1
|
Hauserman MR, Sullivan LE, James KL, Ferraro MJ, Rice KC. Response of Staphylococcus aureus physiology and Agr quorum sensing to low-shear modeled microgravity. J Bacteriol 2024; 206:e0027224. [PMID: 39120147 PMCID: PMC11411946 DOI: 10.1128/jb.00272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is commonly isolated from astronauts returning from spaceflight. Previous analysis of omics data from S. aureus low Earth orbit cultures indicated significantly increased expression of the Agr quorum sensing system and its downstream targets in spaceflight samples compared to ground controls. In this current study, the rotary cell culture system (RCCS) was used to investigate the effect of low-shear modeled microgravity (LSMMG) on S. aureus physiology and Agr activity. When cultured in the same growth medium and temperature as the previous spaceflight experiment, S. aureus LSMMG cultures exhibited decreased agr expression and altered growth compared to normal gravity control cultures, which are typically oriented with oxygenation membrane on the bottom of the high aspect rotating vessel (HARV). When S. aureus was grown in an inverted gravity control orientation (oxygenation membrane on top of the HARV), reduced Agr activity was observed relative to both traditional control and LSMMG cultures, signifying that oxygen availability may affect the observed differences in Agr activity. Metabolite assays revealed increased lactate and decreased acetate excretion in both LSMMG and inverted control cultures. Secretomics analysis of LSMMG, control, and inverted control HARV culture supernatants corroborated these results, with inverted and LSMMG cultures exhibiting a decreased abundance of Agr-regulated virulence factors and an increased abundance of proteins expressed in low-oxygen conditions. Collectively, these studies suggest that the orientation of the HARV oxygenation membrane can affect S. aureus physiology and Agr quorum sensing in the RCCS, a variable that should be considered when interpreting data using this ground-based microgravity model.IMPORTANCES. aureus is commonly isolated from astronauts returning from spaceflight and from surfaces within human-inhabited closed environments such as spacecraft. Astronaut health and immune function are significantly altered in spaceflight. Therefore, elucidating the effects of microgravity on S. aureus physiology is critical for assessing its pathogenic potential during long-term human space habitation. These results also highlight the necessity of eliminating potential confounding factors when comparing simulated microgravity model data with actual spaceflight experiments.
Collapse
Affiliation(s)
- Matthew R. Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Leia E. Sullivan
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kimberly L. James
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Mariola J. Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Kaur J, Kaur J, Nigam A. Extremophiles in Space Exploration. Indian J Microbiol 2024; 64:418-428. [PMID: 39010991 PMCID: PMC11246395 DOI: 10.1007/s12088-024-01297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/28/2024] [Indexed: 07/17/2024] Open
Abstract
In the era of deep space exploration, extremophile research represents a key area of research w.r.t space survival. This review thus delves into the intriguing realm of 'Space and Astro Microbiology', providing insights into microbial survival, resilience, and behavioral adaptations in space-like environments. This discussion encompasses the modified behavior of extremophilic microorganisms, influencing virulence, stress resistance, and gene expression. It then shifts to recent studies on the International Space Station and simulated microgravity, revealing microbial responses that impact drug susceptibility, antibiotic resistance, and its commercial implications. The review then transitions into Astro microbiology, exploring the possibilities of interplanetary transit, lithopanspermia, and terraforming. Debates on life's origin and recent Martian meteorite discoveries are noted. We also discuss Proactive Inoculation Protocols for selecting adaptable microorganisms as terraforming pioneers. The discussion concludes with a note on microbes' role as bioengineers in bioregenerative life support systems, in recycling organic waste for sustainable space travel; and in promoting optimal plant growth to prepare Martian and lunar basalt. This piece emphasizes the transformative impact of microbes on the future of space exploration.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110 049 India
| | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, 110 021 India
| | - Aeshna Nigam
- Shivaji College, University of Delhi, New Delhi, 110 027 India
| |
Collapse
|
3
|
Sheet S, Sathishkumar Y, Acharya S, Lee YS. Exposure of Legionella pneumophila to low-shear modeled microgravity: impact on stress response, membrane lipid composition, pathogenicity to macrophages and interrelated genes expression. Arch Microbiol 2024; 206:87. [PMID: 38305908 DOI: 10.1007/s00203-023-03753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024]
Abstract
Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H2O2) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila' stress/virulence response.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Department of Wood Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567, Jeonju-si, Jeollabuk-do, Republic of Korea
| | | | - Satabdi Acharya
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, 567, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yang Soo Lee
- Department of Wood Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
4
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
McDonagh F, Cormican M, Morris D, Burke L, Singh NK, Venkateswaran K, Miliotis G. Medical Astro-Microbiology: Current Role and Future Challenges. J Indian Inst Sci 2023; 103:1-26. [PMID: 37362850 PMCID: PMC10082442 DOI: 10.1007/s41745-023-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
The second and third decades of the twenty-first century are marked by a flourishing of space technology which may soon realise human aspirations of a permanent multiplanetary presence. The prevention, control and management of infection with microbial pathogens is likely to play a key role in how successful human space aspirations will become. This review considers the emerging field of medical astro-microbiology. It examines the current evidence regarding the risk of infection during spaceflight via host susceptibility, alterations to the host's microbiome as well as exposure to other crew members and spacecraft's microbiomes. It also considers the relevance of the hygiene hypothesis in this regard. It then reviews the current evidence related to infection risk associated with microbial adaptability in spaceflight conditions. There is a particular focus on the International Space Station (ISS), as one of the only two crewed objects in low Earth orbit. It discusses the effects of spaceflight related stressors on viruses and the infection risks associated with latent viral reactivation and increased viral shedding during spaceflight. It then examines the effects of the same stressors on bacteria, particularly in relation to changes in virulence and drug resistance. It also considers our current understanding of fungal adaptability in spaceflight. The global public health and environmental risks associated with a possible re-introduction to Earth of invasive species are also briefly discussed. Finally, this review examines the largely unknown microbiology and infection implications of celestial body habitation with an emphasis placed on Mars. Overall, this review summarises much of our current understanding of medical astro-microbiology and identifies significant knowledge gaps. Graphical Abstract
Collapse
Affiliation(s)
- Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Department of Medical Microbiology, Galway University Hospitals, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023; 5:100102. [PMID: 36660363 PMCID: PMC9843197 DOI: 10.1016/j.bioflm.2022.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.
Collapse
Affiliation(s)
- Yo-Ann Vélez Justiniano
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA,Corresponding author.
| | - Darla M. Goeres
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Jacob S. Harris
- Biomedical and Environmental Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Stephan Warnat
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew McGlennen
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Christine M. Foreman
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Wenyan Li
- Laboratory Support Services and Operations (LASSO), NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | - Katelynn Lott
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Lauren E. HerrNeckar
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA
| |
Collapse
|
7
|
Proteomic Response of Deinococcus radiodurans to Short-Term Real Microgravity during Parabolic Flight Reveals Altered Abundance of Proteins Involved in Stress Response and Cell Envelope Functions. Life (Basel) 2021; 12:life12010023. [PMID: 35054415 PMCID: PMC8779699 DOI: 10.3390/life12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Rapidly evolving space exploration makes understanding the short- and long- term effects of microgravity on humans, plants, and microorganisms an important task. The ubiquitous presence of the gravitational force has had an influence on the development of all living entities on Earth, and short- and long-term changes in perceived gravitational force can induce notable changes within cells. Deinococcus radiodurans is the Gram-positive bacterium that is best known for its extreme resistance to UV-C and gamma radiation, oxidation stress, and desiccation. Thus increased interest has been placed on this species in the context of space research. The present study aims to elucidate the short-term proteomic response of this species to real microgravity during parabolic flight. Overnight cultures of D. radiodurans were subjected to microgravity during a single parabola, and metabolic activity was quenched using methanol. Proteins were extracted and subsequently measured using HPLC nESI MS/MS. The results, such as the enrichment of the peptidoglycan biosynthesis pathway with differentially abundant proteins and altered S-layer protein abundance, suggested molecular rearrangements in the cell envelope of D. radiodurans. Altered abundance of proteins involved in energy metabolism and DNA repair could be linked with increased endogenous ROS production that contributes to the stress response. Moreover, changes in protein abundance in response to microgravity show similarities with previously reported stress responses. Thus, the present results could be used to further investigate the complex regulation of the remarkable stress management of this bacterium.
Collapse
|
8
|
Su X, Guo Y, Fang T, Jiang X, Wang D, Li D, Bai P, Zhang B, Wang J, Liu C. Effects of Simulated Microgravity on the Physiology of Stenotrophomonas maltophilia and Multiomic Analysis. Front Microbiol 2021; 12:701265. [PMID: 34512577 PMCID: PMC8429793 DOI: 10.3389/fmicb.2021.701265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Many studies have shown that the space environment plays a pivotal role in changing the characteristics of conditional pathogens, especially their pathogenicity and virulence. However, Stenotrophomonas maltophilia, a type of conditional pathogen that has shown to a gradual increase in clinical morbidity in recent years, has rarely been reported for its impact in space. In this study, S. maltophilia was exposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14days, while the control group was exposed to the same bioreactors in a normal gravity (NG) environment. Then, combined phenotypic, genomic, transcriptomic, and proteomic analyses were conducted to compare the influence of the SMG and NG on S. maltophilia. The results showed that S. maltophilia in simulated microgravity displayed an increased growth rate, enhanced biofilm formation ability, increased swimming motility, and metabolic alterations compared with those of S. maltophilia in normal gravity and the original strain of S. maltophilia. Clusters of Orthologous Groups (COG) annotation analysis indicated that the increased growth rate might be related to the upregulation of differentially expressed genes (DEGs) involved in energy metabolism and conversion, secondary metabolite biosynthesis, transport and catabolism, intracellular trafficking, secretion, and vesicular transport. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the increased motility might be associated the upregulation of differentially expressed proteins (DEPs) involved in locomotion, localization, biological adhesion, and binding, in accordance with the upregulated DEGs in cell motility according to COG classification, including pilP, pilM, flgE, flgG, and ronN. Additionally, the increased biofilm formation ability might be associated with the upregulation of DEPs involved in biofilm formation, the bacterial secretion system, biological adhesion, and cell adhesion, which were shown to be regulated by the differentially expressed genes (chpB, chpC, rpoN, pilA, pilG, pilH, and pilJ) through the integration of transcriptomic and proteomic analyses. These results suggested that simulated microgravity might increase the level of corresponding functional proteins by upregulating related genes to alter physiological characteristics and modulate growth rate, motility, biofilm formation, and metabolism. In conclusion, this study is the first general analysis of the phenotypic, genomic, transcriptomic, and proteomic changes in S. maltophilia under simulated microgravity and provides some suggestions for future studies of space microbiology.
Collapse
Affiliation(s)
- Xiaolei Su
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yinghua Guo
- Medical School of Chinese PLA, Beijing, China.,College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tingzheng Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Xuege Jiang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Dapeng Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Department of Academic Research, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Junfeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Sheet S, Yesupatham S, Ghosh K, Choi MS, Shim KS, Lee YS. Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes. Enzyme Microb Technol 2019; 133:109440. [PMID: 31874690 DOI: 10.1016/j.enzmictec.2019.109440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
The present study investigated the influence of low-shear modeled microgravity (LSMMG) conditions on Listeria monocytogenes stress response (heat, cold, and acid), membrane fatty acid composition, and virulence potential as well as stress-/virulence-associated gene expression. The results showed that LSMMG-cultivated cells had lower survival rate and lower D-values under heat and acid stress conditions compared to cells grown under normal gravity (NG). Interestingly, the cold resistance was elevated in cells cultivated under LSMMG conditions when compared to NG conditions. A higher amount of anteiso-branched chain fatty acids and lower ratio of iso/anteiso were observed in LSMMG cultured cells, which would contribute to increased membrane fluidity. Under LSMMG conditions, upregulated expression of cold stress-related genes (cspA, cspB, and cspD) was noticed but no change in expression was observed for heat (dnaK, groES, clpC, clpP, and clpE) and acid stress-related genes (sigB). The LSMMG-grown cells showed inferior virulence capacity in terms of infection, cell cycle arrest, and apoptosis induction in Caco-2 cells compared to those grown under NG conditions. Approximately 3.65, 2.13, 4.02, and 2.65-fold downregulation of prfA, hly, inlA, and bsh genes, respectively, in LSMMG-cultured cells might be the reason for reduced virulence. In conclusion, these findings suggest that growth under LSMMG conditions stimulates alterations in L. monocytogenes stress/virulence response, perhaps due to changes in lipid composition and related genes expression.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sathishkumar Yesupatham
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-Ro, Daejeon, Republic of Korea
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Kuturiya, P.O. Bhadutala, Pin-721129, Paschim Medinipur, West Bengal, India
| | - Mi-Sook Choi
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yang Soo Lee
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
10
|
Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure. mBio 2019; 10:mBio.02637-18. [PMID: 30647159 PMCID: PMC6336426 DOI: 10.1128/mbio.02637-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stress factors experienced during space include microgravity, sleep deprivation, radiation, isolation, and microbial contamination, all of which can promote immune suppression (1, 2). Under these conditions, the risk of infection from opportunistic pathogens increases significantly, particularly during long-term missions (3). If infection occurs, it is important that the infectious agent should not be antibiotic resistant. Minimizing the occurrence of antibiotic resistance is, therefore, highly desirable. To facilitate this, it is important to better understand the long-term response of bacteria to the microgravity environment. This study demonstrated that the use of antibiotics as a preventive measure could be counterproductive and would likely result in persistent resistance to that antibiotic. In addition, unintended resistance to other antimicrobials might also occur as well as permanent genome changes that might have other unanticipated and undesirable consequences. The long-term response of microbial communities to the microgravity environment of space is not yet fully understood. Of special interest is the possibility that members of these communities may acquire antibiotic resistance. In this study, Escherichia coli cells were grown under low-shear modeled microgravity (LSMMG) conditions for over 1,000 generations (1000G) using chloramphenicol treatment between cycles to prevent contamination. The results were compared with data from an earlier control study done under identical conditions using steam sterilization between cycles rather than chloramphenicol. The sensitivity of the final 1000G-adapted strain to a variety of antibiotics was determined using Vitek analysis. In addition to resistance to chloramphenicol, the adapted strain acquired resistance to cefalotin, cefuroxime, cefuroxime axetil, cefoxitin, and tetracycline. In fact, the resistance to chloramphenicol and cefalotin persisted for over 110 generations despite the removal of both LSMMG conditions and trace antibiotic exposure. Genome sequencing of the adapted strain revealed 22 major changes, including 3 transposon-mediated rearrangements (TMRs). Two TMRs disrupted coding genes (involved in bacterial adhesion), while the third resulted in the deletion of an entire segment (14,314 bp) of the genome, which includes 14 genes involved with motility and chemotaxis. These results are in stark contrast with data from our earlier control study in which cells grown under the identical conditions without antibiotic exposure never acquired antibiotic resistance. Overall, LSMMG does not appear to alter the antibiotic stress resistance seen in microbial ecosystems not exposed to microgravity.
Collapse
|
11
|
Huang B, Li DG, Huang Y, Liu CT. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil Med Res 2018; 5:18. [PMID: 29807538 PMCID: PMC5971428 DOI: 10.1186/s40779-018-0162-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.
Collapse
Affiliation(s)
- Bing Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Dian-Geng Li
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chang-Ting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China.
| |
Collapse
|
12
|
Higginson EE, Galen JE, Levine MM, Tennant SM. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathog Dis 2016; 74:ftw095. [PMID: 27630185 DOI: 10.1093/femspd/ftw095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions. Bacterial behavior has been shown to be altered both in space and under simulated microgravity conditions. In some cases, bacteria appear attenuated, whereas in others virulence is enhanced. This has consequences not only for manned spaceflight, but poses larger questions about the ability of bacteria to sense the world around them. By using the microgravity environment as a tool, we can exploit this phenomenon in the search for new therapeutics and preventatives against pathogenic bacteria for use both in space and on Earth.
Collapse
Affiliation(s)
- Ellen E Higginson
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James E Galen
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myron M Levine
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Wang H, Yan Y, Rong D, Wang J, Wang H, Liu Z, Wang J, Yang R, Han Y. Increased biofilm formation ability in Klebsiella pneumoniae after short-term exposure to a simulated microgravity environment. Microbiologyopen 2016; 5:793-801. [PMID: 27185296 PMCID: PMC5061716 DOI: 10.1002/mbo3.370] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 01/11/2023] Open
Abstract
Biofilm formation is closely related to the pathogenetic processes of Klebsiella pneumoniae, which frequently causes infections in immunocompromised individuals. The immune system of astronauts is compromised in spaceflight. Accordingly, K. pneumoniae, which used to be isolated from orbiting spacecraft and astronauts, poses potential threats to the health of astronauts and mission security. Microgravity is a key environmental cue during spaceflight. Therefore, determining its effects on bacterial biofilm formation is necessary. In this study, K. pneumoniae ATCC BAA-1705 was exposed to a simulated microgravity (SMG) environment. K. pneumoniae grown under SMG formed thicker biofilms compared with those under normal gravity (NG) control after 2 weeks of subculture. Two indicative dyes (i.e., Congo red and calcofluor) specifically binding to cellulose fibers and/or fimbriae were utilized to reconfirm the enhanced biofilm formation ability of K. pneumoniae grown under SMG. Further analysis showed that the biofilms formed by SMG-treated K. pneumoniae were susceptible to cellulase digestion. Yeast cells mannose-resistant agglutination by K. pneumoniae type 3 fimbriae was more obvious in the SMG group, which suggests that cellulose production and type 3 fimbriae expression in K. pneumoniae were both enhanced under the SMG condition. Transcriptomic analysis showed that 171 genes belonging to 15 functional categories were dysregulated in this organism exposed to the SMG conditions compared with those in the NG group, where the genes responsible for the type 3 fimbriae (mrkABCDF) and its regulator (mrkH) were upregulated.
Collapse
Affiliation(s)
- Haili Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dan Rong
- Department of Medical Monitoring and Support, Astronaut Center of China, Beijing, 100094, China
| | - Jing Wang
- Animal Husbandry Base Teaching and Research Section, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei, 075131, China
| | - Hongduo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiaping Wang
- Department of Medical Monitoring and Support, Astronaut Center of China, Beijing, 100094, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
14
|
Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2015; 99:4409-22. [DOI: 10.1007/s00253-015-6386-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
|
15
|
Rosenzweig JA, Ahmed S, Eunson J, Chopra AK. Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens. Appl Microbiol Biotechnol 2014; 98:8797-807. [PMID: 25149449 DOI: 10.1007/s00253-014-6025-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
As their environments change, microbes experience various threats and stressors, and in the hypercompetitive microbial world, dynamism and the ability to rapidly respond to such changes allow microbes to outcompete their nutrient-seeking neighbors. Viewed in that light, the very difference between microbial life and death depends on effective stress response mechanisms. In addition to the more commonly studied temperature, nutritional, and chemical stressors, research has begun to characterize microbial responses to physical stress, namely low-shear stress. In fact, microbial responses to low-shear modeled microgravity (LSMMG), which emulates the microgravity experienced in space, have been studied quite widely in both prokaryotes and eukaryotes. Interestingly, LSMMG-induced changes in the virulence potential of several Gram-negative enteric bacteria, e.g., an increased enterotoxigenic Escherichia coli-mediated fluid secretion in ligated ileal loops of mice, an increased adherent invasive E. coli-mediated infectivity of Caco-2 cells, an increased Salmonella typhimurium-mediated invasion of both epithelial and macrophage cells, and S. typhimurium hypervirulence phenotype in BALB/c mice when infected by the intraperitoneal route. Although these were some examples where virulence of the bacteria was increased, there are instances where organisms became less virulent under LSMMG, e.g., hypovirulence of Yersinia pestis in cell culture infections and hypovirulence of methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, and Listeria monocytogenes in a Caenorhabditis elegans infection model. In general, a number of LSMMG-exposed bacteria (but not all) seemed better equipped to handle subsequent stressors such as osmotic shock, acid shock, heat shock, and exposure to chemotherapeutics. This mini-review primarily discusses both LSMMG-induced as well as bona fide spaceflight-specific alterations in bacterial virulence potential, demonstrating that pathogens' responses to low-shear forces vary dramatically. Ultimately, a careful characterization of numerous bacterial pathogens' responses to low-shear forces is necessary to evaluate a more complete picture of how this physical stress impacts bacterial virulence since a "one-size-fits-all" response is clearly not the case.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology and Center for Bionanotechnology and Environmental Research, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA,
| | | | | | | |
Collapse
|
16
|
Yamaguchi N, Roberts M, Castro S, Oubre C, Makimura K, Leys N, Grohmann E, Sugita T, Ichijo T, Nasu M. Microbial monitoring of crewed habitats in space-current status and future perspectives. Microbes Environ 2014; 29:250-60. [PMID: 25130885 PMCID: PMC4159036 DOI: 10.1264/jsme2.me14031] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed.
Collapse
Affiliation(s)
- Nobuyasu Yamaguchi
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Soni A, O'Sullivan L, Quick LN, Ott CM, Nickerson CA, Wilson JW. Conservation of the Low-shear Modeled Microgravity Response in Enterobacteriaceae and Analysis of the trp Genes in this Response. Open Microbiol J 2014; 8:51-8. [PMID: 25006354 PMCID: PMC4085587 DOI: 10.2174/1874285801408010051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/19/2014] [Accepted: 04/03/2014] [Indexed: 11/22/2022] Open
Abstract
Low fluid shear force, including that encountered in microgravity models, induces bacterial responses, but the range of bacteria capable of responding to this signal remains poorly characterized. We systematically analyzed a range of Gram negative Enterobacteriaceae for conservation of the low-shear modeled microgravity (LSMMG) response using phenotypic assays, qPCR, and targeted mutations. Our results indicate LSMMG response conservation across Enterobacteriacae with potential variance in up- or down-regulation of a given response depending on genus. Based on the data, we analyzed the role of the trp operon genes and the TrpR regulator in the LSMMG response using targeted mutations in these genes in S. Typhimurium and E. coli. We found no alteration of the LSMMG response compared to WT in these mutant strains under the conditions tested here. To our knowledge, this study is first-of-kind for Citrobacter, Enterobacter, and Serratia, presents novel data for Escherichia, and provides the first analysis of trp genes in LSMMG responses. This impacts our understanding of how LSMMG affects bacteria and our ability to modify bacteria with this condition in the future.
Collapse
Affiliation(s)
- Anjali Soni
- Villanova University, Biology Department, 800 Lancaster Avenue, Villanova, PA 19085 ; Virginia Commonwealth University, School of Dentistry, Richmond, VA23298
| | - Laura O'Sullivan
- Villanova University, Biology Department, 800 Lancaster Avenue, Villanova, PA 19085 ; University of Pennsylvania,School of Veterinary Medicine, Philadelphia, PA 19104
| | - Laura N Quick
- Villanova University, Biology Department, 800 Lancaster Avenue, Villanova, PA 19085 ; Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - C Mark Ott
- NASA/Johnson Space Center, Habitability and Environmental Factors Division, Houston, TX77058
| | - Cheryl A Nickerson
- Arizona State University, Biodesign Institute, Center for Infectious Diseases and Vaccinology, Tempe, AZ85281
| | - James W Wilson
- Villanova University, Biology Department, 800 Lancaster Avenue, Villanova, PA 19085
| |
Collapse
|
18
|
Lawal A, Kirtley ML, van Lier CJ, Erova TE, Kozlova EV, Sha J, Chopra AK, Rosenzweig JA. The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain. ASTROBIOLOGY 2013; 13:821-32. [PMID: 23988036 PMCID: PMC3779001 DOI: 10.1089/ast.2013.0968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
Previously, we reported that there was no enhancement in the virulence potential (as measured by cell culture infections) of the bacterial pathogen Yersinia pestis (YP) following modeled microgravity/clinorotation growth. We have now further characterized the effects of clinorotation (CR) on YP growth kinetics, antibiotic sensitivity, cold growth, and YP's virulence potential in a murine model of infection. Surprisingly, none of the aforementioned phenotypes were altered. To better understand why CR did not enhance YP's virulence potential as it did for other bacterial pathogens, a YP ΔymoA isogenic mutant in the KIM/D27 background strain that is unable to produce the histone-like YmoA protein and influences DNA topography was used in both cell culture and murine models of infection. YmoA represses type three secretion system (T3SS) virulence gene expression in the yersiniae. Similar to our CR-grown parental YP strain data, the CR-grown ΔymoA mutant induced reduced HeLa cell cytotoxicity with concomitantly decreased Yersinia outer protein E (YopE) and low calcium response V (LcrV) antigen production and secretion. Important, however, were our findings that, although no significant differences were observed in survival of mice infected intraperitoneally with either normal gravity (NG)- or CR-grown parental YP, the ΔymoA mutant induced significantly more mortality in infected mice than did the parental strain following CR growth. Taken together, our data demonstrate that CR did enhance the virulence potential of the YP ΔymoA mutant in a murine infection model (relative to the CR-grown parental strain), despite inducing less HeLa cell rounding in our cell culture infection assay due to reduced T3SS activity. Therefore, CR, which induces a unique type of bacterial stress, might be enhancing YP's virulence potential in vivo through a T3SS-independent mechanism when the histone-like YmoA protein is absent.
Collapse
Affiliation(s)
- Abidat Lawal
- Department of Biology, Department of Environmental and Interdisciplinary Sciences, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, Houston, Texas
| | - Michelle L. Kirtley
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Christina J. van Lier
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Tatiana E. Erova
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Elena V. Kozlova
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Jian Sha
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Jason A. Rosenzweig
- Department of Biology, Department of Environmental and Interdisciplinary Sciences, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, Houston, Texas
| |
Collapse
|
19
|
Gomoiu I, Chatzitheodoridis E, Vadrucci S, Walther I. The effect of spaceflight on growth of Ulocladium chartarum colonies on the international space station. PLoS One 2013; 8:e62130. [PMID: 23637980 PMCID: PMC3634740 DOI: 10.1371/journal.pone.0062130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS) and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions.
Collapse
Affiliation(s)
- Ioana Gomoiu
- Institute of Biology Bucharest, Romanian Academy of Science, Bucharest, Romania.
| | | | | | | |
Collapse
|
20
|
Henry A, Shanks J, van Hoof A, Rosenzweig JA. The Yersinia pseudotuberculosis degradosome is required for oxidative stress, while its PNPase subunit plays a degradosome-independent role in cold growth. FEMS Microbiol Lett 2012; 336:139-47. [PMID: 23082859 DOI: 10.1111/j.1574-6968.12000.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/14/2012] [Accepted: 08/24/2012] [Indexed: 01/01/2023] Open
Abstract
Yersinia polynucleotide phosphorylase (PNPase), a 3'-5' exoribonuclease, has been shown to affect growth during several stress responses. In Escherichia coli, PNPase is one of the subunits of a multiprotein complex known as the degradosome, but also has degradosome-independent functions. The carboxy-terminus of E. coli ribonuclease E (RNase E) serves as the scaffold upon which PNPase, enolase (a glycolytic enzyme), and RhlB helicase all have been shown to bind. In the yersiniae, only PNPase has thus far been shown to physically interact with RNase E. We show by bacterial two-hybrid and co-immunoprecipitation assays that RhlB and enolase also interact with RNase E. Interestingly, although PNPase is required for normal growth at cold temperatures, assembly of the yersiniae degradosome was not required. However, degradosome assembly was required for growth in the presence of reactive oxygen species. These data suggest that while the Yersinia pseudotuberculosis PNPase plays a role in the oxidative stress response through a degradosome-dependent mechanism, PNPase's role during cold stress is degradosome-independent.
Collapse
Affiliation(s)
- Amanda Henry
- Department of Biology, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, Houston, TX, USA
| | | | | | | |
Collapse
|
21
|
Rosenzweig JA, Chopra AK. The effect of low shear force on the virulence potential of Yersinia pestis: new aspects that space-like growth conditions and the final frontier can teach us about a formidable pathogen. Front Cell Infect Microbiol 2012; 2:107. [PMID: 22919696 PMCID: PMC3417468 DOI: 10.3389/fcimb.2012.00107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/24/2012] [Indexed: 12/22/2022] Open
Abstract
Manned space exploration has created a need to evaluate the effects of space-like stress (SLS) on pathogenic and opportunistic microbes. Interestingly, several Gram-negative enteric pathogens, e.g., Salmonella enterica serovar Typhimurium, have revealed a transient hyper-virulent phenotype following simulated microgravity (SMG) or actual space flight exposures. We have explored the virulence potential of Yersinia pestis KIM/D27 (YP) following exposure to mechanical low shear forces associated with SMG. Our experimental results demonstrated that SMG-grown YP was decreased in its induced HeLa cell cytotoxicity, suggesting that SMG somehow compromises T3SS functions. This was confirmed by an actual reduced amount of effector protein production and secretion through the T3SS injectisome. Also, SMG-grown YP proliferated less than their NG-grown counterparts did during an 8-h macrophage infection. Presently, we are evaluating the influence of SMG on various KIM/D27 mutant strains to further understanding of our initial phenomenology described above. Taken together, characterizing YP grown under the low shear forces of SMG can provide new insights into its pathogenesis and potentially uncover new targets that could be exploited for the development of novel antimicrobials as well as potential live-attenuated vaccines.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research, Texas Southern University Houston, TX, USA
| | | |
Collapse
|
22
|
Searles SC, Woolley CM, Petersen RA, Hyman LE, Nielsen-Preiss SM. Modeled microgravity increases filamentation, biofilm formation, phenotypic switching, and antimicrobial resistance in Candida albicans. ASTROBIOLOGY 2011; 11:825-836. [PMID: 21936634 DOI: 10.1089/ast.2011.0664] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Candida albicans is an opportunistic fungal pathogen responsible for a variety of cutaneous and systemic human infections. Virulence of C. albicans increases upon exposure to some environmental stresses; therefore, we explored phenotypic responses of C. albicans following exposure to the environmental stress of low-shear modeled microgravity. Upon long-term (12-day) exposure to low-shear modeled microgravity, C. albicans transitioned from yeast to filamentous forms at a higher rate than observed under control conditions. Consistently, genes associated with cellular morphology were differentially expressed in a time-dependent manner. Biofilm communities, credited with enhanced resistance to environmental stress, formed in the modeled microgravity bioreactor and had a more complex structure than those formed in control conditions. In addition, cells exposed to low-shear modeled microgravity displayed phenotypic switching, observed as a near complete transition from smooth to "hyper" irregular wrinkle colony morphology. Consistent with the presence of biofilm communities and increased rates of phenotypic switching, cells exposed to modeled microgravity were significantly more resistant to the antifungal agent Amphotericin B. Together, these data indicate that C. albicans adapts to the environmental stress of low-shear modeled microgravity by demonstrating virulence-associated phenotypes.
Collapse
Affiliation(s)
- Stephen C Searles
- Immunology and Infectious Diseases, Montana State University , Bozeman, USA
| | | | | | | | | |
Collapse
|