis. This study investigated alterations in redox status in AP and found a significant reduction in serum irisin levels, correlating inversely with AP severity. In a murine AP model, we showed that irisin triggers an antioxidative stress program via the KEAP1 gene; this process helps reestablish redox balance by decreasing the buildup of reactive oxygen species (ROS) and suppressing the secretion of inflammatory mediators within pancreatic tissues Notably, increased KEAP1 expression counteracted the antioxidative effects of irisin. Our findings unveil a novel therapeutic mechanism for AP, wherein irisin inhibits KEAP1 to alleviate OS. Increasing irisin levels in vivo presents a promising strategy for AP treatment.
Collapse
Affiliation(s)
- Nan Tang
- Dalian Medical University, Dalian, Liaoning, China
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
- First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Wendi Li
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Hezhen Shang
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Zhen Yang
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Zengyin Chen
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Guangjun Shi
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China.
- First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
4
|
Cui Y, Yu L, Cong W, Jiang S, Qiu X, Wei C, Zheng G, Mao J, Liu R, Patzak A, Persson PB, Chen J, Zhao L, Lai EY. Irisin preserves mitochondrial integrity and function in tubular epithelial cells after ischemia-reperfusion-induced acute kidney injury. Acta Physiol (Oxf) 2024; 240:e14211. [PMID: 39073055 DOI: 10.1111/apha.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
AIMS A myokine secreted by skeletal muscles during exercise called irisin mitigates ischemia-reperfusion (I/R) injury in epithelial cells of various organs by limiting damage to mitochondria. We test whether irisin may preserve the mitochondrial integrity and function in renal tubular epithelial cells and protect against ischemia-reperfusion-induced acute kidney injury (AKI). METHODS We correlated serum irisin levels with serum creatinine and BUN levels from both AKI patients and healthy individuals. In mice with irisin administration, various renal injury markers such as serum creatinine, BUN, kidney injury molecule-1 (Kim-1), and neutrophil gelatinase-associated lipocalin (NGAL), and renal histopathology were assessed after I/R. To identify the potential mechanisms of the protective of irisin's protective effect, we perfused proximal tubules under confocal microscopy and analyzed kidney tissues by qPCR, western blot, and immunohistochemistry. RESULTS Serum irisin correlated inversely with serum creatinine and BUN levels were significantly lower in AKI patients than in healthy subjects. Administering irisin to mice after I/R decreased biomarker levels for AKI including serum creatinine, BUN, Kim-1, NAGL and lessened histological changes. In kidney tissues of mice, irisin upregulated the mitochondrial autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3), the mitochondrial autophagy pathway-related proteins PTEN-induced putative kinase 1 (PINK1) and Parkinson's disease 2 parkin (PARK2) and downregulated the reactive substrate protein sequestosome 1 (P62) and mitochondrial membrane proteins translocase of outer mitochondrial membrane 20 (TOM20) and translocase of inner mitochondrial membrane 23 (TIM23). CONCLUSION Irisin protects against renal I/R injury, which may involve the preservation of mitochondrial integrity and function.
Collapse
Affiliation(s)
- Yu Cui
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Lu Yu
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenqi Cong
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Shan Jiang
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Qiu
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunchun Wei
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Gui Zheng
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianhua Mao
- Provincial Key Laboratory of Neonatal Diseases, Department of Nephrology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pontus B Persson
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jianghua Chen
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Liang Zhao
- Provincial Key Laboratory of Neonatal Diseases, Department of Nephrology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - En Yin Lai
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Horwitz A, Birk R. Irisin Ameliorate Acute Pancreatitis and Acinar Cell Viability through Modulation of the Unfolded Protein Response (UPR) and PPARγ-PGC1α-FNDC5 Pathways. Biomolecules 2024; 14:643. [PMID: 38927047 PMCID: PMC11201894 DOI: 10.3390/biom14060643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Acute pancreatitis (AP) entails pancreatic inflammation, tissue damage and dysregulated enzyme secretion, including pancreatic lipase (PL). The role of irisin, an anti-inflammatory and anti-apoptotic cytokine, in AP and exocrine pancreatic stress is unclear. We have previously shown that irisin regulates PL through the PPARγ-PGC1α-FNDC5 pathway. In this study, we investigated irisin and irisin's pathway on AP in in vitro (AR42J-B13) and ex vivo (rat primary acinar) models using molecular, biochemical and immunohistochemistry methodology. Pancreatitis induction (cerulein (cer)) resulted in a significant up-regulation of the PPARγ-PGC1α-FNDC5 axis, PL expression and secretion and endoplasmic reticulum (ER) stress unfolded protein response (UPR) signal-transduction markers (CHOP, XBP-1 and ATF6). Irisin addition in the cer-pancreatitis state resulted in a significant down-regulation of the PPARγ-PGC1α-FNDC5 axis, PPARγ nucleus-translocation and inflammatory state (TNFα and IL-6) in parallel to diminished PL expression and secretion (in vitro and ex vivo models). Irisin addition up-regulated the expression of pro-survival UPR markers (ATF6 and XBP-1) and reduced UPR pro-apoptotic markers (CHOP) under cer-pancreatitis and induced ER stress (tunicamycin), consequently increasing cells viability. Irisin's pro-survival effect under cer-pancreatitis state was abolished under PPARγ inhibition. Our findings suggest irisin as a potential therapeutic option for AP via its ability to up-regulate pro-survival UPR signals and activate the PPARγ-PGC1α-FNDC5 pathway.
Collapse
Affiliation(s)
| | - Ruth Birk
- Nutrition Department, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
6
|
Zhang Y, Zhao L, Gao H, Zhai J, Song Y. Potential role of irisin in digestive system diseases. Biomed Pharmacother 2023; 166:115347. [PMID: 37625325 DOI: 10.1016/j.biopha.2023.115347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Digestive system diseases (DSD) are very complex conditions that severely threaten human health. Therefore, there is an urgent need to develop new pharmacological treatment strategies. Irisin, a myokine discovered in 2012, is produced by fibronectin type III domain-containing protein 5 (FNDC5), which is a transmembrane protein. Irisin is involved in promoting the browning of white adipose tissue, the regulation of energy metabolism, and the improvement of insulin resistance. Irisin is also an essential mediator of the inflammatory response, oxidative stress, and cell apoptosis. Recent studies have proved that irisin concentration is altered in DSD and exerts pivotal effects on the initiation, progression, and prognosis of these diseases through various mechanisms. Therefore, studying the expression and function of irisin may have great significance for the diagnosis and treatment of DSD. Here, we focus on irisin and explore the multiple molecular pathways targeted by irisin therapy. This review indicates that irisin can serve as a diagnostic marker or potential therapeutic agent for DSD. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Linxian Zhao
- Department of General Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Yanqing Song
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Liu W, Bi J, Ren Y, Chen H, Zhang J, Wang T, Wang M, Zhang L, Zhao J, Wu Z, Lv Y, Liu B, Wu R. Targeting extracellular CIRP with an X-aptamer shows therapeutic potential in acute pancreatitis. iScience 2023; 26:107043. [PMID: 37360693 PMCID: PMC10285643 DOI: 10.1016/j.isci.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Severe acute pancreatitis (AP) is associated with a high mortality rate. Cold-inducible RNA binding protein (CIRP) can be released from cells in inflammatory conditions and extracellular CIRP acts as a damage-associated molecular pattern. This study aims to explore the role of CIRP in the pathogenesis of AP and evaluate the therapeutic potential of targeting extracellular CIRP with X-aptamers. Our results showed that serum CIRP concentrations were significantly increased in AP mice. Recombinant CIRP triggered mitochondrial injury and ER stress in pancreatic acinar cells. CIRP-/- mice suffered less severe pancreatic injury and inflammatory responses. Using a bead-based X-aptamer library, we identified an X-aptamer that specifically binds to CIRP (XA-CIRP). Structurally, XA-CIRP blocked the interaction between CIRP and TLR4. Functionally, it reduced CIRP-induced pancreatic acinar cell injury in vitro and L-arginine-induced pancreatic injury and inflammation in vivo. Thus, targeting extracellular CIRP with X-aptamers may be a promising strategy to treat AP.
Collapse
Affiliation(s)
- Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Han F, Ding ZF, Shi XL, Zhu QT, Shen QH, Xu XM, Zhang JX, Gong WJ, Xiao WM, Wang D, Chen WW, Hu LH, Lu GT. Irisin inhibits neutrophil extracellular traps formation and protects against acute pancreatitis in mice. Redox Biol 2023; 64:102787. [PMID: 37392517 DOI: 10.1016/j.redox.2023.102787] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023] Open
Abstract
INTRODUCTION Irisin is a newly discovered myokine which links exercise to inflammation and inflammation-related diseases through macrophage regulation. However, the effect of irisin on the activity of inflammation related immune cells (such as neutrophils) has not been clearly described. OBJECTIVES The objective of our study was to explore the effect of irisin on the neutrophil extracellular traps (NETs) formation. METHODS Phorbol-12-myristate-13-acetate (PMA) was used to construct a classic neutrophil inflammation model that was used to observe the formation of NETs in vitro. We studied the effect of irisin on NETs formation and its regulation mechanism. Subsequently, acute pancreatitis (AP) was used to verify the protective effect of irisin in vivo, which was an acute aseptic inflammatory response disease model closely related to NETs. RESULTS Our study found that addition of irisin significantly reduced the formation of NETs via regulation of the P38/MAPK pathway through integrin αVβ5, which might be the one of key pathways in NETs formation, and which could theoretically offset the immunoregulatory effect of irisin. Systemic treatment with irisin reduced the severity of tissue damage common in the disease and inhibited the formation of NETs in pancreatic necrotic tissue of two classical AP mouse models. CONCLUSION The findings confirmed for the first time that irisin could inhibit NETs formation and protect mice from pancreatic injury, which further elucidated the protective effect of exercise on acute inflammatory injury.
Collapse
Affiliation(s)
- Fei Han
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zi-Fan Ding
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; International Sport Management, Health and Life Sciences, Northumbria University Newcastle, NE1 8ST, UK
| | - Xiao-Lei Shi
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qing-Tian Zhu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qin-Hao Shen
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xing-Meng Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Xian Zhang
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei-Juan Gong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei-Ming Xiao
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Wang
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wei-Wei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Liang-Hao Hu
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Guo-Tao Lu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Schulz R, Schlüter KD. Importance of Mitochondria in Cardiac Pathologies: Focus on Uncoupling Proteins and Monoamine Oxidases. Int J Mol Sci 2023; 24:ijms24076459. [PMID: 37047436 PMCID: PMC10095304 DOI: 10.3390/ijms24076459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.
Collapse
|
10
|
Vanhorebeek I, Gunst J, Casaer MP, Derese I, Derde S, Pauwels L, Segers J, Hermans G, Gosselink R, Van den Berghe G. Skeletal Muscle Myokine Expression in Critical Illness, Association With Outcome and Impact of Therapeutic Interventions. J Endocr Soc 2023; 7:bvad001. [PMID: 36726836 PMCID: PMC9879715 DOI: 10.1210/jendso/bvad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 01/09/2023] Open
Abstract
Context Muscle expresses and secretes several myokines that bring about benefits in distant organs. Objective We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness. Methods We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice. Included in the study were 174 intensive care unit (ICU) patients (day 8 ± 1) vs 19 matched controls, and 60 mice subjected to surgery/sepsis vs 60 pair-fed healthy mice. Interventions studied included 7-day neuromuscular electrical stimulation (NMES), and withholding parenteral nutrition (PN) in the first ICU week (late PN) vs early PN. The main outcome measures were FNDC5 (irisin- precursor), KYAT1, KYAT3, and amylase mRNA expression in skeletal muscle. Results Critically ill patients showed 34% to 80% lower mRNA expression of FNDC5, KYAT1, and amylases than controls (P < .0001). Critically ill mice showed time-dependent reductions in all mRNAs compared with healthy mice (P ≤ .04). The lower FNDC5 expression in patients was independently associated with a higher ICU mortality (P = .015) and ICU-acquired weakness (P = .012), whereas the lower amylase expression in ICU survivors was independently associated with a longer ICU stay (P = .0060). Lower amylase expression was independently associated with a lower risk of death (P = .048), and lower KYAT1 expression with a lower risk of weakness (P = .022). NMES increased FNDC5 expression compared with unstimulated muscle (P = .016), and late PN patients had a higher KYAT1 expression than early PN patients (P = .022). Conclusion Expression of the studied myokines was affected by critical illness and associated with clinical outcomes, with limited effects of interventions that attenuate muscle wasting or weakness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Michaël P Casaer
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Derese
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Derde
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Lies Pauwels
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Johan Segers
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Van den Berghe
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Ren Y, Qi L, Zhang L, Xu J, Ma J, Lv Y, Zhang Y, Wu R. Cupping alleviates lung injury through the adenosine/A 2BAR pathway. Heliyon 2022; 8:e12141. [PMID: 36544817 PMCID: PMC9761715 DOI: 10.1016/j.heliyon.2022.e12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a serious condition. Inflammation plays a crucial role in the pathogenesis of ALI. Cupping, as a part of traditional Chinese medicine, is still a popular complementary and alternative therapy for a variety of ailments including respiratory diseases. However, reliable scientific data about cupping therapy are scarce. Adenosine, a purine nucleoside produced under metabolic stress by the action of extracellular ectonucleotidases (i.e. CD39 and CD73), can attenuate ALI through the A2BAR receptor. The aim of this study was to investigate the protective effect of cupping in a rat model of ALI and the role of adenosine in it. METHODS Male adult rats were subjected to ALI by intratracheal LPS instillation (0.3 mg/kg). Immediately after intratracheal LPS instillation, vacuum pressure was applied to a sanitized plastic bell cup on the back of the rat by suction for 10 min. Pulmonary injury and inflammation were assessed at 4 h after LPS challenge. The role of adenosine and A2BAR in cupping's protection after LPS instillation were evaluated. RESULTS Cupping alleviated LPS-induced lung injury, reduced inflammation and inhibited NF-kB activation in rats. Cupping upregulated CD39 and CD73 mRNA expression of the skin tissue at the cupping site and increased circulating levels of adenosine. Administration of PSB1115, a specific adenosine A2BAR receptor antagonist, abolished cupping's beneficial effects in LPS-induced ALI. CONCLUSIONS Cupping attenuates lung inflammation and injury through the adenosine/A2BAR pathway. The current study provides evidence-based information about cupping therapy in ALI.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lei Qi
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jinkai Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jiancan Ma
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yuanyuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
12
|
Yu J, Cheng Y, Cui Y, Zhai Y, Zhang W, Zhang M, Xin W, Liang J, Pan X, Wang Q, Sun H. Anti-Seizure and Neuronal Protective Effects of Irisin in Kainic Acid-Induced Chronic Epilepsy Model with Spontaneous Seizures. Neurosci Bull 2022; 38:1347-1364. [PMID: 35821335 PMCID: PMC9672298 DOI: 10.1007/s12264-022-00914-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.
Collapse
Affiliation(s)
- Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenshen Zhang
- The Sixth Scientific Research Department, Shandong Institute of Nonmetallic Materials, Jinan, 250031, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
13
|
Guo P, Liu L, Yang X, Li M, Zhao Q, Wu H. Irisin improves BBB dysfunction in SAP rats by inhibiting MMP-9 via the ERK/NF-κB signaling pathway. Cell Signal 2022; 93:110300. [DOI: 10.1016/j.cellsig.2022.110300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
|
14
|
Ren Y, Liu W, Zhang J, Bi J, Fan M, Lv Y, Wu Z, Zhang Y, Wu R. MFG-E8 Maintains Cellular Homeostasis by Suppressing Endoplasmic Reticulum Stress in Pancreatic Exocrine Acinar Cells. Front Cell Dev Biol 2022; 9:803876. [PMID: 35096831 PMCID: PMC8795834 DOI: 10.3389/fcell.2021.803876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 01/25/2023] Open
Abstract
Excessive endoplasmic reticulum (ER) stress contributes significantly to the pathogenesis of exocrine acinar damage in acute pancreatitis. Our previous study found that milk fat globule EGF factor 8 (MFG-E8), a lipophilic glycoprotein, alleviates acinar cell damage during AP via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining cellular homeostasis. However, MFG-E8's role in ER stress in pancreatic exocrine acinar cells has not been evaluated. To study this, thapsigargin, brefeldin A, tunicamycin and cerulein + LPS were used to induce ER stress in rat pancreatic acinar cells in vitro. L-arginine- and cerulein + LPS-induced acute pancreatitis in mice were used to study ER stress in vivo. The results showed that MFG-E8 dose-dependently inhibited ER stress under both in vitro and in vivo conditions. MFG-E8 knockout mice suffered more severe ER stress and greater inflammatory response after L-arginine administration. Mechanistically, MFG-E8 increased phosphorylation of FAK and STAT3 in cerulein + LPS-treated pancreatic acinar cells. The presence of specific inhibitors of αvβ3/5 integrin, FAK or STAT3 abolished MFG-E8's effect on cerulein + LPS-induced ER stress in pancreatic acinar cells. In conclusion, MFG-E8 maintains cellular homeostasis by alleviating ER stress in pancreatic exocrine acinar cells.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuanyuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Wang Y, Liu H, Sun N, Li J, Peng X, Jia Y, Karch J, Yu B, Wehrens XHT, Tian J. Irisin: A Promising Target for Ischemia-Reperfusion Injury Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5391706. [PMID: 34745418 PMCID: PMC8570861 DOI: 10.1155/2021/5391706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
Ischemia-reperfusion injury (IRI) is defined as the total combined damage that occurs during a period of ischemia and following the recovery of blood flow. Oxidative stress, mitochondrial dysfunction, and an inflammatory response are factors contributing to IRI-related damage that can each result in cell death. Irisin is a polypeptide that is proteolytically cleaved from the extracellular domain of fibronectin type III domain-containing protein 5 (FNDC5). Irisin acts as a myokine that potentially mediates beneficial effects of exercise by reducing oxidative stress, improving mitochondrial fitness, and suppressing inflammation. The existing literature also suggests a possible link between irisin and IRI, involving mechanisms similar to those associated with exercise. This article will review the pathogenesis of IRI and the potential benefits and current limitations of irisin as a therapeutic strategy for IRI, while highlighting the mechanistic correlations between irisin and IRI.
Collapse
Affiliation(s)
- Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Huibin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jing Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine, Neuroscience, Pediatrics, And Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| |
Collapse
|
16
|
Guo P, Jin Z, Wang J, Sang A, Wu H. Irisin Rescues Blood-Brain Barrier Permeability following Traumatic Brain Injury and Contributes to the Neuroprotection of Exercise in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1118981. [PMID: 34697562 PMCID: PMC8541859 DOI: 10.1155/2021/1118981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Traumatic brain injury (TBI) has a high incidence, mortality, and morbidity all over the world. One important reason for its poor clinical prognosis is brain edema caused by blood-brain barrier (BBB) dysfunction after TBI. The mechanism may be related to the disorder of mitochondrial morphology and function of neurons in damaged brain tissue, the decrease of uncoupling protein 2 (UCP2) activity, and the increase of inflammatory reaction and oxidative stress. In this study, we aimed to investigate the effects of exogenous irisin on BBB dysfunction after TBI and its role in the neuroprotective effects of endurance exercise (EE) in mice. The concentrations of irisin in cerebrospinal fluid (CSF) and plasma of patients with mild to severe TBI were measured by ELISA. Then, male C57BL/6J mice and UCP2 knockout mice with C57BL/6J background were used to establish the TBI model. The BBB structure and permeability were examined by transmission electron microscopy and Evans blue extravasation, respectively. The protein expressions of irisin, occludin, claudin-5, zonula occludens-1 (ZO-1), nuclear factor E2-related factor 2(Nrf2), quinine oxidoreductase (NQO-1), hemeoxygenase-1 (HO-1), cytochrome C (Cyt-C), cytochrome C oxidase (COX IV), BCL2-associated X protein (Bax), cleaved caspase-3, and UCP2 were detected by western blot. The production of reactive oxygen species (ROS) was evaluated by the dihydroethidium (DHE) staining. The levels of inflammatory factors were detected by ELISA. In this study, we found that the CSF irisin levels were positively correlated with the severity of disease in patients with TBI and both EE and exogenous irisin could reduce BBB damage in a mouse model of TBI. In addition, we used UCP2-/- mice and further found that irisin could improve the dysfunction of BBB after TBI by promoting the expression of UCP2 on the mitochondrial membrane of neurons, reducing the damage of mitochondrial structure and function, thus alleviating the inflammatory response and oxidative stress. In conclusion, the results of this study suggested that irisin might alleviate brain edema after TBI by promoting the expression of UCP2 on the mitochondrial membrane of neurons and contribute to the neuroprotection of EE against TBI.
Collapse
Affiliation(s)
- Peipei Guo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province 230022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China
| | - Zhao Jin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China
| | - Aming Sang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China
| | - Huisheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province 230022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China
| |
Collapse
|
17
|
Ren Y, Cui Q, Zhang J, Liu W, Xu M, Lv Y, Wu Z, Zhang Y, Wu R. Milk Fat Globule-EGF Factor 8 Alleviates Pancreatic Fibrosis by Inhibiting ER Stress-Induced Chaperone-Mediated Autophagy in Mice. Front Pharmacol 2021; 12:707259. [PMID: 34421598 PMCID: PMC8375434 DOI: 10.3389/fphar.2021.707259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Pancreatic fibrosis is an important pathophysiological feature of chronic pancreatitis (CP). Our recent study has shown that milk fat globule-EGF factor 8 (MFG-E8) is beneficial in acute pancreatitis. However, its role in CP remained unknown. To study this, CP was induced in male adult Mfge8-knockout (Mfge8-KO) mice and wild type (WT) mice by six intraperitoneal injections of cerulein (50 μg/kg/body weight) twice a week for 10 weeks. The results showed that knockout of mfge8 gene aggravated pancreatic fibrosis after repeated cerulein injection. In WT mice, pancreatic levels of MFG-E8 were reduced after induction of CP and administration of recombinant MFG-E8 alleviated cerulein-induced pancreatic fibrosis. The protective effect of MFG-E8 in CP was associated with reduced autophagy and oxidative stress. In human pancreatic stellate cells (PSCs), MFG-E8 inhibited TGF-β1-induced ER stress and autophagy. MFG-E8 downregulated the expression of lysosomal associated membrane protein 2A (LAMP2A), a key factor in ER stress-induced chaperone-mediated autophagy (CMA). QX77, an activator of CMA, eliminated the effects of MFG-E8 on TGF-β1-induced PSC activation. In conclusion, MFG-E8 appears to mitigate pancreatic fibrosis via inhibiting ER stress-induced chaperone-mediated autophagy. Recombinant MFG-E8 may be developed as a novel treatment for pancreatic fibrosis in CP.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qing Cui
- Department of Cardiology, Xi’an Central Hospital, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuanyuan Zhang
- Department of Department of Pediatrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
18
|
Zhang Y, Zhang J, Ren Y, Li T, Bi J, Du Z, Wu R. Luteolin Suppresses Sepsis-Induced Cold-Inducible RNA-Binding Protein Production and Lung Injury in Neonatal Mice. Shock 2021; 55:268-273. [PMID: 32694396 DOI: 10.1097/shk.0000000000001624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neonatal sepsis is a life-threatening inflammatory condition. Extracellular cold-inducible RNA-binding protein (CIRP), a proinflammatory mediator, plays a critical role in the pathogenesis of sepsis-induced lung injury in neonates. Luteolin, a polyphenolic flavonoid, has potent anti-inflammatory properties. However, the effects of luteolin on CIRP production and neonatal sepsis-induced lung injury remained unknown. We therefore hypothesize that treatment with luteolin suppresses CIRP production and attenuates lung injury in neonatal sepsis. To study this, sepsis was induced in C57BL/6J mouse pups (5-7 days) by intraperitoneal cecal slurry injection (CSI). One hour after CSI, luteolin (10 mg/kg body weight) or vehicle (normal saline) was administered through intraperitoneal injection. CIRP mRNA and protein were determined and lung injury was assessed at 10 h after CSI. Our results showed that administration of luteolin decreased CIRP mRNA and protein, improved lung architecture, reduced lung edema, and apoptosis after CSI. To examine the direct effect of luteolin on CIRP production, peritoneal macrophages were isolated from neonatal mice and stimulated with 100 ng/mL LPS with or without the presence of luteolin. The result indicates that luteolin directly inhibited LPS-induced CIRP production in neonatal macrophages. In addition, luteolin also downregulated hypoxia-inducible factor-1α (HIF-1α) and NOD-like receptor 3 (NLRP3) expression in septic neonates and in LPS-stimulated neonatal macrophages. In conclusion, administration of luteolin suppresses CIRP production and attenuates lung injury in neonatal sepsis. The beneficial effect of luteolin may be related to downregulation of HIF-1α and NLRP3 expression in neonatal macrophages. Luteolin may be developed as an adjunctive therapy for neonatal sepsis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Teng Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
19
|
Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T, Zhang L, Wang M, Wei S, Lv Y, Wu R. Involvement of GPX4 in irisin's protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol 2021; 236:931-945. [PMID: 32583428 DOI: 10.1002/jcp.29903] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Ischemia reperfusion (I/R)-induced acute kidney injury (AKI) is a common and serious condition. Irisin, an exercise-induced hormone, improves mitochondrial function and reduces reactive oxygen species (ROS) production. Glutathione peroxidase 4 (GPX4) is a key regulator of ferroptosis and its inactivation aggravates renal I/R injury by inducing ROS production. However, the effect of irisin on GPX4 and I/R-induced AKI is still unknown. To study this, male adult mice were subjected to renal I/R by occluding bilateral renal hilum for 30 min, which was followed by 24 hr reperfusion. Our results showed serum irisin levels were decreased in renal I/R mice. Irisin (250 μg/kg) treatment alleviated renal injury, downregulated inflammatory response, improved mitochondrial function, and reduced ER stress and oxidative stress after renal I/R, which were associated with upregulation of GPX4. Treated with RSL3 (a GPX4 inhibitor) abolished irisin's protective effect. Thus, irisin attenuates I/R-induced AKI through upregulating GPX4.
Collapse
Affiliation(s)
- Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Teng Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Ren Y, Liu W, zhang L, Zhang J, Bi J, Wang T, Wang M, Du Z, Wang Y, zhang L, Wu Z, Lv Y, Meng L, Wu R. Milk fat globule EGF factor 8 restores mitochondrial function via integrin-medicated activation of the FAK-STAT3 signaling pathway in acute pancreatitis. Clin Transl Med 2021; 11:e295. [PMID: 33634976 PMCID: PMC7828261 DOI: 10.1002/ctm2.295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Acute pancreatitis (AP) remains a significant clinical challenge. Mitochondrial dysfunction contributes significantly to the pathogenesis of AP. Milk fat globule EGF factor 8 (MFG-E8) is an opsonizing protein, which has many biological functions via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining a normal mitochondrial function. However, MFG-E8's role in AP has not been evaluated. METHODS Blood samples were acquired from 69 healthy controls and 134 AP patients. Serum MFG-E8 levels were measured by ELISA. The relationship between serum concentrations of MFG-E8 and disease severity were analyzed. The role of MFG-E8 was evaluated in experimental models of AP. RESULTS Serum concentrations of MFG-E8 were lower in AP patients than healthy controls. And serum MFG-E8 concentrations were negatively correlated with disease severity in AP patients. In mice, MFG-E8 administration decreased L-arginine-induced pancreatic injury and mortality. MFG-E8's protective effects in experimental AP were associated with improvement in mitochondrial function and reduction in oxidative stress. MFG-E8 knockout mice suffered more severe pancreatic injury and greater mitochondrial damage after l-arginine administration. Mechanistically, MFG-E8 activated the FAK-STAT3 pathway in AP mice. Cilengitide, a specific αvβ3/5 integrin inhibitor, abolished MFG-E8's beneficial effects in AP. PF00562271, a specific FAK inhibitor, blocked MFG-E8-induced STAT3 phosphorylation. APTSTAT3-9R, a specific STAT3 antagonist, also eliminated MFG-E8's beneficial effects under such a condition. CONCLUSIONS MFG-E8 acts as an endogenous protective mediator in the pathogenesis of AP. MFG-E8 administration protects against AP possibly by restoring mitochondrial function via activation of the integrin-FAK-STAT3 signaling pathway. Targeting the action of MFG-E8 may present a potential therapeutic option for AP.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Lin zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Yawen Wang
- BiobankFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Laboratory MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Lin zhang
- Department of Laboratory MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Zheng Wu
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Lingzhong Meng
- Department of AnesthesiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| |
Collapse
|
21
|
Ren Y, Zhang J, Wang M, Bi J, Wang T, Qiu M, Lv Y, Wu Z, Wu R. Identification of irisin as a therapeutic agent that inhibits oxidative stress and fibrosis in a murine model of chronic pancreatitis. Biomed Pharmacother 2020; 126:110101. [PMID: 32199226 DOI: 10.1016/j.biopha.2020.110101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Abnormal activation of pancreatic stellate cells (PSCs) plays a crucial role in the pathogenesis of chronic pancreatitis (CP). Irisin, an exercise-induced hormone, has been shown to mitigate liver fibrosis by inhibiting the activation of hepatic stellate cells. However, the effect of irisin in CP has not been evaluated. METHODS This study aimed to determine whether irisin is protective in CP. CP was induced by 6 IP injections of cerulein (50 μg/kg/body weight). HPSCs were treated with 5 ng/ml TGF-β1 as in vitro experiment. RESULTS Our results showed that repeated cerulein injection induced severe pancreatic injury and fibrosis in mice and the serum irisin level in cerulein-treated mice decreased as in CP patients. Excessive oxidative and ER stress was also present in the pancreas of cerulein-treated mice. Irisin treatment significantly alleviated pancreatic injury and fibrosis, which was associated with reduced oxidative and ER stress. In cultured PSCs, irisin directly inhibited TGF-β-induced α-SMA and collagen I expression. This effect appears to be mediated through downregulation of kindlin-2 and inhibition of the SMAD2/3 pathway. CONCLUSIONS Irisin alleviated pancreatic injury and fibrosis, which was associated with reduced oxidative and ER stress. Thus, irisin may offer therapeutic potential for patients with CP.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Minglong Qiu
- Department of Orthopedic, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
22
|
Ren YF, Wang MZ, Bi JB, Zhang J, Zhang L, Liu WM, Wei SS, Lv Y, Wu Z, Wu RQ. Irisin attenuates intestinal injury, oxidative and endoplasmic reticulum stress in mice with L-arginine-induced acute pancreatitis. World J Gastroenterol 2019; 25:6653-6667. [PMID: 31832004 PMCID: PMC6906211 DOI: 10.3748/wjg.v25.i45.6653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is often associated with intestinal injury, which in turn exaggerates the progression of AP. Our recent study has shown that a low level of serum irisin, a novel exercise-induced hormone, is associated with poor outcomes in patients with AP and irisin administration protects against experimental AP. However, the role of irisin in intestinal injury in AP has not been evaluated. AIM To investigate the effect of irisin administration on intestinal injury in experimental AP. METHODS AP was induced in male adult mice by two hourly intraperitoneal injections of L-arginine. At 2 h after the last injection of L-arginine, irisin (50 or 250 μg/kg body weight) or 1 mL normal saline (vehicle) was administered through intraperitoneal injection. The animals were sacrificed at 72 h after the induction of AP. Intestinal injury, apoptosis, oxidative and endoplasmic reticulum (ER) stress were evaluated. RESULTS Administration of irisin significantly mitigated intestinal damage, reduced apoptosis, and attenuated oxidative and ER stress in AP mice. In addition, irisin treatment also effectively downregulated serum tumor necrosis factor-alpha and interleukin-6 levels and alleviated injury in the pancreas, liver and lung of AP mice. CONCLUSION Irisin-mediated multiple physiological events attenuate intestinal injury following an episode of AP. Irisin has a great potential to be further developed as an effective treatment for patients with AP.
Collapse
Affiliation(s)
- Yi-Fan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Meng-Zhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jian-Bin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Wu-Ming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Sha-Sha Wei
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|