1
|
Li Y, Piao G, Hu F, Chen W, Wang Q, Zhang X, Ling H, Liang J. The silent invasion of microplastics polyvinyl chloride and polyethylene terephthalate: Potential impact on osteoporosis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138074. [PMID: 40158506 DOI: 10.1016/j.jhazmat.2025.138074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND The relationship between the environment and diseases is a crucial and complex topic that has garnered significant attention in recent years. In our study, we also follow the thread and explore the correlation between microplastics (MPs) and osteoporosis (OP). METHODS AND RESULTS We found that MPs were detected in the blood samples of nearly all participants. Moreover, It was compelling that PVC and PET emerged as the most common MP polymers in our study. A verification process was conducted comparing the clinical data with the results of MPs detection. This analysis revealed a significant exposure risk to MPs from sources such as bottled water, take-out containers. Through molecular biology techniques, we confirmed that MPs have a significant toxic effect on osteoblasts and associated with abnormal gene expression. CONCLUSION MPs may be considered to have a potential correlation with the progression of OP.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China; Postdoctoral research station, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Guanghao Piao
- Department of Orthopedics, Baogang Hospital of Inner Mongolia, Baotou 014010, China
| | - Fengxia Hu
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang 830001, China
| | - Wenjing Chen
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Qian Wang
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Xiaoyu Zhang
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Hongbo Ling
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China.
| | - Junqin Liang
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China; Treatment Center of Biomedicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China.
| |
Collapse
|
2
|
Abdullah HA, Moawed FS, Ahmed ES, Abdel Hamid FF, Haroun RAH. Iron chelating, antioxidant and anti-apoptotic activities of hesperidin and/or rutin against induced-ferroptosis in heart tissue of rats. Int J Immunopathol Pharmacol 2025; 39:3946320251331873. [PMID: 40200761 DOI: 10.1177/03946320251331873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Excess iron has been associated with cardiovascular diseases. Flavonoids are antioxidants and cardioprotectants. Therefore, the goal of the current study is to evaluate the anti-apoptotic, antioxidant, and iron-chelating qualities of two flavonoids, rutin (R) and hesperidin (H), as well as their potential to prevent induced ferroptosis in rats. It is an in vivo cross-sectional study, in which rats were divided into 12 groups; control, H, R, H + R, Fe, Fe + IR, Fe + IR + Ref, Fe + H, Fe + IR + H, Fe + R, Fe + IR + R and Fe + IR + H + R. Cardiac and serum iron levels, serum troponin I, creatine kinase-MB (CK-MB), total iron binding capacity (TIBC), transferrin, ferritin, and hepicidin were determined. Moreover, the levels of malondialdehyde (MDA), nitric oxide (NO) and glutathione (GSH) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), were also determined. The expression levels of DMT1, ACSL4, GPX4, Nrf2, and caspase-3 genes were evaluated by RT-qPCR. Lastly, a histological analysis of the heart tissues from several groups of rats was conducted. After hesperidin and/or rutin treatment, our results revealed that cardiac markers (serum troponin I and CK-MB), iron metabolism markers (serum and cardiac iron, TIBC, ferritin, transferrin, hepicidin and DMT1 expression levels) and oxidative stress markers (MDA, NO and ACSL4 expression levels) were significantly (P ⩽ 0.05) reduced, while the antioxidant markers (GSH level, GPx and SOD activities and GPX4 and Nrf2 expression levels) were significantly (P ⩽ 0.05) increased. Also, hesperidin and rutin exerted its protective anti-apoptotic role by significantly (P ⩽ 0.05) decreasing caspase-3 expression levels. Hesperidin and/or rutin treatment can be proposed as a therapeutic candidate to attenuate ferroptosis.
Collapse
Affiliation(s)
- Haidy A Abdullah
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma Sm Moawed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Esraa Sa Ahmed
- Radiation Biology Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma F Abdel Hamid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
3
|
Gao Y, Wang B, Hu M, Ma Y, Zheng B. The Role of Iron in Atherosclerosis and its Association with Related Diseases. Curr Atheroscler Rep 2024; 27:1. [PMID: 39520606 DOI: 10.1007/s11883-024-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of iron in the pathogenesis of atherosclerosis. The primary objective is to summarize recent advances in understanding how iron contributes to atherosclerosis through various cellular mechanisms. Additionally, the review explores the therapeutic implications of targeting iron metabolism in the prevention and treatment of cardiovascular diseases. RECENT FINDINGS A growing body of literature suggests that excess iron accelerates the progression of atherosclerosis, with the deleterious form of iron, non-transferrin-bound iron (NTBI), particularly exacerbating this process. Furthermore, iron overload has been demonstrated to play a pivotal role in endothelial cells, vascular smooth muscle cells, and macrophages, contributing to plaque instability and disease progression by promoting lipid peroxidation, oxidative stress, inflammatory responses, and ferroptosis. Iron plays a complex role in atherosclerosis, influencing multiple cellular processes and promoting disease progression. By promoting oxidative stress, inflammation, and ferroptosis, iron exacerbates endothelial dysfunction, smooth muscle cell calcification, and the formation of macrophage-derived foam cells. Targeted therapies focusing on iron metabolism have proven effective in treating atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yingbo Gao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Boda Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengrui Hu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuhan Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
Del Vecchio L, Girelli D, Vinchi F, Cozzolino M, Elliott S, Mark PB, Valenti L, Qian C, Guo Q, Qian ZM, Ciceri P, Locatelli F. Iron biology. Nephrol Dial Transplant 2024; 39:1404-1415. [PMID: 38658189 DOI: 10.1093/ndt/gfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Indexed: 04/26/2024] Open
Abstract
Iron is a fundamental element for biological life, from bacteria to humans. Iron is essential for cell function and survival, energy production and metabolism, whereas increased levels cause oxidative stress. It is also a constituent of haemoglobin and thus it is necessary for oxygen transportation through the body. Given these multiple functions, the regulation of iron metabolism is complex and tight coupled with oxygen homeostasis at tissue and cellular levels, thanks to the interaction with the hypoxia inducible factor system. In patients with chronic kidney disease (CKD), iron deficiency significantly contributes to anaemia development. This frequently overlaps with chronic inflammation, causing iron- restricted erythropoiesis. To add further complexity, metabolic hyperferritinemia may, on one hand, increase the risk for CKD and, on the other, overlaps with functional iron deficiency. Excessive intracellular iron in certain cell types during CKD can also mediate cellular death (called ferroptosis), and contribute to the pathogenesis of kidney damage, atherosclerosis and vascular calcifications. This review is aimed at broadening the perspective of iron metabolism in the setting of CKD not just as a contributor to anaemia in CKD patients, but also as an important player with an impact on cell metabolism, renal fibrosis and the cardiovascular system.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como 22100, Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NY, USA
| | - Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | | | - Patrick B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Qian Guo
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, JS, China
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai; and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesco Locatelli
- Department of Nephrology and Dialysis, (Past Director) Alessandro Manzoni Hospital, ASST Lecco, Lecco, Italy
| |
Collapse
|
5
|
Zhou J. Serum ferritin and the risk of myocardial infarction: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37952. [PMID: 38669402 PMCID: PMC11049730 DOI: 10.1097/md.0000000000037952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The potential role of serum ferritin as a risk factor for myocardial infarction (MI) is controversial, necessitating a systematic exploration of the causal relationship between ferritin and MI through Mendelian randomization (MR) methods. Genetic data were derived from a genome-wide association study (GWAS), employing the inverse variance-weighted (IVW) method as the primary approach. Comprehensive sensitivity analyses were conducted to validate the robustness of the results. Evaluation of instrumental variables was performed using the F-statistic, and a meta-analysis was employed to assess the average gene-predicted effect between ferritin and MI. The MR study revealed a negative correlation between ferritin and MI. The odds ratios (ORs) in the IVW method were 0.83 [95% confidence interval (CI) = 0.72-0.97; P = .017] and 0.86 (95% CI = 0.72-1.02; P = .080). Additionally, meta-analysis consistently indicated a negative causal relationship between ferritin and MI, with no heterogeneity or horizontal pleiotropy, thereby indicating a negative correlation between ferritin levels and the risk of MI. The genetic evidence sheds light on the causal relationship between ferritin levels and MI risk, providing new perspectives for future interventions in acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Jianwei Zhou
- People’s Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan, China
| |
Collapse
|
6
|
Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, Jin W, Gong Q, Liu L, Guo J. Ferroptosis: a potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:331-344. [PMID: 38327187 PMCID: PMC10984869 DOI: 10.3724/abbs.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation, which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and progression are not entirely understood. This review systematically summarizes the interactions between AS and ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Chengyi Li
- School of MedicineYangtze UniversityJingzhou434020China
| | - Ran Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Zhenyu Xiong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Xue Bao
- School of MedicineYangtze UniversityJingzhou434020China
| | - Sijia Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat-Sen UniversityGuangzhou510120China
| | - Haotian Zeng
- Department of GastroenterologyShenzhen People’s HospitalThe Second Clinical Medical CollegeJinan UniversityShenzhen518000China
| | - Wei Jin
- Department of Second Ward of General PediatricsSuizhou Central HospitalHubei University of MedicineSuizhou441300China
| | - Quan Gong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Lian Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Jiawei Guo
- School of MedicineYangtze UniversityJingzhou434020China
| |
Collapse
|
7
|
Okazaki Y. Iron from the gut: the role of divalent metal transporter 1. J Clin Biochem Nutr 2024; 74:1-8. [PMID: 38292117 PMCID: PMC10822759 DOI: 10.3164/jcbn.23-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Mammalian cells contain thousands of metalloproteins and evolved systems to correctly incorporate metal cofactors into their designated sites. Among the transient metals in living cells, iron is the most abundant element that present as an iron sulfur cluster, mono- and dinuclear iron centers or heme for catalytic reactions. Iron homeostasis is tightly regulated by intestinal iron absorption in mammals owing to the lack of an iron excretive transport system, apart from superficial epithelial cell detachment and urinary outflow reabsorptive impairment. In mammals, the central site for iron absorption is in the duodenum, where the divalent metal transporter 1 is essential for iron uptake. The most notable manifestation of mutated divalent metal transporter 1 presents as iron deficiency anemia in humans. In contrast, the mutation of ferroportin, which exports iron, causes iron overload by either gain or loss of function. Furthermore, hepcidin secretion from the liver suppresses iron efflux by internalizing and degrading ferroportin; thus, the hepcidin/ferroportin axis is extensively investigated for its potential as a therapeutic target to treat iron overload. This review focuses on the divalent metal transporter 1-mediated intestinal iron uptake and hepcidin/ferroportin axis that regulate systemic iron homeostasis.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
8
|
Zhao J, Kim HJ, Montenegro D, Dunaief JL, Sparrow JR. Iron overload and chelation modulates bisretinoid levels in the retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1305864. [PMID: 38983013 PMCID: PMC11182296 DOI: 10.3389/fopht.2023.1305864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 07/11/2024]
Abstract
Aim Iron dysregulation in conjunction with other disease processes may exacerbate retinal degeneration. We employed models of iron overload and iron chelation to explore the interactions between iron-catalyzed oxidation and photoreactive bisretinoid lipofuscin. Methods The mice were injected intravitreally with ferric ammonium citrate (FAC) or were treated using the iron chelator deferiprone (DFP) from birth to 2 months of age. Short-wavelength fundus autofluorescence (SW-AF) and spectral-domain optical coherence tomography (SD-OCT) scans were acquired. The bisretinoid levels were quantified using ultra performance liquid chromatography (UPLC) and in vivo through quantitative fundus autofluorescence (qAF). In histologic sections, the photoreceptor cell viability was assessed by measuring the thickness of the outer nuclear layer (ONL). Results The levels of bisretinoids, all-trans-retinal dimers, and A2PE were significantly increased in the FAC-injected eyes of C57BL/6J mice. Seven days after FAC injection, hyperautofluorescent foci were visible in fundus autofluorescence (488 nm) images, and in SD-OCT scans, aberrant hyperreflectivity was present in the outer retina and ONL thinning was observed. In FAC-injected Abca4-/- mice with pronounced RPE bisretinoid lipofuscin accumulation, the hyperautofluorescent puncta were more abundant than in the wild-type mice, and the extent of ONL thinning was greater. Conversely, the intravitreal injection of FAC in Mertk-/- mice led to a more modest increase in A2PE after 2 days. In contrast to the effect of iron accumulation, chelation with DFP resulted in significantly increased levels of A2E and A2-GPE and qAF due to the reduced iron-catalyzed oxidation of bisretinoids. In Mertk-/- mice, the A2E level was significantly lower and the ONL area was smaller than in DFP-treated mice. DFP chelation did not impair the visual cycle in BALB/cJ mice. Conclusion Iron accumulation was associated with progressive impairment in photoreceptor cells that was associated with the increased formation of a bisretinoid species known to form in photoreceptor outer segments as a precursor to A2E. Additionally, disease features such as the development of hyperautofluorescence puncta in fundus AF images, hyperreflectivity in the outer retina of SD-OCT scans, and ONL thinning were more pronounced when iron was delivered to Abca4-/- mice with a greater propensity for bisretinoid formation. Higher bisretinoid levels and enhanced qAF are indicative of lesser bisretinoid loss due to oxidation.
Collapse
Affiliation(s)
- Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, New York, NY, United States
| | - Hye Jin Kim
- Departments of Ophthalmology, Columbia University Medical Center, New York, NY, United States
| | - Diego Montenegro
- Departments of Ophthalmology, Columbia University Medical Center, New York, NY, United States
| | - Josh L Dunaief
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, New York, NY, United States
- Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
9
|
Halliwell B, Watt F, Minqin R. Iron and atherosclerosis: Lessons learned from rabbits relevant to human disease. Free Radic Biol Med 2023; 209:165-170. [PMID: 37852545 DOI: 10.1016/j.freeradbiomed.2023.10.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The role of iron in promoting atherosclerosis, and hence the cardiovascular, neurodegenerative and other diseases that result from atherosclerosis, has been fiercely controversial. Many studies have been carried out on various rodent models of atherosclerosis, especially on apoE-knockout (apoE-/-) mice, which develop atherosclerosis more readily than normal mice. These apoE-/- mouse studies generally support a role for iron in atherosclerosis development, although there are conflicting results. The purpose of the current article is to describe studies on another animal model that is not genetically manipulated; New Zealand White (NZW) rabbits fed a high-cholesterol diet. This may be a better model than the apoE-/- mice for human atherosclerosis, although it has been given much less attention. Studies on NZW rabbits support the view that iron promotes atherosclerosis, although some uncertainties remain, which need to be resolved by further experimentation.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Research Programme, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Frank Watt
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| | - Ren Minqin
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| |
Collapse
|
10
|
Li Y, Ma JQ, Wang CC, Zhou J, Sun YD, Wei XL, Zhao ZQ. Ferroptosis: A potential target of macrophages in plaque vulnerability. Open Life Sci 2023; 18:20220722. [PMID: 37791060 PMCID: PMC10543703 DOI: 10.1515/biol-2022-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Plaque vulnerability has been the subject of several recent studies aimed at reducing the risk of stroke and carotid artery stenosis. Atherosclerotic plaque development is a complex process involving inflammation mediated by macrophages. Plaques become more vulnerable when the equilibrium between macrophage recruitment and clearance is disturbed. Lipoperoxides, which are affected by iron levels in cells, are responsible for the cell death seen in ferroptosis. Ferroptosis results from lipoperoxide-induced mitochondrial membrane toxicity. Atherosclerosis in ApoE(-/-) mice is reduced when ferroptosis is inhibited and iron intake is limited. Single-cell sequencing revealed that a ferroptosis-related gene was substantially expressed in atherosclerosis-modeled macrophages. Since ferroptosis can be regulated, it offers hope as a non-invasive method of treating carotid plaque. In this study, we discuss the role of ferroptosis in atherosclerotic plaque vulnerability, including its mechanism, regulation, and potential future research directions.
Collapse
Affiliation(s)
- Yu Li
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Ji-Qing Ma
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Chao-Chen Wang
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Yu-Dong Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University,
Nanjing201411, China
| | - Xiao-Long Wei
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Zhi-Qing Zhao
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| |
Collapse
|
11
|
Hanudel MR. Filling the pool: possible renoprotective effects of repleting the kidney macrophage labile iron pool in CKD? Kidney Int 2023; 104:21-24. [PMID: 37068600 DOI: 10.1016/j.kint.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Affiliation(s)
- Mark R Hanudel
- Department of Pediatrics, Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
12
|
Sharma R, Antypiuk A, Vance SZ, Manwani D, Pearce Q, Cox JE, An X, Yazdanbakhsh K, Vinchi F. Macrophage metabolic rewiring improves heme-suppressed efferocytosis and tissue damage in sickle cell disease. Blood 2023; 141:3091-3108. [PMID: 36952641 PMCID: PMC10315632 DOI: 10.1182/blood.2022018026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid β-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.
Collapse
Affiliation(s)
- Richa Sharma
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Ada Antypiuk
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - S. Zebulon Vance
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine, New York, NY
- Pediatric Hematology, The Children's Hospital at Montefiore, New York, NY
| | - Quentinn Pearce
- Department of Biochemistry, University of Utah, Salt Lake City, UT
- Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, UT
| | - James E. Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT
- Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, UT
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | | | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
13
|
Guo Q, Qian C, Qian ZM. Iron metabolism and atherosclerosis. Trends Endocrinol Metab 2023:S1043-2760(23)00090-5. [PMID: 37210298 DOI: 10.1016/j.tem.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
Despite several decades of study, whether iron is involved in the development of atherosclerosis remains a controversial and unresolved issue. Here, we focus on the up-to-date advances in studies on role of iron in atherosclerosis and discuss possible reasons why patients with hereditary hemochromatosis (HH) do not show any increased incidence of atherosclerosis. In addition, we analyze conflicting results concerning the role of iron in atherogenesis from several epidemiological and animal studies. We argue that atherosclerosis is not observed in HH because iron homeostasis in the arterial wall, the actual location of atherosclerosis, is not significantly affected, and support a causal link between iron in the arterial wall and atherosclerosis.
Collapse
Affiliation(s)
- Qian Guo
- Institute of Translational & Precision Medicine, Nantong University, Nantong, JS 226001, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, JS 226001, China; Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
14
|
Holbein BE, Lehmann C. Dysregulated Iron Homeostasis as Common Disease Etiology and Promising Therapeutic Target. Antioxidants (Basel) 2023; 12:antiox12030671. [PMID: 36978919 PMCID: PMC10045916 DOI: 10.3390/antiox12030671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Iron is irreplaceably required for animal and human cells as it provides the activity center for a wide variety of essential enzymes needed for energy production, nucleic acid synthesis, carbon metabolism and cellular defense. However, iron is toxic when present in excess and its uptake and storage must, therefore, be tightly regulated to avoid damage. A growing body of evidence indicates that iron dysregulation leading to excess quantities of free reactive iron is responsible for a wide range of otherwise discrete diseases. Iron excess can promote proliferative diseases such as infections and cancer by supplying iron to pathogens or cancer cells. Toxicity from reactive iron plays roles in the pathogenesis of various metabolic, neurological and inflammatory diseases. Interestingly, a common underlying aspect of these conditions is availability of excess reactive iron. This underpinning aspect provides a potential new therapeutic avenue. Existing hematologically used iron chelators to take up excess iron have shown serious limitations for use but new purpose-designed chelators in development show promise for suppressing microbial pathogen and cancer cell growth, and also for relieving iron-induced toxicity in neurological and other diseases. Hepcidin and hepcidin agonists are also showing promise for relieving iron dysregulation. Harnessing iron-driven reactive oxygen species (ROS) generation with ferroptosis has shown promise for selective destruction of cancer cells. We review biological iron requirements, iron regulation and the nature of iron dysregulation in various diseases. Current results pertaining to potential new therapies are also reviewed.
Collapse
Affiliation(s)
- Bruce E. Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence:
| |
Collapse
|
15
|
Abstract
The cardiovascular system requires iron to maintain its high energy demands and metabolic activity. Iron plays a critical role in oxygen transport and storage, mitochondrial function, and enzyme activity. However, excess iron is also cardiotoxic due to its ability to catalyze the formation of reactive oxygen species and promote oxidative damage. While mammalian cells have several redundant iron import mechanisms, they are equipped with a single iron-exporting protein, which makes the cardiovascular system particularly sensitive to iron overload. As a result, iron levels are tightly regulated at many levels to maintain homeostasis. Iron dysregulation ranges from iron deficiency to iron overload and is seen in many types of cardiovascular disease, including heart failure, myocardial infarction, anthracycline-induced cardiotoxicity, and Friedreich's ataxia. Recently, the use of intravenous iron therapy has been advocated in patients with heart failure and certain criteria for iron deficiency. Here, we provide an overview of systemic and cellular iron homeostasis in the context of cardiovascular physiology, iron deficiency, and iron overload in cardiovascular disease, current therapeutic strategies, and future perspectives.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Adam De Jesus
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
16
|
Liver sinusoidal endothelial cells induce BMP6 expression in response to non-transferrin-bound iron. Blood 2023; 141:271-284. [PMID: 36351237 DOI: 10.1182/blood.2022016987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell-specific ablation of transferrin receptor 1 (Tfr1). We also used control Tfrcfl/fl mice to characterize the LSEC-specific molecular responses to iron using single-cell transcriptomics. TfrcTek-Cre animals tended to have modestly increased liver iron content (LIC) compared with Tfrcfl/fl controls but expressed physiological Bmp6 and Hamp messenger RNA (mRNA). Despite a transient inability to upregulate Bmp6, they eventually respond to iron challenges with Bmp6 and Hamp induction, yet occasionally to levels slightly lower relative to LIC. High dietary iron intake triggered the accumulation of serum nontransferrin bound iron (NTBI), which significantly correlated with liver Bmp6 and Hamp mRNA levels and elicited more profound alterations in the LSEC transcriptome than holo-transferrin injection. This culminated in the robust induction of Bmp6 and other nuclear factor erythroid 2-related factor 2 (Nrf2) target genes, as well as Myc target genes involved in ribosomal biogenesis and protein synthesis. LSECs and midzonal hepatocytes were the most responsive liver cells to iron challenges and exhibited the highest expression of Bmp6 and Hamp mRNAs, respectively. Our data suggest that during systemic iron overload, LSECs internalize NTBI, which promotes oxidative stress and thereby transcriptionally induces Bmp6 via Nrf2. Tfr1 appears to contribute to iron sensing by LSECs, mostly under low iron conditions.
Collapse
|
17
|
Patino E, Bhatia D, Vance SZ, Antypiuk A, Uni R, Campbell C, Castillo CG, Jaouni S, Vinchi F, Choi ME, Akchurin O. Iron therapy mitigates chronic kidney disease progression by regulating intracellular iron status of kidney macrophages. JCI Insight 2023; 8:e159235. [PMID: 36394951 PMCID: PMC9870080 DOI: 10.1172/jci.insight.159235] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic iron metabolism is disrupted in chronic kidney disease (CKD). However, little is known about local kidney iron homeostasis and its role in kidney fibrosis. Kidney-specific effects of iron therapy in CKD also remain elusive. Here, we elucidate the role of macrophage iron status in kidney fibrosis and demonstrate that it is a potential therapeutic target. In CKD, kidney macrophages exhibited depletion of labile iron pool (LIP) and induction of transferrin receptor 1, indicating intracellular iron deficiency. Low LIP in kidney macrophages was associated with their defective antioxidant response and proinflammatory polarization. Repletion of LIP in kidney macrophages through knockout of ferritin heavy chain (Fth1) reduced oxidative stress and mitigated fibrosis. Similar to Fth1 knockout, iron dextran therapy, through replenishing macrophage LIP, reduced oxidative stress, decreased the production of proinflammatory cytokines, and alleviated kidney fibrosis. Interestingly, iron markedly decreased TGF-β expression and suppressed TGF-β-driven fibrotic response of macrophages. Iron dextran therapy and FtH suppression had an additive protective effect against fibrosis. Adoptive transfer of iron-loaded macrophages alleviated kidney fibrosis, validating the protective effect of iron-replete macrophages in CKD. Thus, targeting intracellular iron deficiency of kidney macrophages in CKD can serve as a therapeutic opportunity to mitigate disease progression.
Collapse
Affiliation(s)
- Edwin Patino
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Steven Z. Vance
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Ada Antypiuk
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Rie Uni
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Chantalle Campbell
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Carlo G. Castillo
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Shahd Jaouni
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- New York-Presbyterian Hospital, New York, New York, USA
| | - Oleh Akchurin
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
- New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
18
|
Wang L, Cai J, Qiao T, Li K. Ironing out macrophages in atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1-10. [PMID: 36647723 PMCID: PMC10157607 DOI: 10.3724/abbs.2022196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
<p indent="0mm">The most common cause of death worldwide is atherosclerosis and related cardiovascular disorders. Macrophages are important players in the pathogenesis of atherosclerosis and perform critical functions in iron homeostasis due to recycling iron by phagocytosis of senescent red blood cells and regulating iron availability in the tissue microenvironment. With the growth of research on the "iron hypothesis" of atherosclerosis, macrophage iron has gradually become a hotspot in the refined iron hypothesis. Macrophages with the M1, M2, M(Hb), Mox, and other phenotypes have been defined with different iron-handling capabilities related to the immune function and immunometabolism of macrophages, which influence the progression of atherosclerosis. In this review, we focus on macrophage iron and its effects on the development of atherosclerosis. We also cover the contradictory discoveries and propose a possible explanation. Finally, pharmaceutical modulation of macrophage iron is discussed as a promising target for atherosclerosis therapy.</p>.
Collapse
Affiliation(s)
- Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kuanyu Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Luong R, Ribeiro RV, Rangan A, Naganathan V, Blyth F, Waite LM, Handelsman DJ, Le Couteur DG, Seibel MJ, Hirani V. Haem Iron Intake Is Associated with Increased Major Adverse Cardiovascular Events, All-Cause Mortality, Congestive Cardiac Failure, and Coronary Revascularisation in Older Men: The Concord Health and Ageing in Men Project. J Nutr Health Aging 2023; 27:559-570. [PMID: 37498103 DOI: 10.1007/s12603-023-1945-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Nutritional intake can influence major adverse cardiovascular events (MACE). Dietary iron is found in two forms: haem-iron (HI) only found in animal sources and non-haem iron (NHI) present mostly in plant sources. OBJECTIVE We evaluated the associations between dietary iron intakes with MACE and iron status biomarkers. DESIGN Prospective cohort study. SETTING The Concord Health and Ageing in Men Project, Sydney, Australia. PARTICIPANTS 539 community-dwelling older Australian men aged 75 years and older. METHODS Men underwent nutritional assessment using a validated diet history questionnaire. Entries were converted to food groups and nutrients. The dietary calculation was used to derive HI and NHI intakes from total iron intakes. Analyses of iron intakes with iron status biomarkers were conducted using linear regression, and with MACE and individual endpoints were conducted using Cox regression. Five-point MACE comprised of all-cause mortality, myocardial infarction (MI), congestive cardiac failure (CCF), coronary revascularisation, and/or ischaemic stroke. Four-point MACE included the four endpoints of MI, CCF, coronary revascularisation, and/or ischaemic stroke, and excluded all-cause mortality. RESULTS At a median of 5.3 (4.6 - 6.3) years follow-up, the incidences were: 31.2% (n = 168) five-point MACE, 17.8% (n = 96) four-point MACE excluding all-cause mortality, 20.1% (n = 111) all-cause mortality, 11.3% (n = 61) CCF, and 3.1% (n = 15) coronary revascularisation. In adjusted analyses, higher HI intake (per 1mg increment) was associated with increased five-point MACE (HR: 1.45 [95% CI: 1.16, 1.80, P = .001]), four-point MACE excluding all-cause mortality (HR: 1.64 [95% CI: 1.26, 2.15, P <.001]), all-cause mortality (HR: 1.51 [95% CI: 1.15, 1.99, P = .003]), CCF (HR: 2.08 [95% CI: 1.45, 2.98, P <.001]), and coronary revascularisation (HR: 1.89 [95% CI: 1.15, 3.10, P = .012]). Compared with the bottom tertile of NHI intake, the middle tertile of NHI intake was associated with reduced risk of all-cause mortality (HR: 0.56 [95% CI: 0.33, 0.96, P = .035]). Total iron intake was not associated with MACE and individual endpoints. Dietary iron intakes were not associated with serum iron and haemoglobin. CONCLUSION Higher haem iron intake was independently associated with increased risks of five-point MACE, four-point MACE excluding all-cause mortality, all-cause mortality, CCF, and coronary revascularisation in older men over 5 years.
Collapse
Affiliation(s)
- R Luong
- Rebecca Luong, Level 4, Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vascular Aging and Damage in Patients with Iron Metabolism Disorders. Diagnostics (Basel) 2022; 12:diagnostics12112817. [PMID: 36428877 PMCID: PMC9689457 DOI: 10.3390/diagnostics12112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular aging is a physiological, multifactorial process that involves every type of vessel, from large arteries to microcirculation. This manifests itself as impaired vasomotor function, altered secretory phenotype, deteriorated intercellular transport function, structural remodeling, and aggravated barrier function between the blood and the vascular smooth muscle layer. Iron disorders, particularly iron overload, may lead to oxidative stress and, among other effects, vascular aging. The elevated transferrin saturation and serum iron levels observed in iron overload lead to the formation of a non-transferrin-bound iron (NTBI) fraction with high pro-oxidant activity. NTBI can induce the production of reactive oxygen species (ROS), which induce lipid peroxidation and mediate iron-related damage as the elements of oxidative stress in many tissues, including heart and vessels' mitochondria. However, the available data make it difficult to precisely determine the impact of iron metabolism disorders on vascular aging; therefore, the relationship requires further investigation. Our study aims to present the current state of knowledge on vascular aging in patients with deteriorated iron metabolism.
Collapse
|
21
|
Effects of Moderate Consumption of Red Wine on Hepcidin Levels in Patients with Type 2 Diabetes Mellitus. Foods 2022; 11:foods11131881. [PMID: 35804697 PMCID: PMC9266169 DOI: 10.3390/foods11131881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Iron overload is often associated with type 2 diabetes (T2D), indicating that hepcidin, the master regulator of iron homeostasis, might be involved in diabetes pathogenesis. Alcohol consumption may also result in increased body iron stores. However, the moderate consumption of wine with meals might be beneficial in T2D. This effect has been mainly attributed to both the ethanol and the polyphenolic compounds in wine. Therefore, we examined the effects of red wine on hepcidin in T2D patients and non-diabetic controls. The diabetic patients (n = 18) and age- and BMI-matched apparently healthy controls (n = 13) were men, aged 40−65 years, non-smoking, with BMI < 35 kg/m2. Following a 2-week alcohol-free period, both groups consumed 300 mL of red wine for 3 weeks. The blood samples for the iron status analysis were taken at the end of each period. The red wine intake resulted in a decrease in serum hepcidin in both the diabetic subjects (p = 0.045) and controls (p = 0.001). The levels of serum ferritin also decreased after wine in both groups, reaching statistical significance only in the control subjects (p = 0.017). No significant alterations in serum iron, transferrin saturation, or soluble transferrin receptors were found. The suppression of hepcidin, a crucial iron-regulatory hormone and acute-phase protein, in T2D patients and healthy controls, is a novel biological effect of red wine. This may deepen our understanding of the mechanisms of the cardiometabolic effects of wine in T2D.
Collapse
|
22
|
Ma J, Ma HM, Shen MQ, Wang YY, Bao YX, Liu Y, Ke Y, Qian ZM. The Role of Iron in Atherosclerosis in Apolipoprotein E Deficient Mice. Front Cardiovasc Med 2022; 9:857933. [PMID: 35669479 PMCID: PMC9163807 DOI: 10.3389/fcvm.2022.857933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The role of iron in atherosclerosis is still a controversial and unsolved issue. Here, we investigated serum iron, expression of iron regulatory, transport and storage proteins, pro-inflammatory chemokines and cytokines in ApoE–/– mice. We demonstrated that ApoE–/– induced atherosclerosis and an increase in iron contents, expression of transferrin receptor 1 (TfR1), iron regulatory proteins (IRPs), heme oxygenase 1 (HO1), cellular adhesion molecules and pro-inflammatory cytokines, production of reactive oxygen species (ROS), and a reduction in expression of superoxide dismutase and glutathione peroxidase enzyme in aortic tissues. All of these changes induced by ApoE deficiency could be significantly abolished by deferoxamine. The data showed that the increased iron in aortic tissues was mainly due to the increased iron uptake via IRP/TfR1 upregulation. These findings plus a brief analysis of the controversial results reported previously showed that ApoE deficiency-induced atherosclerosis is partly mediated by the increased iron in aortic tissues.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui-Min Ma
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
| | - Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
| | - Yuan Yuan Wang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Yong Liu
- Department of Pain and Rehabilitation, The Second Affiliated Hospital, The Army Medical University, Chongqing, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Center, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- *Correspondence: Ya Ke,
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
- Zhong-Ming Qian,
| |
Collapse
|
23
|
Martin D, Nay K, Robin F, Rebillard A, Orfila L, Martin B, Leroyer P, Guggenbuhl P, Dufresne S, Noirez P, Ropert M, Loréal O, Derbré F. Oxidative and glycolytic skeletal muscles deploy protective mechanisms to avoid atrophy under pathophysiological iron overload. J Cachexia Sarcopenia Muscle 2022; 13:1250-1261. [PMID: 35118832 PMCID: PMC8978014 DOI: 10.1002/jcsm.12897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Iron excess has been proposed as an essential factor in skeletal muscle wasting. Studies have reported correlations between muscle iron accumulation and atrophy, either through ageing or by using experimental models of secondary iron overload. However, iron treatments performed in most of these studies induced an extra-pathophysiological iron overload, more representative of intoxication or poisoning. The main objective of this study was to determine the impact of iron excess closer to pathophysiological conditions on structural and metabolic adaptations (i) in differentiated myotubes and (ii) in skeletal muscle exhibiting oxidative (i.e. the soleus) or glycolytic (i.e. the gastrocnemius) metabolic phenotypes. METHODS The impact of iron excess was assessed in both in vitro and in vivo models. Murine differentiated myotubes were exposed to ferric ammonium citrate (FAC) (i.e. 10 and 50 μM) for the in vitro component. The in vivo model was achieved by a single iron dextran subcutaneous injection (1 g/kg) in mice. Four months after the injection, soleus and gastrocnemius muscles were harvested for analysis. RESULTS In vitro, iron exposure caused dose-dependent increases of iron storage protein ferritin (P < 0.01) and dose-dependent decreases of mRNA TfR1 levels (P < 0.001), which support cellular adaptations to iron excess. Extra-physiological iron treatment (50 μM FAC) promoted myotube atrophy (P = 0.018), whereas myotube size remained unchanged under pathophysiological treatment (10 μM FAC). FAC treatments, whatever the doses tested, did not affect the expression of proteolytic markers (i.e. NF-κB, MurF1, and ubiquitinated proteins). In vivo, basal iron content and mRNA TfR1 levels were significantly higher in the soleus compared with the gastrocnemius (+130% and +127%; P < 0.001, respectively), supporting higher iron needs in oxidative skeletal muscle. Iron supplementation induced muscle iron accumulation in the soleus and gastrocnemius muscles (+79%, P < 0.001 and +34%, P = 0.002, respectively), but ferritin protein expression only increased in the gastrocnemius (+36%, P = 0.06). Despite iron accumulation, muscle weight, fibre diameter, and myosin heavy chain distribution remained unchanged in either skeletal muscle. CONCLUSIONS Together, these data support that under pathophysiological conditions, skeletal muscle can protect itself from the related deleterious effects of excess iron.
Collapse
Affiliation(s)
- David Martin
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Kévin Nay
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France.,Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic., Australia
| | - François Robin
- INSERM, INRAe, University of Rennes, Nutrition Metabolisms and Cancer Institute (NuMeCan), Platform AEM2, CHU Rennes, Rennes, France
| | - Amélie Rebillard
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Luz Orfila
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Brice Martin
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Patricia Leroyer
- INSERM, INRAe, University of Rennes, Nutrition Metabolisms and Cancer Institute (NuMeCan), Platform AEM2, CHU Rennes, Rennes, France
| | - Pascal Guggenbuhl
- INSERM, INRAe, University of Rennes, Nutrition Metabolisms and Cancer Institute (NuMeCan), Platform AEM2, CHU Rennes, Rennes, France
| | - Suzanne Dufresne
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Philippe Noirez
- IRMES-Institute for Research in Medicine and Epidemiology of Sport, INSEP, Paris, France.,INSERM S1124, Université de Paris, Paris, France.,EA7507, Performance Health Metrology Society, Université de Reims Champagne Ardenne, Reims, France
| | | | - Olivier Loréal
- INSERM, INRAe, University of Rennes, Nutrition Metabolisms and Cancer Institute (NuMeCan), Platform AEM2, CHU Rennes, Rennes, France
| | - Frédéric Derbré
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| |
Collapse
|
24
|
Parisi S, Finelli C. Prognostic Factors and Clinical Considerations for Iron Chelation Therapy in Myelodysplastic Syndrome Patients. J Blood Med 2021; 12:1019-1030. [PMID: 34887690 PMCID: PMC8651046 DOI: 10.2147/jbm.s287876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) is an important tool in the treatment of transfusion-dependent lower-risk myelodysplastic syndrome (MDS) patients. ICT is effective in decreasing iron overload and consequently in limiting its detrimental effects on several organs, such as the heart, liver, and endocrine glands. Besides this effect, ICT also proved to be effective in improving peripheral cytopenia in a significant number of MDS patients, thus further increasing the clinical interest of this therapeutic tool. In the first part of the review, we will analyze the toxic effect of iron overload and its mechanism. Subsequently, we will revise the clinical role of ICT in various subsets of MDS patients (low, intermediate, and high risk MDS, patients who are candidates for allogeneic stem cell transplantation).
Collapse
Affiliation(s)
- Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|