1
|
Gonzalez-Nayeck AC, Grim SL, Waldbauer J, Dick GJ, Pearson A. Isotopic Signatures of Carbon Transfer in a Proterozoic Analogue Microbial Mat. Appl Environ Microbiol 2023; 89:e0187022. [PMID: 37093010 PMCID: PMC10231192 DOI: 10.1128/aem.01870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Modern microbial mats are potential analogues for Proterozoic ecosystems, yet only a few studies have characterized mats under low-oxygen conditions that are relevant to Proterozoic environments. Here, we use protein-stable isotope fingerprinting (P-SIF) to determine the protein carbon isotope (δ13C) values of autotrophic, heterotrophic, and mixotrophic organisms in a benthic microbial mat from the low-oxygen Middle Island Sinkhole, Lake Huron, USA (MIS). We also measure the δ13C values of the sugar moieties of exopolysaccharides (EPS) within the mat to explore the relationships between cyanobacterial exudates and heterotrophic anabolic carbon uptake. Our results show that Cyanobacteria (autotrophs) are 13C-depleted, relative to sulfate-reducing bacteria (heterotrophs), and 13C-enriched, relative to sulfur oxidizing bacteria (autotrophs or mixotrophs). We also find that the pentose moieties of EPS are systematically enriched in 13C, relative to the hexose moieties of EPS. We hypothesize that these isotopic patterns reflect cyanobacterial metabolic pathways, particularly phosphoketolase, that are relatively more active in low-oxygen mat environments, rather than oxygenated mat environments. This results in isotopically more heterogeneous C sources in low-oxygen mats. While this might partially explain the isotopic variability observed in Proterozoic mat facies, further work is necessary to systematically characterize the isotopic fractionations that are associated with the synthesis of cyanobacterial exudates. IMPORTANCE The δ13C compositions of heterotrophic microorganisms are dictated by the δ13C compositions of their organic carbon sources. In both modern and ancient photosynthetic microbial mats, photosynthetic exudates are the most likely source of organic carbon for heterotrophs. We measured the δ13C values of autotrophic, heterotrophic, and mixotrophic bacteria as well as the δ13C value of the most abundant photosynthetic exudate (exopolysaccharide) in a modern analogue for a Proterozoic environment. Given these data, future studies will be better equipped to estimate the most likely carbon source for heterotrophs in both modern environments as well as in Proterozoic environments preserved in the rock record.
Collapse
Affiliation(s)
- Ana C. Gonzalez-Nayeck
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Pavloudi C, Zafeiropoulos H. Deciphering the community structure and the functional potential of a hypersaline marsh microbial mat community. FEMS Microbiol Ecol 2022; 98:6843573. [PMID: 36416806 DOI: 10.1093/femsec/fiac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mats are vertically stratified communities of microorganisms characterized by pronounced physiochemical gradients allowing for high species diversity and a wide range of metabolic capabilities. High Throughput Sequencing has the potential to reveal the biodiversity and function of such ecosystems in the cycling of elements. The present study combines 16S rRNA amplicon sequencing and shotgun metagenomics on a hypersaline marsh in Tristomo bay (Karpathos, Greece). Samples were collected in July 2018 and November 2019 from microbial mats, deeper sediment, aggregates observed in the water overlying the sediment, as well as sediment samples with no apparent layering. Metagenomic samples' coassembly and binning revealed 250 bacterial and 39 archaeal metagenome-assembled genomes, with completeness estimates higher than 70% and contamination less than 5%. All MAGs had KEGG Orthology terms related to osmoadaptation, with the 'salt in' strategy ones being prominent. Halobacteria and Bacteroidetes were the most abundant taxa in the mats. Photosynthesis was most likely performed by purple sulphur and nonsulphur bacteria. All samples had the capacity for sulphate reduction, dissimilatory arsenic reduction, and conversion of pyruvate to oxaloacetate. Overall, both sequencing methodologies resulted in similar taxonomic compositions and revealed that the formation of the microbial mat in this marsh exhibits seasonal variation.
Collapse
Affiliation(s)
- Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biological Sciences, The George Washington University, 2029 G St NW, Bell Hall 302, Washington DC 20052, United States
| | - Haris Zafeiropoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece.,Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, box 1028, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Wen X, Yang S, Horn F, Winkel M, Wagner D, Liebner S. Global Biogeographic Analysis of Methanogenic Archaea Identifies Community-Shaping Environmental Factors of Natural Environments. Front Microbiol 2017; 8:1339. [PMID: 28769904 PMCID: PMC5513909 DOI: 10.3389/fmicb.2017.01339] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022] Open
Abstract
Methanogenic archaea are important for the global greenhouse gas budget since they produce methane under anoxic conditions in numerous natural environments such as oceans, estuaries, soils, and lakes. Whether and how environmental change will propagate into methanogenic assemblages of natural environments remains largely unknown owing to a poor understanding of global distribution patterns and environmental drivers of this specific group of microorganisms. In this study, we performed a meta-analysis targeting the biogeographic patterns and environmental controls of methanogenic communities using 94 public mcrA gene datasets. We show a global pattern of methanogenic archaea that is more associated with habitat filtering than with geographical dispersal. We identify salinity as the control on methanogenic community composition at global scale whereas pH and temperature are the major controls in non-saline soils and lakes. The importance of salinity for structuring methanogenic community composition is also reflected in the biogeography of methanogenic lineages and the physiological properties of methanogenic isolates. Linking methanogenic alpha-diversity with reported values of methane emission identifies estuaries as the most diverse methanogenic habitats with, however, minor contribution to the global methane budget. With salinity, temperature and pH our study identifies environmental drivers of methanogenic community composition facing drastic changes in many natural environments at the moment. However, consequences of this for the production of methane remain elusive owing to a lack of studies that combine methane production rate with community analysis.
Collapse
Affiliation(s)
- Xi Wen
- Section 5.3 Geomicrobiology, GFZ German Research Centre for GeosciencesPotsdam, Germany.,College of Electrical Engineering, Northwest University for NationalitiesLanzhou, China
| | - Sizhong Yang
- Section 5.3 Geomicrobiology, GFZ German Research Centre for GeosciencesPotsdam, Germany.,State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of SciencesLanzhou, China
| | - Fabian Horn
- Section 5.3 Geomicrobiology, GFZ German Research Centre for GeosciencesPotsdam, Germany
| | - Matthias Winkel
- Section 5.3 Geomicrobiology, GFZ German Research Centre for GeosciencesPotsdam, Germany
| | - Dirk Wagner
- Section 5.3 Geomicrobiology, GFZ German Research Centre for GeosciencesPotsdam, Germany
| | - Susanne Liebner
- Section 5.3 Geomicrobiology, GFZ German Research Centre for GeosciencesPotsdam, Germany
| |
Collapse
|
4
|
Shelton JL, Akob DM, McIntosh JC, Fierer N, Spear JR, Warwick PD, McCray JE. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient. Front Microbiol 2016; 7:1535. [PMID: 27733847 PMCID: PMC5039232 DOI: 10.3389/fmicb.2016.01535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells had statistically similar microbial communities despite significant changes in environmental parameters between oil fields. Together, this implies that no single microbial population is a reliable indicator of a reservoir's ability to degrade crude oil to methane, and that geochemistry may be a more important indicator for selecting a reservoir suitable for microbial enhancement of natural gas generation.
Collapse
Affiliation(s)
- Jenna L Shelton
- Eastern Energy Resources Science Center, U.S. Geological Survey Reston, VA, USA
| | - Denise M Akob
- National Research Program-Eastern Branch, U.S. Geological Survey Reston, VA, USA
| | - Jennifer C McIntosh
- Eastern Energy Resources Science Center, U.S. Geological SurveyReston, VA, USA; Department of Hydrology and Atmospheric Sciences, University of ArizonaTucson, AZ, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA; Cooperative Institute for Research in Environmental Science, University of ColoradoBoulder, CO, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines Golden, CO, USA
| | - Peter D Warwick
- Eastern Energy Resources Science Center, U.S. Geological Survey Reston, VA, USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of MinesGolden, CO, USA; Hydrologic Science and Engineering Program, Colorado School of MinesGolden, CO, USA
| |
Collapse
|
5
|
Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats. Appl Environ Microbiol 2014; 80:7316-23. [PMID: 25239903 DOI: 10.1128/aem.02641-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022] Open
Abstract
Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ(13)C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ(13)C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more (13)C-depleted methane. Trimethylamine-amended samples produced lower methane δ(13)C values than the mat-amended samples. This difference in the δ(13)C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.
Collapse
|
6
|
Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. GLOBAL CHANGE BIOLOGY 2013; 19:1325-1346. [PMID: 23505021 DOI: 10.1111/gcb.12131] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
Understanding the dynamics of methane (CH4 ) emissions is of paramount importance because CH4 has 25 times the global warming potential of carbon dioxide (CO2 ) and is currently the second most important anthropogenic greenhouse gas. Wetlands are the single largest natural CH4 source with median emissions from published studies of 164 Tg yr(-1) , which is about a third of total global emissions. We provide a perspective on important new frontiers in obtaining a better understanding of CH4 dynamics in natural systems, with a focus on wetlands. One of the most exciting recent developments in this field is the attempt to integrate the different methodologies and spatial scales of biogeochemistry, molecular microbiology, and modeling, and thus this is a major focus of this review. Our specific objectives are to provide an up-to-date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems, briefly summarize major biogeophysical controls over CH4 emissions from wetlands, suggest new frontiers in CH4 biogeochemistry, examine relationships between methanogen community structure and CH4 dynamics in situ, and to review the current generation of CH4 models. We highlight throughout some of the most pressing issues concerning global change and feedbacks on CH4 emissions from natural ecosystems. Major uncertainties in estimating current and future CH4 emissions from natural ecosystems include the following: (i) A number of important controls over CH4 production, consumption, and transport have not been, or are inadequately, incorporated into existing CH4 biogeochemistry models. (ii) Significant errors in regional and global emission estimates are derived from large spatial-scale extrapolations from highly heterogeneous and often poorly mapped wetland complexes. (iii) The limited number of observations of CH4 fluxes and their associated environmental variables loosely constrains the parameterization of process-based biogeochemistry models.
Collapse
|
7
|
Goordial J, Lamarche-Gagnon G, Lay CY, Whyte L. Left Out in the Cold: Life in Cryoenvironments. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6488-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Kelley CA, Poole JA, Tazaz AM, Chanton JP, Bebout BM. Substrate limitation for methanogenesis in hypersaline environments. ASTROBIOLOGY 2012; 12:89-97. [PMID: 22248383 DOI: 10.1089/ast.2011.0703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Motivated by the increasingly abundant evidence for hypersaline environments on Mars and reports of methane in its atmosphere, we examined methanogenesis in hypersaline ponds in Baja California Sur, Mexico, and in northern California, USA. Methane-rich bubbles trapped within or below gypsum/halite crusts have δ¹³C values near -40‰. Methane with these relatively high isotopic values would typically be considered thermogenic; however, incubations of crust samples resulted in the biological production of methane with similar isotopic composition. A series of measurements aimed at understanding the isotopic composition of methane in hypersaline systems was therefore undertaken. Methane production rates, as well as the concentrations and isotopic composition of the particulate organic carbon (POC), were measured. Methane production was highest from microbial communities living within gypsum crusts, whereas POC content at gypsum/halite sites was low, generally less than 1% of the total mass. The isotopic composition of the POC ranged from -26‰ to -10‰. To determine the substrates used by the methanogens, ¹³C-labeled methylamines, methanol, acetate, and bicarbonate were added to individual incubation vials, and the methane produced was monitored for ¹³C content. The main substrates used by the methanogens were the noncompetitive substrates, the methylamines, and methanol. When unlabeled trimethylamine (TMA) was added to incubating gypsum/halite crusts in increasing concentrations, the isotopic composition of the methane produced became progressively lower; the lowest methane δ¹³C values occurred when the most TMA was added (1000 μM final concentration). This decrease in the isotopic composition of the methane produced with increasing TMA concentrations, along with the high in situ methane δ¹³C values, suggests that the methanogens within the crusts are operating at low substrate concentrations. It appears that substrate limitation is decreasing isotopic fractionation during methanogenesis, which results in these abnormally high biogenic methane δ¹³C values.
Collapse
Affiliation(s)
- Cheryl A Kelley
- Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | |
Collapse
|
9
|
The sulfate-rich and extreme saline sediment of the ephemeral tirez lagoon: a biotope for acetoclastic sulfate-reducing bacteria and hydrogenotrophic methanogenic archaea. Int J Microbiol 2011; 2011:753758. [PMID: 21915180 PMCID: PMC3170894 DOI: 10.1155/2011/753758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.
Collapse
|
10
|
Abstract
Life at high salt concentrations is energetically expensive. The upper salt concentration limit at which different dissimilatory processes occur in nature appears to be determined to a large extent by bioenergetic constraints. The main factors that determine whether a certain type of microorganism can make a living at high salt are the amount of energy generated during its dissimilatory metabolism and the mode of osmotic adaptation used. I here review new data, both from field observations and from the characterization of cultures of new types of prokaryotes growing at high salt concentrations, to evaluate to what extent the theories formulated 12 years ago are still valid, need to be refined, or should be refuted on the basis of the novel information collected. Most data agree well with the earlier theories. Some new observations, however, are not easily explained: the properties of Natranaerobius and other haloalkaliphilic thermophilic fermentative anaerobes, growth of the sulfate-reducing Desulfosalsimonas propionicica with complete oxidation of propionate and Desulfovermiculus halophilus with complete oxidation of butyrate, growth of lactate-oxidizing sulfate reducers related to Desulfonatronovibrio at 346 g l(-1) salts at pH 9.8, and occurrence of methane oxidation in the anaerobic layers of Big Soda Lake and Mono Lake.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, Institute of Life Sciences, and Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
11
|
Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME JOURNAL 2010; 4:1326-39. [PMID: 20445635 DOI: 10.1038/ismej.2010.57] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (∼24% salinity), subzero (-5 °C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 °C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 °C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ∼84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (∼50%) with the low CH(4)/C(2+) ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes.
Collapse
|