1
|
Cockell CS. Where the microbes aren't. FEMS Microbiol Rev 2025; 49:fuae034. [PMID: 39725411 PMCID: PMC11737512 DOI: 10.1093/femsre/fuae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
Although a large fraction of Earth's volume and most places beyond the planet lack life because physical and chemical conditions are too extreme, intriguing scientific questions are raised in many environments within or at the edges of life's niche space in which active life is absent. This review explores the environments in which active microorganisms do not occur. Within the known niche space for life, uninhabited, but habitable physical spaces potentially offer opportunities for hypothesis testing, such as using them as negative control environments to investigate the influence of life on planetary processes. At the physico-chemical limits of life, questions such as whether spaces devoid of actively metabolizing or reproducing life constitute uninhabitable space or space containing vacant niches that could be occupied with appropriate adaptation are raised. We do not know the extent to which evolution has allowed life to occupy all niche space within its biochemical potential. The case of habitable extraterrestrial environments and the scientific and ethical questions that they raise is discussed.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| |
Collapse
|
2
|
O'Brien ÁC, Hallis LJ, Regnault C, Morrison D, Blackburn G, Steele A, Daly L, Tait A, Tremblay MM, Telenko DE, Gunn J, McKay E, Mari N, Salik MA, Ascough P, Toney J, Griffin S, Whitfield P, Lee M. Using Organic Contaminants to Constrain the Terrestrial Journey of the Martian Meteorite Lafayette. ASTROBIOLOGY 2022; 22:1351-1362. [PMID: 36264546 PMCID: PMC9618387 DOI: 10.1089/ast.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
A key part of the search for extraterrestrial life is the detection of organic molecules since these molecules form the basis of all living things on Earth. Instrument suites such as SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) onboard the NASA Perseverance rover and the Mars Organic Molecule Analyzer onboard the future ExoMars Rosalind Franklin rover are designed to detect organic molecules at the martian surface. However, size, mass, and power limitations mean that these instrument suites cannot yet match the instrumental capabilities available in Earth-based laboratories. Until Mars Sample Return, the only martian samples available for study on Earth are martian meteorites. This is a collection of largely basaltic igneous rocks that have been exposed to varying degrees of terrestrial contamination. The low organic molecule abundance within igneous rocks and the expectation of terrestrial contamination make the identification of martian organics within these meteorites highly challenging. The Lafayette martian meteorite exhibits little evidence of terrestrial weathering, potentially making it a good candidate for the detection of martian organics despite uncertainties surrounding its fall history. In this study, we used ultrapure solvents to extract organic matter from triplicate samples of Lafayette and analyzed these extracts via hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Two hundred twenty-four metabolites (organic molecules) were detected in Lafayette at concentrations more than twice those present in the procedural blanks. In addition, a large number of plant-derived metabolites were putatively identified, the presence of which supports the unconfirmed report that Lafayette fell in a semirural location in Indiana. Remarkably, the putative identification of the mycotoxin deoxynivalenol (or vomitoxin), alongside the report that the collector was possibly a student at Purdue University, can be used to identify the most likely fall year as 1919.
Collapse
Affiliation(s)
- Áine Clare O'Brien
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- SUERC, University of Glasgow, East Kilbride, UK
| | - Lydia Jane Hallis
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Clement Regnault
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | | | - Gavin Blackburn
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Andrew Steele
- Carnegie Planets, Carnegie Science, Washington DC, USA
| | - Luke Daly
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Australia
- Department of Materials, University of Oxford, Oxford, UK
| | - Alastair Tait
- School of Earth, Atmosphere & Environment Monash University, Rainforest Walk Clayton, Victoria, Australia
| | - Marissa Marie Tremblay
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Darcy E.P. Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Jacqueline Gunn
- School of Professional Services, Glasgow Caledonian University, Cowcaddens Road, Glasgow, UK
| | | | - Nicola Mari
- Dipartimento di Scienze della Terra e dell'Ambiente, University of Pavia, Pavia, Italy
| | - Mohammad Ali Salik
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | | | - Jaime Toney
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Sammy Griffin
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Phil Whitfield
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Martin Lee
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| |
Collapse
|
3
|
Kminek G, Benardini JN, Brenker FE, Brooks T, Burton AS, Dhaniyala S, Dworkin JP, Fortman JL, Glamoclija M, Grady MM, Graham HV, Haruyama J, Kieft TL, Koopmans M, McCubbin FM, Meyer MA, Mustin C, Onstott TC, Pearce N, Pratt LM, Sephton MA, Siljeström S, Sugahara H, Suzuki S, Suzuki Y, van Zuilen M, Viso M. COSPAR Sample Safety Assessment Framework (SSAF). ASTROBIOLOGY 2022; 22:S186-S216. [PMID: 35653292 DOI: 10.1089/ast.2022.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.
Collapse
Affiliation(s)
- Gerhard Kminek
- European Space Agency, Mars Exploration Group, Noordwijk, The Netherlands
| | - James N Benardini
- NASA Headquarters, Office of Planetary Protection, Washington, DC, USA
| | - Frank E Brenker
- Goethe University, Department of Geoscience, Frankfurt, Germany
| | - Timothy Brooks
- UK Health Security Agency, Rare & Imported Pathogens Laboratory, Salisbury, UK
| | - Aaron S Burton
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Suresh Dhaniyala
- Clarkson University, Department of Mechanical and Aeronautical Engineering, Potsdam, New York, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Jeffrey L Fortman
- Security Programs, Engineering Biology Research Consortium, Emeryville, USA
| | - Mihaela Glamoclija
- Rutgers University, Department of Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Monica M Grady
- The Open University, Faculty of Science, Technology, Engineering & Mathematics, Milton Keynes, UK
| | - Heather V Graham
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Greenbelt, Maryland, USA
| | - Junichi Haruyama
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Thomas L Kieft
- New Mexico Institute of Mining and Technology, Biology Department, Socorro, New Mexico, USA
| | - Marion Koopmans
- Erasmus University Medical Centre, Department of Viroscience, Rotterdam, The Netherlands
| | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Michael A Meyer
- NASA Headquarters, Planetary Science Division, Washington, DC, USA
| | | | - Tullis C Onstott
- Princeton University, Department of Geosciences, Princeton, New Jersey, USA
| | - Neil Pearce
- London School of Hygiene & Tropical Medicine, Department of Medical Statistics, London, UK
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Emeritus, Bloomington, Indiana, USA
| | - Mark A Sephton
- Imperial College London, Department of Earth Science & Engineering, London, UK
| | - Sandra Siljeström
- RISE, Research Institutes of Sweden, Department of Methodology, Textiles and Medical Technology, Stockholm, Sweden
| | - Haruna Sugahara
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Shino Suzuki
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Yohey Suzuki
- University of Tokyo, Graduate School of Science, Tokyo, Japan
| | - Mark van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- European Institute for Marine Studies (IUEM), CNRS-UMR6538 Laboratoire Geo-Ocean, Plouzané, France
| | | |
Collapse
|
4
|
Tait AW, Wilson SA, Tomkins AG, Hamilton JL, Gagen EJ, Holman AI, Grice K, Preston LJ, Paterson DJ, Southam G. Preservation of Terrestrial Microorganisms and Organics Within Alteration Products of Chondritic Meteorites from the Nullarbor Plain, Australia. ASTROBIOLOGY 2022; 22:399-415. [PMID: 35100042 DOI: 10.1089/ast.2020.2387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Meteorites that fall to Earth quickly become contaminated with terrestrial microorganisms. These meteorites are out of chemical equilibrium in the environments where they fall, and equilibration promotes formation of low-temperature alteration minerals that can entomb contaminant microorganisms and thus preserve them as microfossils. Given the well-understood chemistry of meteorites and their recent discovery on Mars by rovers, a similarly weathered meteorite on Mars could preserve organic and fossil evidence of a putative past biosphere at the martian surface. Here, we used several techniques to assess the potential of alteration minerals to preserve microfossils and biogenic organics in terrestrially weathered ordinary chondrites from the Nullarbor Plain, Australia. We used acid etching of ordinary chondrites to reveal entombed fungal hyphae, modern biofilms, and diatoms within alteration minerals. We employed synchrotron X-ray fluorescence microscopy of alteration mineral veins to map the distribution of redox-sensitive elements of relevance to chemolithotrophic organisms, such as Mn-cycling bacteria. We assessed the biogenicity of fungal hyphae within alteration veins using a combination of Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry, which showed that alteration minerals sequester and preserve organic molecules at various levels of decomposition. Our combined analyses results show that fossil microorganisms and the organic molecules they produce are preserved within calcite-gypsum admixtures in meteorites. Furthermore, the distributions of redox-sensitive elements (e.g., Mn) within alteration minerals are localized, which qualitatively suggests that climatically or microbially facilitated element mobilization occurred during the meteorite's residency on Earth. If returned as part of a sample suite from the martian surface, ordinary chondrites could preserve similar, recognizable evidence of putative past life and/or environmental change.
Collapse
Affiliation(s)
- Alastair W Tait
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Siobhan A Wilson
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G Tomkins
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Jessica L Hamilton
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Emma J Gagen
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Alex I Holman
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Louisa J Preston
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | | | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
5
|
Regberg AB, Castro CL, Connolly HC, Davis RE, Dworkin JP, Lauretta DS, Messenger SR, Mclain HL, McCubbin FM, Moore JL, Righter K, Stahl-Rommel S, Castro-Wallace SL. Prokaryotic and Fungal Characterization of the Facilities Used to Assemble, Test, and Launch the OSIRIS-REx Spacecraft. Front Microbiol 2020; 11:530661. [PMID: 33250861 PMCID: PMC7676328 DOI: 10.3389/fmicb.2020.530661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
To characterize the ATLO (Assembly, Test, and Launch Operations) environment of the OSIRIS-REx spacecraft, we analyzed 17 aluminum witness foils and two blanks for bacterial, archaeal, fungal, and arthropod DNA. Under NASA’s Planetary Protection guidelines, OSIRIS-REx is a Category II outbound, Category V unrestricted sample return mission. As a result, it has no bioburden restrictions. However, the mission does have strict organic contamination requirements to achieve its primary objective of returning pristine carbonaceous asteroid regolith to Earth. Its target, near-Earth asteroid (101955) Bennu, is likely to contain organic compounds that are biologically available. Therefore, it is useful to understand what organisms were present during ATLO as part of the larger contamination knowledge effort—even though it is unlikely that any of the organisms will survive the multi-year deep space journey. Even though these samples of opportunity were not collected or preserved for DNA analysis, we successfully amplified bacterial and archaeal DNA (16S rRNA gene) from 16 of the 17 witness foils containing as few as 7 ± 3 cells per sample. Fungal DNA (ITS1) was detected in 12 of the 17 witness foils. Despite observing arthropods in some of the ATLO facilities, arthropod DNA (COI gene) was not detected. We observed 1,009 bacterial and archaeal sOTUs (sub-operational taxonomic units, 100% unique) and 167 fungal sOTUs across all of our samples (25–84 sOTUs per sample). The most abundant bacterial sOTU belonged to the genus Bacillus. This sOTU was present in blanks and may represent contamination during sample handling or storage. The sample collected from inside the fairing just prior to launch contained several unique bacterial and fungal sOTUs that describe previously uncharacterized potential for contamination during the final phase of ATLO. Additionally, fungal richness (number of sOTUs) negatively correlates with the number of carbon-bearing particles detected on samples. The total number of fungal sequences positively correlates with total amino acid concentration. These results demonstrate that it is possible to use samples of opportunity to characterize the microbiology of low-biomass environments while also revealing the limitations imposed by sample collection and preservation methods not specifically designed with biology in mind.
Collapse
Affiliation(s)
- Aaron B Regberg
- Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston TX, United States
| | | | - Harold C Connolly
- Department of Geology, Rowan University, Glassboro, NJ, United States.,Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
| | - Richard E Davis
- Jacobs@NASA/Johnson Space Center, Houston, TX, United States
| | - Jason P Dworkin
- Astrochemistry Laboratory, Goddard Space Flight Center, Greenbelt, MD, United States
| | - Dante S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
| | - Scott R Messenger
- Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston TX, United States
| | - Hannah L Mclain
- Astrochemistry Laboratory, Goddard Space Flight Center, Greenbelt, MD, United States
| | - Francis M McCubbin
- Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston TX, United States
| | - Jamie L Moore
- Lockheed Martin Space Systems, Littleton, CO, United States
| | - Kevin Righter
- Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston TX, United States
| | | | - Sarah L Castro-Wallace
- Biomedical Research and Environmental Sciences Division, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
6
|
Tait AW, Gagen EJ, Wilson SA, Tomkins AG, Southam G. Eukaryotic Colonization of Micrometer-Scale Cracks in Rocks: A "Microfluidics" Experiment Using Naturally Weathered Meteorites from the Nullarbor Plain, Australia. ASTROBIOLOGY 2020; 20:364-374. [PMID: 31873039 DOI: 10.1089/ast.2019.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The advent of microfluidics has revolutionized the way we understand how microorganisms propagate through microporous spaces. Here, we apply this understanding to the study of how endolithic environmental microorganisms colonize the interiors of sterile rock. The substrates used for our study are stony meteorites from the Nullarbor Plain, Australia; a semiarid limestone karst that provides an ideal setting for preserving meteorites. Periodic flooding of the Nullarbor provides a mechanism by which microorganisms and exogenous nutrients may infiltrate meteorites. Our laboratory experiments show that environmental microorganisms reach depths greater than 400 μm by propagating through existing brecciation, passing through cracks no wider than the diameter of a resident cell (i.e., ∼5 μm). Our observations are consistent with the propagation of these eukaryotic cells via growth and cell division rather than motility. The morphology of the microorganisms changed as a result of propagation through micrometer-scale cracks, as has been observed previously for bacteria on microfluidic chips. It has been suggested that meteorites could have served as preferred habitats for microorganisms on ancient Mars. Based on our results, the depths reached by terrestrial microorganisms within meteorites would be sufficient to mitigate against the harmful effects of ionizing radiation, such as UV light, in Earth's deserts and potentially on Mars, if similar processes of microbial colonization had once been active there. Thus, meteorites landing in ancient lakes on Mars, that later dried out, could have been some of the last inhabited locations on the surface, serving as refugia before the planet's surface became inhospitable. Finally, our observations suggest that terrestrial microorganisms can colonize very fine cracks within meteorites (and potentially spaceships and rovers) on unexpectedly short timescales, with important implications for both recognition of extraterrestrial life in returned geological samples and planetary protection.
Collapse
Affiliation(s)
- Alastair W Tait
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Australia
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Emma J Gagen
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Australia
| | - Siobhan A Wilson
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Australia
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Andrew G Tomkins
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Australia
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
7
|
White LM, Gibson EK, Thomas-Keprta KL, Clemett SJ, McKay DS. Putative indigenous carbon-bearing alteration features in martian meteorite Yamato 000593. ASTROBIOLOGY 2014; 14:170-181. [PMID: 24552234 PMCID: PMC3929347 DOI: 10.1089/ast.2011.0733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
We report the first observation of indigenous carbonaceous matter in the martian meteorite Yamato 000593. The carbonaceous phases are heterogeneously distributed within secondary iddingsite alteration veins and present in a range of morphologies including areas composed of carbon-rich spheroidal assemblages encased in multiple layers of iddingsite. We also observed microtubular features emanating from iddingsite veins penetrating into the host olivine comparable in shape to those interpreted to have formed by bioerosion in terrestrial basalts.
Collapse
Affiliation(s)
- Lauren M. White
- Jet Propulsion Laboratory, California Institute of Technology, Earth, Astronomy & Physics Mission Formulation, Pasadena, California
| | - Everett K. Gibson
- NASA Johnson Space Center, KR, Astromaterials Research & Exploration Science, Houston, Texas
| | | | | | - David S. McKay
- NASA Johnson Space Center, KR, Astromaterials Research & Exploration Science, Houston, Texas
| |
Collapse
|
8
|
Steele A, McCubbin FM, Fries M, Kater L, Boctor NZ, Fogel ML, Conrad PG, Glamoclija M, Spencer M, Morrow AL, Hammond MR, Zare RN, Vicenzi EP, Siljestrom S, Bowden R, Herd CDK, Mysen BO, Shirey SB, Amundsen HEF, Treiman AH, Bullock ES, Jull AJT. A Reduced Organic Carbon Component in Martian Basalts. Science 2012; 337:212-5. [DOI: 10.1126/science.1220715] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Elsila JE, Callahan MP, Glavin DP, Dworkin JP, Brückner H. Distribution and stable isotopic composition of amino acids from fungal peptaibiotics: assessing the potential for meteoritic contamination. ASTROBIOLOGY 2011; 11:123-133. [PMID: 21417942 DOI: 10.1089/ast.2010.0505] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The presence of nonprotein α-dialkyl-amino acids such as α-aminoisobutyric acid (α-AIB) and isovaline (Iva), which are considered to be relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids. However, recent work showing the presence of α-AIB and Iva in peptides produced by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the α-AIB observed in some meteorites. We measured the amino acid distribution and stable carbon and nitrogen isotopic composition of four α-AIB-containing fungal peptides and compared this data to similar meteoritic measurements. We show that the relatively simple distribution of the C(4) and C(5) amino acids in fungal peptides is distinct from the complex distribution observed in many carbonaceous chondrites. We also identify potentially diagnostic relationships between the stable isotopic compositions of pairs of amino acids from the fungal peptides that may aid in ruling out fungal contamination as a source of meteoritic amino acids.
Collapse
Affiliation(s)
- Jamie E Elsila
- Goddard Center for Astrobiology and Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.
| | | | | | | | | |
Collapse
|
10
|
Marshall CP, Edwards HGM, Jehlicka J. Understanding the application of Raman spectroscopy to the detection of traces of life. ASTROBIOLOGY 2010; 10:229-243. [PMID: 20402584 DOI: 10.1089/ast.2009.0344] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Investigating carbonaceous microstructures and material in Earth's oldest sedimentary rocks is an essential part of tracing the origins of life on our planet; furthermore, it is important for developing techniques to search for traces of life on other planets, for example, Mars. NASA and ESA are considering the adoption of miniaturized Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for fossil or extant biomolecules. Recently, Raman spectroscopy has been used to infer a biological origin of putative carbonaceous microfossils in Early Archean rocks. However, it has been demonstrated that the spectral signature obtained from kerogen (of known biological origin) is similar to spectra obtained from many poorly ordered carbonaceous materials that arise through abiotic processes. Yet there is still confusion in the literature as to whether the Raman spectroscopy of carbonaceous materials can indeed delineate a signature of ancient life. Despite the similar nature in spectra, rigorous structural interrogation between the thermal alteration products of biological and nonbiological organic materials has not been undertaken. Therefore, we propose a new way forward by investigating the second derivative, deconvolution, and chemometrics of the carbon first-order spectra to build a database of structural parameters that may yield distinguishable characteristics between biogenic and abiogenic carbonaceous material. To place Raman spectroscopy as a technique to delineate a biological origin for samples in context, we will discuss what is currently accepted as a spectral signature for life; review Raman spectroscopy of carbonaceous material; and provide a historical overview of Raman spectroscopy applied to Archean carbonaceous materials, interpretations of the origin of the ancient carbonaceous material, and a future way forward for Raman spectroscopy.
Collapse
Affiliation(s)
- Craig P Marshall
- Department of Geology, The University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
11
|
Brückner H, Becker D, Gams W, Degenkolb T. Aib and iva in the biosphere: neither rare nor necessarily extraterrestrial. Chem Biodivers 2009; 6:38-56. [PMID: 19180454 DOI: 10.1002/cbdv.200800331] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fourty-nine species and strains of filamentous fungi of the genera Acremonium, Bionectria, Clonostachys, Emericellopsis, Hypocrea/Trichoderma, Lecythophora, Monocillium, Nectriopsis, Niesslia, Tolypocladium, and Wardomyces, deposited with the culture collection of the Centraalbureau voor Schimmelcultures (CBS) in Utrecht, The Netherlands, were grown on nutrient agar plates. Organic extracts of mycelia were analyzed after acidic total hydrolysis and derivatization by GC/SIM-MS on Chirasil-L-Val for the presence of Aib (=alpha-aminoisobutyric acid, 2-methylalanine) and DL-Iva (=isovaline, 2-ethylalanine). In 37 of the hydrolysates, Aib was detected, and in several of them D-Iva or mixtures of D- and L-Iva. Non-proteinogenic Aib, in particular, is a highly specific marker for a distinctive group of fungal polypeptides named peptaibols or, comprehensively, peptaibiotics, i.e., peptides containing Aib and displaying (anti)biotic activities. The biotic synthesis of these amino acids by filamentous fungi contradicts the still widespread belief that alpha,alpha-dialkyl-alpha-amino acids do not or rarely occur in the biosphere and, if detected, are of extraterrestrial origin. The abundant production of peptaibiotics by cosmopolitan species of microfungi has also to be considered in the discussion on the occurrence of Aib and Iva in ancient and recent sediments. The detection of trace amounts of Aib in ice samples of Antarctica that are devoid of meteorites might also be related to the presence of Aib-producing microorganisms, being either indigenous psychrophiles, or being transported and localized by mechanisms related to bioaerosols and cryoconites. The presence of microfungi being capable of producing alpha,alpha-dialkyl alpha-amino acids in terrestrial samples, and possible contamination of extraterrestrial materials are pointed out to be of relevance for the reliable interpretation of cosmogeochemical data.
Collapse
Affiliation(s)
- Hans Brückner
- Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen.
| | | | | | | |
Collapse
|
12
|
Nadeau JL, Perreault NN, Niederberger TD, Whyte LG, Sun HJ, Leon R. Fluorescence microscopy as a tool for in situ life detection. ASTROBIOLOGY 2008; 8:859-874. [PMID: 18752456 DOI: 10.1089/ast.2007.0043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of extant and, in some cases, extinct bacterial life is most convincingly and efficiently performed with modern high-resolution microscopy. Epifluorescence microscopy of microbial autofluorescence or in conjunction with fluorescent dyes is among the most useful of these techniques. We explored fluorescent labeling and imaging of bacteria in rock and soil in the context of in situ life detection for planetary exploration. The goals were two-fold: to target non-Earth-centric biosignatures with the greatest possible sensitivity and to develop labeling procedures amenable to robotic implementation with technologies that are currently space qualified. A wide panel of commercially available dyes that target specific biosignature molecules was screened, and those with desirable properties (i.e., minimal binding to minerals, strong autofluorescence contrast, no need for wash steps) were identified. We also explored the potential of semiconductor quantum dots (QDs) as bacterial and space probes. A specific instrument for space implementation is suggested and discussed.
Collapse
Affiliation(s)
- J L Nadeau
- Department of Biomedical Engineering, McGill University, Montreal, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
The MEPAG Next Decade Science Analysis Group. Science priorities for Mars sample return. ASTROBIOLOGY 2008; 8:489-35. [PMID: 18688946 DOI: 10.1089/ast.2008.0759] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|