1
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2025; 47:2245-2261. [PMID: 39495479 PMCID: PMC11979091 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Stimart HL, Hipkins B. The negative effects of long COVID-19 on cardiovascular health and implications for the presurgical examination. J Osteopath Med 2025; 125:105-117. [PMID: 39417730 DOI: 10.1515/jom-2024-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/12/2024] [Indexed: 10/19/2024]
Abstract
CONTEXT In 2019, emergence of the novel and communicable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection took scientific communities by surprise and imposed significant burden on healthcare systems globally. Although the advent of this disease piqued the interest of academic centers, healthcare systems, and the general public, there is still much yet to be elucidated regarding epidemiology, pathophysiology, and long-term impacts of coronavirus disease 2019 (COVID-19). It has been established that long COVID-19 can impact multiple organ systems, including the cardiovascular system, unfavorably. Although the pathophysiology of this damage is not well understood, adverse sequelae may range from chest pain and arrhythmias to heart failure (HF), myocardial infarction, or sudden cardiac death. For any postacute COVID-19 patient requiring a surgical procedure, the potential for cardiac injury secondary to long COVID-19 must be considered in the preoperative cardiac examination. OBJECTIVES This literature review serves to add to the growing body of literature exploring postacute cardiovascular outcomes of COVID-19, with a focus on presurgical cardiac clearance in the adult patient. Specifically, this review studies the prevalence of cardiovascular symptomatology including chest pain, arrhythmias, blood pressure changes, myo-/pericarditis, HF, cardiomyopathy, orthostatic intolerance, and thromboembolism. Although current evidence is scarce in both quality and quantity, it is the goal that this review will highlight the negative impacts of long COVID-19 on cardiovascular health and encourage providers to be cognizant of potential sequelae in the context of the presurgical examination. METHODS For this study, peer-reviewed and journal-published articles were selected based on established inclusion and exclusion criteria to address the question "How does long COVID-19 impact the presurgical cardiac examination of an adult scheduled to undergo a noncardiac procedure?" Inclusion criteria included human studies conducted in adult patients and published in peer-reviewed journals up until May 2024 examining the effects of long-COVID-19 infection on the cardiovascular system. Exclusion criteria eliminated unpublished reports, preprints, duplicate articles, literature regarding coronavirus strains other than COVID-19, studies regarding post-COVID-19 vaccination complications, animal studies, and studies conducted in people younger than 18 years of age. A total of 6,675 studies were retrieved from PubMed and Google Scholar. Following screening, 60 studies were included in final consideration. RESULTS Cardiovascular symptoms of postacute COVID-19 infection were encountered with the following percentages prevalence (total numbers of articles mentioning symptom/total number of articles [60]): chest pain (83.3), arrhythmias (88.3), hypertension (40.0), hypotension (16.7), myocarditis (80.0), pericarditis (51.7), HF (70.0), cardiomyopathy (55.0), orthostatic intolerance (56.7), and thromboembolic events (85.0). CONCLUSIONS The presence of persisting COVID symptoms may negatively impact the patient's physical examination, blood tests, electrocardiogram (ECG), imaging, and/or echocardiogram. Cardiac conditions associated with long COVID require special attention in the context of the presurgical candidate due to an increased risk of sudden cardiac death, myocarditis, stroke, and myocardial infarction - even in those who were healthy prior to acute COVID-19 infection. Until more specific scientific evidence comes to light, care of these patients should be viewed through the prism of the best practices already in use and clinicians should maintain a low threshold to pursue more extensive cardiac workup prior to surgery.
Collapse
Affiliation(s)
- Hannah L Stimart
- 447877 Edward Via College of Osteopathic Medicine , Spartanburg, SC, USA
| | | |
Collapse
|
3
|
Fekete M, Liotta EM, Molnar T, Fülöp GA, Lehoczki A. The role of atrial fibrillation in vascular cognitive impairment and dementia: epidemiology, pathophysiology, and preventive strategies. GeroScience 2025; 47:287-300. [PMID: 39138793 PMCID: PMC11872872 DOI: 10.1007/s11357-024-01290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The aging population in Europe faces a substantial burden from dementia, with vascular cognitive impairment and dementia (VCID) being a preventable cause. Atrial fibrillation (AF), a common cardiac arrhythmia, increases the risk of VCID through mechanisms such as thromboembolism, cerebral hypoperfusion, and inflammation. This review explores the epidemiology, pathophysiology, and preventive strategies for AF-related VCID. Epidemiological data indicate that AF prevalence rises with age, affecting up to 12% of individuals over 80. Neuroimaging studies reveal chronic brain changes in AF patients, including strokes, lacunar strokes, white matter hyperintensities (WMHs), and cerebral microbleeds (CMHs), while cognitive assessments show impairments in memory, executive function, and attention. The COVID-19 pandemic has exacerbated the underdiagnosis of AF, leading to an increase in undiagnosed strokes and cognitive impairment. Many elderly individuals did not seek medical care due to fear of exposure, resulting in delayed diagnoses. Additionally, reduced family supervision during the pandemic contributed to missed opportunities for early detection of AF and related complications. Emerging evidence suggests that long COVID may also elevate the risk of AF, further complicating the management of this condition. This review underscores the importance of early detection and comprehensive management of AF to mitigate cognitive decline. Preventive measures, including public awareness campaigns, patient education, and the use of smart devices for early detection, are crucial. Anticoagulation therapy, rate and rhythm control, and addressing comorbid conditions are essential therapeutic strategies. Recognizing and addressing the cardiovascular and cognitive impacts of AF, especially in the context of the COVID-19 pandemic, is essential for advancing public health.
Collapse
Affiliation(s)
- Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Eric M Liotta
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Gábor A Fülöp
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Helbing DL, Dommaschk EM, Danyeli LV, Liepinsh E, Refisch A, Sen ZD, Zvejniece L, Rocktäschel T, Stabenow LK, Schiöth HB, Walter M, Dambrova M, Besteher B. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1829-1845. [PMID: 38172332 PMCID: PMC11579146 DOI: 10.1007/s00406-023-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Eva-Maria Dommaschk
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
| | - Leonie Karoline Stabenow
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24, Uppsala, Sweden
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany.
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany.
| |
Collapse
|
5
|
Chang X, Zhou H, Hu J, Ge T, He K, Chen Y, Zou R, Fan X. Targeting mitochondria by lipid-selenium conjugate drug results in malate/fumarate exhaustion and induces mitophagy-mediated necroptosis suppression. Int J Biol Sci 2024; 20:5793-5811. [PMID: 39494338 PMCID: PMC11528455 DOI: 10.7150/ijbs.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease primarily affecting large and medium-sized arteries and involves various complex pathological mechanisms and factors. Previous studies have demonstrated a close association between atherosclerosis and inflammatory damage, metabolic disorders, and gut microbiota. It is also closely linked to several cellular processes, such as endothelial cell pyroptosis, ferroptosis, mitophagy, mitochondrial dynamics, and mitochondrial biogenesis. Mitophagy has been recognized as a previously unexplored mechanism contributing to endothelial injury in atherosclerosis. Our study aims to further elucidate the potential relationship and mechanisms between AS-induced mitophagy dysfunction and the interaction of TMBIM6 and NDUFS4. Data from the study demonstrated that atherosclerosis in AS mice was associated with substantial activation of inflammatory and oxidative stress damage, along with a marked reduction in endothelial mitophagy expression and increased pathological mitochondrial fission, leading to mitochondrial homeostasis disruption. However, under pharmacological intervention, mitophagy levels significantly increased, pathological mitochondrial fission was notably reduced, and oxidative stress and inflammatory damage were suppressed, while necroptotic pathways in endothelial cells were significantly blocked. Interestingly, the deletion of TMBIM6 or NDUFS4 in animal models or cell lines markedly impaired the therapeutic effects of the drug, disrupting its regulation of mitophagy and mitochondrial fission, and leading to the re-emergence of inflammatory responses and oxidative stress damage. Metabolomics analysis further revealed that autophagy plays a pivotal regulatory role during drug intervention and after genetic modification of TMBIM6 and NDUFS4. The activation of autophagy (macroautophagy/mitophagy) alleviated the negative effects of mitochondrial fission and inflammatory damage induced by lipid stress in endothelial cells, a regulatory mechanism likely associated with the TMBIM6-NDUFS4 axis. Subsequent animal gene modification experiments demonstrated that knocking out TMBIM6-NDUFS4 negates the therapeutic effects of the drug on lipid-induced damage and metabolic function. In summary, our research reveals a phenotypic regulatory mechanism of endothelial cell stress damage through mitophagy, influenced by the interaction of TMBIM6 and NDUFS4. Pharmacological intervention can restore mitochondrial homeostasis in endothelial cells by regulating mitophagy via the TMBIM6-NDUFS4 pathway. This novel insight suggests that TMBIM6-NDUFS4 may serve as a key therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, Beijing, China
| | - Jinlin Hu
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Teng Ge
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Kunyang He
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Ye Chen
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
| |
Collapse
|
6
|
Guo Z, Tian Y, Gao J, Zhou B, Zhou X, Chang X, Zhou H. Enhancement of Mitochondrial Homeostasis: A Novel Approach to Attenuate Hypoxic Myocardial Injury. Int J Med Sci 2024; 21:2897-2911. [PMID: 39628681 PMCID: PMC11610329 DOI: 10.7150/ijms.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/18/2024] [Indexed: 12/06/2024] Open
Abstract
Cardiomyocytes are highly oxygen-dependent cells, relying on oxygen-driven oxidative phosphorylation to maintain their function. During hypoxia, mitochondrial ATP production decreases, leading to calcium overload, acidosis, and oxidative stress, which collectively trigger myocardial injury. Ischemic heart disease, caused by coronary atherosclerosis, results in myocardial ischemia and hypoxia, leading to ischemia-reperfusion (I/R) injury. Early myocardial injury is attributed to ischemia and hypoxia, but even after thrombolytic therapy, interventional surgery, or coronary artery bypass grafting (CABG) restores local blood flow and oxygen supply, myocardial reperfusion injury (I/R) may still occur. Mitochondria, often referred to as the "powerhouses" of the cell, play a crucial role in cellular energy production. In the early stages of ischemia and hypoxia, mitochondrial dysfunction disrupts mitochondrial homeostasis, causing the accumulation of unfolded or misfolded proteins in the mitochondria. This activates the mitochondrial unfolded protein response (mtUPR) and mitophagy, which work to clear damaged proteins and mitochondria, playing a key role during this period. This review focuses on mitochondrial mechanisms during the ischemic phase of ischemia-reperfusion injury, aiming to provide new theoretical foundations and potential therapeutic strategies to reduce myocardial damage.
Collapse
Affiliation(s)
- Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingjie Tian
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Jing Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bei Zhou
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - XiuTeng Zhou
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences/State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
7
|
Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. GeroScience 2024; 46:5267-5286. [PMID: 38668888 PMCID: PMC11336094 DOI: 10.1007/s11357-024-01165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.
Collapse
Affiliation(s)
- Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| | | | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Ret U 2, 7624, Pecs, Hungary.
| | - Erzsebet Ezer
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
8
|
Wang J, Zhuang H, Jia L, He X, Zheng S, Ji K, Xie K, Ying T, Zhang Y, Li C, Chang X. Nuclear receptor subfamily 4 group A member 1 promotes myocardial ischemia/reperfusion injury through inducing mitochondrial fission factor-mediated mitochondrial fragmentation and inhibiting FUN14 domain containing 1-depedent mitophagy. Int J Biol Sci 2024; 20:4458-4475. [PMID: 39247823 PMCID: PMC11380451 DOI: 10.7150/ijbs.95853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
This study investigated the mechanism by which NR4A1 regulates mitochondrial fission factor (Mff)-related mitochondrial fission and FUN14 domain 1 (FUNDC1)-mediated mitophagy following cardiac ischemia-reperfusion injury(I/R). Our findings showed that the damage regulation was positively correlated with the pathological fission and pan-apoptosis of myocardial cell mitochondria. Compared with wild-type mice (WT), NR4A1-knockout mice exhibited resistance to myocardial ischemia-reperfusion injury and mitochondrial pathological fission, characterized by mitophagy activation. Results showed that ischemia-reperfusion injury increased NR4A1 expression level, activating mitochondrial fission mediated by Mff and restoring the mitophagy phenotype mediated by FUNDC1. The inactivation of FUNDC1 phosphorylation could not mediate the normalization of mitophagy in a timely manner, leading to an excessive stress response of unfolded mitochondrial proteins and an imbalance in mitochondrial homeostasis. This process disrupted the normalization of the mitochondrial quality control network, leading to accumulation of damaged mitochondria and the activation of pan-apoptotic programs. Our data indicate that NR4A1 is a novel and critical target in myocardial I/R injury that exertsand negative regulatory effects by activating Mff-mediated mito-fission and inhibiting FUNDC1-mediated mitophagy. Targeting the crosstalk balance between NR4A1-Mff-FUNDC1 is a potential approach for treating I/R.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lianqun Jia
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Xinyong He
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Sicheng Zheng
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Kangshou Ji
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Kang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Tong Ying
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Ying Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048 Beijing, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Chun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
9
|
Özdemir M, Dennerlein S. The TOM complex from an evolutionary perspective and the functions of TOMM70. Biol Chem 2024; 0:hsz-2024-0043. [PMID: 39092472 DOI: 10.1515/hsz-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
In humans, up to 1,500 mitochondrial precursor proteins are synthesized at cytosolic ribosomes and must be imported into the organelle. This is not only essential for mitochondrial but also for many cytosolic functions. The majority of mitochondrial precursor proteins are imported over the translocase of the outer membrane (TOM). In recent years, high-resolution structure analyses from different organisms shed light on the composition and arrangement of the TOM complex. Although significant similarities have been found, differences were also observed, which have been favored during evolution and could reflect the manifold functions of TOM with cellular signaling and its response to altered metabolic situations. A key component within these regulatory mechanisms is TOMM70, which is involved in protein import, forms contacts to the ER and the nucleus, but is also involved in cellular defense mechanisms during infections.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
10
|
Zhang J, Kuang T, Liu X. Advances in researches on long coronavirus disease in children: a narrative review. Transl Pediatr 2024; 13:318-328. [PMID: 38455739 PMCID: PMC10915432 DOI: 10.21037/tp-23-472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 03/09/2024] Open
Abstract
Background and Objective In the context of the global pandemic of coronavirus disease 2019 (COVID-19), more than 700 million infections and millions of deaths have occurred in countries around the world. Currently, two main sequelae of this disease are considered to occur in children, namely, multi-system inflammatory syndrome in children and long COVID. Among these two, the incidence of long COVID is higher and its impact on the population is more extensive, which is the focus of us. However, due to the lack of relevant studies and the limitations of most studies, the studies on sequelae of COVID-19 infection lag behind those of adults, but they have begun to attract the attention of some clinicians and researchers. We aim to summarize the current knowledge of long COVID in children, helping pediatricians and researchers to better understand this disease and providing guidance on research and clinical treatment of it. Methods We reviewed all the studies on "long COVID", pediatric, children, adolescent, post-COVID syndrome in PubMed published after 2019. Key Content and Findings This review summarizes the latest researches on epidemiology, pathogenesis, clinical manifestations, prevention and treatment of long COVID in children. Based on the existing research data, we summarized and analyzed the characteristics of long COVID in children, discovering the means to decipher the diagnosis of COVID-19 in children and some potential therapeutic treatments. Conclusions We aim to summarize existing research on long COVID in children and help pediatricians and government agencies quickly understand the disease so that it can be used for clinical diagnosis, treatment and prevention in the population. In addition, providing a research basis for further researches on the cellular and even molecular level to explain the occurrence and development of diseases, and has a guiding role for future research direction.
Collapse
|
11
|
Li Y, Yu J, Li R, Zhou H, Chang X. New insights into the role of mitochondrial metabolic dysregulation and immune infiltration in septic cardiomyopathy by integrated bioinformatics analysis and experimental validation. Cell Mol Biol Lett 2024; 29:21. [PMID: 38291374 PMCID: PMC10826082 DOI: 10.1186/s11658-024-00536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Septic cardiomyopathy (SCM), a common cardiovascular comorbidity of sepsis, has emerged among the leading causes of death in patients with sepsis. SCM's pathogenesis is strongly affected by mitochondrial metabolic dysregulation and immune infiltration disorder. However, the specific mechanisms and their intricate interactions in SCM remain unclear. This study employed bioinformatics analysis and drug discovery approaches to identify the regulatory molecules, distinct functions, and underlying interactions of mitochondrial metabolism and immune microenvironment, along with potential interventional strategies in SCM. METHODS GSE79962, GSE171546, and GSE167363 datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and module genes were identified using Limma and Weighted Correlation Network Analysis (WGCNA), followed by functional enrichment analysis. Machine learning algorithms, including support vector machine-recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) regression, and random forest, were used to screen mitochondria-related hub genes for early diagnosis of SCM. Subsequently, a nomogram was developed based on six hub genes. The immunological landscape was evaluated by single-sample gene set enrichment analysis (ssGSEA). We also explored the expression pattern of hub genes and distribution of mitochondria/inflammation-related pathways in UMAP plots of single-cell dataset. Potential drugs were explored using the Drug Signatures Database (DSigDB). In vivo and in vitro experiments were performed to validate the pathogenetic mechanism of SCM and the therapeutic efficacy of candidate drugs. RESULTS Six hub mitochondria-related DEGs [MitoDEGs; translocase of inner mitochondrial membrane domain-containing 1 (TIMMDC1), mitochondrial ribosomal protein S31 (MRPS31), F-box only protein 7 (FBXO7), phosphatidylglycerophosphate synthase 1 (PGS1), LYR motif containing 7 (LYRM7), and mitochondrial chaperone BCS1 (BCS1L)] were identified. The diagnostic nomogram model based on the six hub genes demonstrated high reliability and validity in both the training and validation sets. The immunological microenvironment differed between SCM and control groups. The Spearman correlation analysis revealed that hub MitoDEGs were significantly associated with the infiltration of immune cells. Upregulated hub genes showed remarkably high expression in the naive/memory B cell, CD14+ monocyte, and plasma cell subgroup, evidenced by the feature plot. The distribution of mitochondria/inflammation-related pathways varied across subgroups among control and SCM individuals. Metformin was predicted to be the most promising drug with the highest combined score. Its efficacy in restoring mitochondrial function and suppressing inflammatory responses has also been validated. CONCLUSIONS This study presents a comprehensive mitochondrial metabolism and immune infiltration landscape in SCM, providing a potential novel direction for the pathogenesis and medical intervention of SCM.
Collapse
Affiliation(s)
- Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jiachi Yu
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Ruibing Li
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China.
| | - Xing Chang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Tao Y, Zhao R, Han J, Li Y. Assessing the causal relationship between COVID-19 and post-COVID-19 syndrome: A Mendelian randomisation study. J Glob Health 2023; 13:06054. [PMID: 38085233 PMCID: PMC10715454 DOI: 10.7189/jogh.13.06054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Background In the aftermath of the coronavirus disease 2019 (COVID-19) pandemic, we sought to explore the causal association between COVID-19 and 17 prevalent post-COVID-19 syndrome (PCS) symptoms using Mendelian randomisation (MR) methodology. Methods We used 22 extensive genome-wide association study (GWAS) data sets, incorporating genetic variants as instrumental variables. Univariate Mendelian randomisation (UVMR) analyses involved 15 single nucleotide polymorphisms (SNPs) for COVID-19 patients, 33 for hospitalised COVID-19 patients, and 29 for patients with severe respiratory symptoms due to COVID-19. Furthermore, we further used multivariable Mendelian randomisation (MVMR) analyses based on 93 SNPs for COVID-19 patients, 105 for hospitalised COVID-19 patients, and 99 for patients with severe respiratory symptoms due to COVID-19. With these analyses, we aimed to assess the causal associations between varying levels of COVID-19 infection and 17 prevalent PCS symptoms while accounting for the influence of educational and income levels. Results UVMR analysis identified potential causal effects of COVID-19 genetic susceptibility on myalgia and pain in various regions. Hospitalised COVID-19 was potentially linked to erectile dysfunction and alopecia areata. Very severe respiratory confirmed patients exhibited increased pain and tobacco use. Meanwhile, the MVMR analysis demonstrated a potential causal link between hospitalised COVID-19 and heart arrhythmia, and a protective effect of COVID-19 on tobacco use after adjusting for educational and income levels. Conclusions Our MR analysis provides compelling evidence of causal associations between genetic susceptibility to COVID-19 and specific PCS symptoms, in which educational and income levels play a mediating role. These findings shed light on PCS pathogenesis and underscore the importance of considering social factors in its management. Tailored interventions and policies are crucial for PCS-affected individuals' well-being. Further research is needed to explore the impact of social determinants on COVID-19 patients and the wider population.
Collapse
Affiliation(s)
- Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, China
| | - Rui Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Han
- Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, China
| |
Collapse
|
13
|
Liu Y, Gu X, Li H, Zhang H, Xu J. Mechanisms of long COVID: An updated review. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:231-240. [PMID: 39171285 PMCID: PMC11332859 DOI: 10.1016/j.pccm.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 08/23/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 3 years, with an enormous impact on global health and economies. In some patients, symptoms and signs may remain after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which cannot be explained by an alternate diagnosis; this condition has been defined as long COVID. Long COVID may exist in patients with both mild and severe disease and is prevalent after infection with different SARS-CoV-2 variants. The most common symptoms include fatigue, dyspnea, and other symptoms involving multiple organs. Vaccination results in lower rates of long COVID. To date, the mechanisms of long COVID remain unclear. In this narrative review, we summarized the clinical presentations and current evidence regarding the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xiaoying Gu
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
14
|
Lenhard S, Gerlich S, Khan A, Rödl S, Bökenkamp JE, Peker E, Zarges C, Faust J, Storchova Z, Räschle M, Riemer J, Herrmann JM. The Orf9b protein of SARS-CoV-2 modulates mitochondrial protein biogenesis. J Cell Biol 2023; 222:e202303002. [PMID: 37682539 PMCID: PMC10491932 DOI: 10.1083/jcb.202303002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expresses high amounts of the protein Orf9b to target the mitochondrial outer membrane protein Tom70. Tom70 serves as an import receptor for mitochondrial precursors and, independently of this function, is critical for the cellular antiviral response. Previous studies suggested that Orf9b interferes with Tom70-mediated antiviral signaling, but its implication for mitochondrial biogenesis is unknown. In this study, we expressed Orf9b in human HEK293 cells and observed an Orf9b-mediated depletion of mitochondrial proteins, particularly in respiring cells. To exclude that the observed depletion was caused by the antiviral response, we generated a yeast system in which the function of human Tom70 could be recapitulated. Upon expression of Orf9b in these cells, we again observed a specific decline of a subset of mitochondrial proteins and a general reduction of mitochondrial volume. Thus, the SARS-CoV-2 virus is able to modulate the mitochondrial proteome by a direct effect of Orf9b on mitochondrial Tom70-dependent protein import.
Collapse
Affiliation(s)
- Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sarah Gerlich
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Azkia Khan
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Saskia Rödl
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan-Eric Bökenkamp
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Esra Peker
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Christine Zarges
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Janina Faust
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Zuzana Storchova
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan Riemer
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | | |
Collapse
|
15
|
Jiang L, Xiao M, Liao QQ, Zheng L, Li C, Liu Y, Yang B, Ren A, Jiang C, Feng XH. High-sensitivity profiling of SARS-CoV-2 noncoding region-host protein interactome reveals the potential regulatory role of negative-sense viral RNA. mSystems 2023; 8:e0013523. [PMID: 37314180 PMCID: PMC10469612 DOI: 10.1128/msystems.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 06/15/2023] Open
Abstract
A deep understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-host interactions is crucial to developing effective therapeutics and addressing the threat of emerging coronaviruses. The role of noncoding regions of viral RNA (ncrRNAs) has yet to be systematically scrutinized. We developed a method using MS2 affinity purification coupled with liquid chromatography-mass spectrometry and designed a diverse set of bait ncrRNAs to systematically map the interactome of SARS-CoV-2 ncrRNA in Calu-3, Huh7, and HEK293T cells. Integration of the results defined the core ncrRNA-host protein interactomes among cell lines. The 5' UTR interactome is enriched with proteins in the small nuclear ribonucleoproteins family and is a target for the regulation of viral replication and transcription. The 3' UTR interactome is enriched with proteins involved in the stress granules and heterogeneous nuclear ribonucleoproteins family. Intriguingly, compared with the positive-sense ncrRNAs, the negative-sense ncrRNAs, especially the negative-sense of 3' UTR, interacted with a large array of host proteins across all cell lines. These proteins are involved in the regulation of the viral production process, host cell apoptosis, and immune response. Taken together, our study depicts the comprehensive landscape of the SARS-CoV-2 ncrRNA-host protein interactome and unveils the potential regulatory role of the negative-sense ncrRNAs, providing a new perspective on virus-host interactions and the design of future therapeutics. Given the highly conserved nature of UTRs in positive-strand viruses, the regulatory role of negative-sense ncrRNAs should not be exclusive to SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic affecting millions of lives. During replication and transcription, noncoding regions of the viral RNA (ncrRNAs) may play an important role in the virus-host interactions. Understanding which and how these ncrRNAs interact with host proteins is crucial for understanding the mechanism of SARS-CoV-2 pathogenesis. We developed the MS2 affinity purification coupled with liquid chromatography-mass spectrometry method and designed a diverse set of ncrRNAs to identify the SARS-CoV-2 ncrRNA interactome comprehensively in different cell lines and found that the 5' UTR binds to proteins involved in U1 small nuclear ribonucleoprotein, while the 3' UTR interacts with proteins involved in stress granules and the heterogeneous nuclear ribonucleoprotein family. Interestingly, negative-sense ncrRNAs showed interactions with a large number of diverse host proteins, indicating a crucial role in infection. The results demonstrate that ncrRNAs could serve diverse regulatory functions.
Collapse
Affiliation(s)
- Liuyiqi Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mu Xiao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing-Qing Liao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luqian Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunyan Li
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuemei Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Zhao Y, Han X, Li C, Liu Y, Cheng J, Adhikari BK, Wang Y. COVID-19 and the cardiovascular system: a study of pathophysiology and interpopulation variability. Front Microbiol 2023; 14:1213111. [PMID: 37350790 PMCID: PMC10282193 DOI: 10.3389/fmicb.2023.1213111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans can lead to various degrees of tissue and organ damage, of which cardiovascular system diseases are one of the main manifestations, such as myocarditis, myocardial infarction, and arrhythmia, which threaten the infected population worldwide. These diseases threaten the cardiovascular health of infected populations worldwide. Although the prevalence of coronavirus disease 2019 (COVID-19) has slightly improved with virus mutation and population vaccination, chronic infection, post-infection sequelae, and post-infection severe disease patients still exist, and it is still relevant to study the mechanisms linking COVID-19 to cardiovascular disease (CVD). This article introduces the pathophysiological mechanism of COVID-19-mediated cardiovascular disease and analyzes the mechanism and recent progress of the interaction between SARS-CoV-2 and the cardiovascular system from the roles of angiotensin-converting enzyme 2 (ACE2), cellular and molecular mechanisms, endothelial dysfunction, insulin resistance, iron homeostasis imbalance, and psychosocial factors, respectively. We also discussed the differences and mechanisms involved in cardiovascular system diseases combined with neocoronavirus infection in different populations and provided a theoretical basis for better disease prevention and management.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaorong Han
- Department of Special Care Center, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yucheng Liu
- Department of Family and Community Medicine, Feinberg School of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Jiayu Cheng
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | | | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Kinoshita H, Kurashige T, Fukuda T, Morita M, Maeda S, Kanegawa M, Sumimoto Y, Masada K, Shimonaga T, Sugino H. The impact that myocarditis for post-acute COVID-19 syndrome may be dermatomyositis-like myocarditis: A case report. Heliyon 2023; 9:e16512. [PMID: 37255981 PMCID: PMC10212591 DOI: 10.1016/j.heliyon.2023.e16512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Myocarditis is often reported as a complication of COVID-19 infection or post-vaccination, but there are few reports of "myocarditis for Post-acute COVID-19 syndrome", and many unknowns still remain. Apart from that, an association between COVID-19 infection and dermatomyositis has also been reported. We describe the clinical presentation of acute myocarditis in a patient who had developed COVID-19 syndrome one-month earlier. A healthy 49-year-old man experienced typical COVID-19 symptoms. Thirty-two days later, he was admitted because of fever and severe fatigue, chest pain and bradycardia. Blood tests showed major inflammation. PCR for SARS-CoV-2 on nasopharyngeal swab (ID NOW™) was positive, but diagnosed as a previous infection due to a high CT value. Because of haemodynamic worsening with both an increase in cardiac troponin I and NT-pro BNP levels and reduced wall motion on echocardiography, acute myocarditis was suspected. Myocardial biopsy revealed severe lymphocytic infiltration and interstitial edema between myocardial fibers. These findings led to the diagnosis of fulminant myocarditis. Interestingly, myocardium was also stained with human myxovirus resistance protein 1 (MxA). We consider that there may be an aspect of "dermatomyositis-like myocarditis with SARS-CoV-2" in our case. This is the first case of fulminant myocarditis for Post-acute COVID-19 syndrome in which diagnosis of active myocarditis was proven by pathological examination following myocardial biopsy and strong association with dermatomyositis was suggested pathologically.
Collapse
Affiliation(s)
- Haruyuki Kinoshita
- Department of Cardiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Takahiro Fukuda
- The Clinical Training Center, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Masashi Morita
- Department of Cardiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Shiori Maeda
- Department of Cardiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Munehiro Kanegawa
- Department of Cardiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Yoji Sumimoto
- Department of Cardiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Kenji Masada
- Department of Cardiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Takashi Shimonaga
- Department of Cardiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| | - Hiroshi Sugino
- Department of Cardiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Japan
| |
Collapse
|
18
|
Koh YC, Ho CT, Pan MH. The Role of Mitochondria in Phytochemically Mediated Disease Amelioration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6775-6788. [PMID: 37125676 PMCID: PMC10178808 DOI: 10.1021/acs.jafc.2c08921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Mitochondrial dysfunction may cause cell death, which has recently emerged as a cancer prevention and treatment strategy mediated by chemotherapy drugs or phytochemicals. However, most existing drugs cannot target cancerous cells and may adversely affect normal cells via side effects. Mounting studies have revealed that phytochemicals such as resveratrol could ameliorate various diseases with dysfunctional or damaged mitochondria. For instance, resveratrol can regulate mitophagy, inhibit oxidative stress and preserve membrane potential, induce mitochondrial biogenesis, balance mitochondrial fusion and fission, and enhance the functionality of the electron transport chain. However, there are only a few studies suggesting that phytochemicals could potentially protect against the cytotoxicity of some current cancer drugs, especially those that damage mitochondria. Besides, COVID-19 and long COVID have also been reported to be correlated to mitochondrial dysfunction. Curcumin has been reported bringing a positive impact on COVID-19 and long COVID. Therefore, in this study, the benefits of resveratrol and curcumin to be applied for cancer treatment/prevention and disease amelioration were reviewed. Besides, this review also provides some perspectives on phytochemicals to be considered as a treatment adjuvant for COVID-19 and long COVID by targeting mitochondrial rescue. Hopefully, this review can provide new insight into disease treatment with phytochemicals targeting mitochondria.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University
Hospital, China Medical University, Taichung 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung 41354, Taiwan
| |
Collapse
|
19
|
Chang X, Liu J, Wang Y, Guan X, Liu R. Mitochondrial disorder and treatment of ischemic cardiomyopathy: Potential and advantages of Chinese herbal medicine. Biomed Pharmacother 2023; 159:114171. [PMID: 36641924 DOI: 10.1016/j.biopha.2022.114171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is the main cause of damage to the pathological mechanism of ischemic cardiomyopathy. In addition, mitochondrial dysfunction can also affect the homeostasis of cardiomyocytes or endothelial cell dysfunction, leading to a vicious cycle of mitochondrial oxidative stress. And mitochondrial dysfunction is also an important pathological basis for ischemic cardiomyopathy and reperfusion injury after myocardial infarction or end-stage coronary heart disease. Therefore, mitochondria can be used as therapeutic targets against myocardial ischemia injury, and the regulation of mitochondrial morphology, function and structure is a key and important way of targeting mitochondrial quality control therapeutic mechanisms. Mitochondrial quality control includes mechanisms such as mitophagy, mitochondrial dynamics (mitochondrial fusion/fission), mitochondrial biosynthesis, and mitochondrial unfolded protein responses. Among them, the increase of mitochondrial fragmentation caused by mitochondrial pathological fission is the initial factor. The protective mitochondrial fusion can strengthen the interaction and synthesis of paired mitochondria and promote mitochondrial biosynthesis. In ischemia or hypoxia, pathological mitochondrial fission can promote the formation of mitochondrial fragments, fragmented mitochondria can lead to damaged mitochondrial DNA production, which can lead to mitochondrial biosynthesis dysfunction, insufficient mitochondrial ATP production, and mitochondrial ROS. Burst growth or loss of mitochondrial membrane potential. This eventually leads to the accumulation of damaged mitochondria. Then, under the leadership of mitophagy, damaged mitochondria can complete the mitochondrial degradation process through mitophagy, and transport the morphologically and structurally damaged mitochondria to lysosomes for degradation. But once the pathological mitochondrial fission increases, the damaged mitochondria increases, which may activate the pathway of cardiomyocyte death. Although laboratory studies have found that a variety of mitochondrial-targeted drugs can reduce myocardial ischemia and protect cardiomyocytes, there are still few drugs that have successfully passed clinical trials. In this review, we describe the role of MQS in ischemia/hypoxia-induced cardiomyocyte physiopathology and elucidate the relevant mechanisms of mitochondrial dysfunction in ischemic cardiomyopathy. In addition, we also further explained the advantages of natural products in improving mitochondrial dysfunction and protecting myocardial cells from the perspective of pharmacological mechanism, and explained its related mechanisms. Potential targeted therapies that can be used to improve MQS under ischemia/hypoxia are discussed, aiming to accelerate the development of cardioprotective drugs targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|