1
|
Alam M, Sitter JD, Vannucci AK, Webster JP, Matiasek SJ, Alpers CN, Baalousha M. Environmentally persistent free radicals and other paramagnetic species in wildland-urban interface fire ashes. CHEMOSPHERE 2024; 363:142950. [PMID: 39069099 DOI: 10.1016/j.chemosphere.2024.142950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Wildland-urban interface (WUI) fires consume fuels, such as vegetation and structural materials, leaving behind ash composed primarily of pyrogenic carbon and metal oxides. However, there is currently limited understanding of the role of WUI fire ash from different sources as a source of paramagnetic species such as environmentally persistent free radicals (EPFRs) and transition metals in the environment. Electron paramagnetic resonance (EPR) was used to detect and quantify paramagnetic species, including organic persistent free radicals and transition metal spins, in fifty-three fire ash and soil samples collected following the North Complex Fire and the Sonoma-Lake-Napa Unit (LNU) Lightning Complex Fire, California, 2020. High concentrations of organic EPFRs (e.g., 1.4 × 1014 to 1.9 × 1017 spins g-1) were detected in the studied WUI fire ash along with other paramagnetic species such as iron and manganese oxides, as well as Fe3+ and Mn2+ ions. The mean concentrations of EPFRs in various ash types decreased following the order: vegetation ash (1.1 × 1017 ± 1.1 × 1017 spins g-1) > structural ash (1.6 × 1016 ± 3.7 × 1016 spins g-1) > vehicle ash (6.4 × 1015 ± 8.6 × 1015 spins g-1) > soil (3.2 × 1015 ± 3.7 × 1015 spins g-1). The mean concentrations of EPFRs decreased with increased combustion completeness indicated by ash color; black (1.1 × 1017 ± 1.1 × 1017 spins g-1) > white (2.5 × 1016 ± 4.4 × 1016 spins g-1) > gray (1.8 × 1016 ± 2.4 × 1016 spins g-1). In contrast, the relative amounts of reduced Mn2+ ions increased with increased combustion completeness. Thus, WUI fire ash is an important global source of EPFRs and reduced metal species (e.g., Mn2+). Further research is needed to underpin the formation, transformation, and environmental and human health impacts of these paramagnetic species in light of the projected increased frequency, size, and severity of WUI fires.
Collapse
Affiliation(s)
- Mahbub Alam
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - James D Sitter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Jackson P Webster
- Department of Civil Engineering, California State University Chico, 400 W 1st St, Chico, CA, 95929, United States
| | - Sandrine J Matiasek
- Department of Earth and Environmental Sciences, California State University Chico, 400 W 1st St, Chico, CA, 95929, United States
| | - Charles N Alpers
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Sacramento, CA, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
2
|
Wu X, Cao M, Han C, Zhang J, Li X, Wan J. Effect of Polymer Encapsulation on the Mechanoluminescence of Mn 2+-Doped CaZnOS. Polymers (Basel) 2024; 16:2389. [PMID: 39274022 PMCID: PMC11397280 DOI: 10.3390/polym16172389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Rare earth and transition metal ion-doped CaZnOS has garnered significant attention for its exceptional mechanoluminescence (ML) performance under mild mechanical stimuli and its capability for multicolor emissions. Since powdered phosphors are not directly usable, they require encapsulation within with polymers to create stable structures. This study investigates Mn2+-doped CaZnOS (CaZnOS:Mn2+) as the ML phosphor, optimizing its performance by varying the Mn2+ content, resulting in bright orange-red emissions from the d-d transitions of the Mn2+ activator. A quantum efficiency of 59.08% was achieved through the self-sensitization of the matrix lattice and energy transfer to the Mn2+ luminescent centers. The enhancement in ML due to Mn2+ doping is attributed to the reduced trap depth and increased trap concentration. Encapsulation with four polymers-PDMS, PU, SIL, and RTV-2-was explored to further optimize ML performance. Among these, PDMS provides the best ML output and sensitivity, owing to its slightly cross-linked structure and good triboelectric properties. The optimized CaZnOS:0.03Mn2+/PDMS composite, featuring excellent flexibility and recoverability, shows great potential for applications in anti-counterfeiting encryption, stress sensors, and wearable devices.
Collapse
Affiliation(s)
- Xiaohan Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mengmeng Cao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Congcong Han
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jinyi Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiangrong Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jieqiong Wan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
3
|
Mo W, Wang H, Wang J, Wang Y, Liu Y, Luo Y, He M, Cheng S, Mei H, He J, Su J. Advances in Research on Bacterial Oxidation of Mn(II): A Visualized Bibliometric Analysis Based on CiteSpace. Microorganisms 2024; 12:1611. [PMID: 39203453 PMCID: PMC11356483 DOI: 10.3390/microorganisms12081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Manganese (Mn) pollution poses a serious threat to the health of animals, plants, and humans. The microbial-mediated Mn(II) removal method has received widespread attention because of its rapid growth, high efficiency, and economy. Mn(II)-oxidizing bacteria can oxidize toxic soluble Mn(II) into non-toxic Mn(III/IV) oxides, which can further participate in the transformation of other heavy metals and organic pollutants, playing a crucial role in environmental remediation. This study aims to conduct a bibliometric analysis of research papers on bacterial Mn(II) oxidation using CiteSpace, and to explore the research hotspots and developmental trends within this field between 2008 and 2023. A series of visualized knowledge map analyses were conducted with 469 screened SCI research papers regarding annual publication quantity, author groups and their countries and regions, journal categories, publishing institutions, and keywords. China, the USA, and Japan published the most significant number of research papers on the research of bacterial Mn(II) oxidation. Research hotspots of bacterial Mn(II) oxidation mainly focused on the species and distributions of Mn(II)-oxidizing bacteria, the influencing factors of Mn(II) oxidation, the mechanisms of Mn(II) oxidation, and their applications in environment. This bibliometric analysis provides a comprehensive visualized knowledge map to quickly understand the current advancements, research hotspots, and academic frontiers in bacterial Mn(II) oxidation.
Collapse
Affiliation(s)
- Wentao Mo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Hang Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Jianghan Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yue Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yunfei Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yi Luo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Minghui He
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Shuang Cheng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Huiting Mei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430062, China;
| | - Jianmei Su
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| |
Collapse
|
4
|
Liang Z, Tian F, Yang G, Wang C. Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat Commun 2023; 14:3591. [PMID: 37328496 DOI: 10.1038/s41467-023-39385-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
Aqueous sodium-ion batteries (AIBs) are promising candidates for large-scale energy storage due to their safe operational properties and low cost. However, AIBs have low specific energy (i.e., <80 Wh kg-1) and limited lifespans (e.g., hundreds of cycles). Mn-Fe Prussian blue analogues are considered ideal positive electrode materials for AIBs, but they show rapid capacity decay due to Jahn-Teller distortions. To circumvent these issues, here, we propose a cation-trapping method that involves the introduction of sodium ferrocyanide (Na4Fe(CN)6) as a supporting salt in a highly concentrated NaClO4-based aqueous electrolyte solution to fill the surface Mn vacancies formed in Fe-substituted Prussian blue Na1.58Fe0.07Mn0.97Fe(CN)6 · 2.65H2O (NaFeMnF) positive electrode materials during cycling. When the engineered aqueous electrolyte solution and the NaFeMnF-based positive electrode are tested in combination with a 3, 4, 9, 10-perylenetetracarboxylic diimide-based negative electrode in a coin cell configuration, a specific energy of 94 Wh kg-1 at 0.5 A g-1 (specific energy based on the active material mass of both electrodes) and a specific discharge capacity retention of 73.4% after 15000 cycles at 2 A g-1 are achieved.
Collapse
Affiliation(s)
- Zhaoheng Liang
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Fei Tian
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Gongzheng Yang
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China.
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China.
| |
Collapse
|
5
|
Chen Q, Li G, Lu Z, Su Y, Wu B, Shi B. Efficient Mn(II) removal by biological granular activated carbon filtration. JOURNAL OF HAZARDOUS MATERIALS 2023:131877. [PMID: 37344241 DOI: 10.1016/j.jhazmat.2023.131877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Sufficient and sustainable manganese(II) removal is a challenging task to prevent Mn-related drinking water discoloration problems. This study investigated Mn(II) removal by granular activated carbon (GAC) filtration under various conditions. The results showed that biological GAC filter columns could reduce Mn(II) from 400 μg/L to 10 μg/L after a short ripening period, while sand filter columns did not show evident Mn(II) removal function. Water quality changes, pretreatment with NaClO and chemogenic MnOx coating on GAC media surface did not influence the Mn(II) removal capacity of GAC filter columns. 16S rRNA gene sequencing showed that the abundance of potential Mn(II)-oxidizing bacteria in the GAC media was similar to that in the sand media. However, qPCR results indicated that GAC media colonized dramatically more biomass than sand media, resulting in highly effective Mn(II) removal by GAC filter columns. Under chlorinated conditions, GAC filtration underperformed sand filtration in Mn(II) removal, although activated carbon has been reported to be capable of catalyzing Mn(II) oxidation by chlorine. Fast chlorine decay in GAC filter columns made it hard to sustain chemical Mn(II) oxidation and thus led to less Mn(II) removal. This study highlighted the advantage of biological GAC filtration over sand filtration in Mn(II) removal.
Collapse
Affiliation(s)
- Qi Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Guiwei Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhili Lu
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Yuliang Su
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, Guangdong 519000, China
| | - Bin Wu
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, Guangdong 519000, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Yu J, Jin B, Ji Q, Wang H. Detoxification and metabolism of glyphosate by a Pseudomonas sp. via biogenic manganese oxidation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130902. [PMID: 36731313 DOI: 10.1016/j.jhazmat.2023.130902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biogenic manganese oxides (BMO) are widely distributed in groundwater and provides promise for adsorbing and oxidizing a wide range of micropollutants, however, the continuous biodegradation and bioavailability of micropollutants via cycle biogenic Mn(II) oxidation remains to be elucidated. In this study, glyphosate was degraded and to serve as the nutrient source by a Pseudomonas sp. QJX-1. The addition of glyphosate will not affect the Mn(II) oxidation function of the strain but will affect its Mn(II) oxidation process and effect. The glyphosate degradation products could further be used as the C, N and P sources for bacterium growth. Analysis of the RNA-seq data suggested that Mn(II) oxidation driven by oxidoreductases for glyphosate degradation. The long-term column experiments using biological Mn(II) cycling to realize continuous detoxification and metabolism of glyphosate, and thus revealed the synergism effects of biological and chemical conversion on toxic micropollutants and continuous metabolism in an aquatic ecosystem.
Collapse
Affiliation(s)
- Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Boxuan Jin
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding 071002, China; College of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Biologically Assisted One-Step Synthesis of Electrode Materials for Li-Ion Batteries. Microorganisms 2023; 11:microorganisms11030603. [PMID: 36985177 PMCID: PMC10058457 DOI: 10.3390/microorganisms11030603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures, under ambient conditions. Controlling the phases formed and their texture on a larger scale may offer environmentally relevant routes to manganese oxide synthesis, with potential technological applications, for example, for energy storage. In the present study, we sought to use biofilms to promote the formation of electroactive minerals and to control the texture of these biominerals down to the electrode scale (i.e., cm scale). We used the bacterium Pseudomonas putida strain MnB1 which can produce manganese oxide in a biofilm. We characterized the biofilm–mineral assembly using a combination of electron microscopy, synchrotron-based X-ray absorption spectroscopy, X-ray diffraction, thermogravimetric analysis and electron paramagnetic resonance spectroscopy. Under optimized conditions of biofilm growth on the surface of current collectors, mineralogical characterizations revealed the formation of several minerals including a slightly crystalline MnOx birnessite. Electrochemical measurements in a half-cell against Li(0) revealed the electrochemical signature of the Mn4+/Mn3+ redox couple indicating the electroactivity of the biomineralized biofilm without any post-synthesis chemical, physical or thermal treatment. These results provide a better understanding of the properties of biomineralized biofilms and their possible use in designing new routes for one-pot electrode synthesis.
Collapse
|
8
|
Takeda A, Oki T, Yokoo H, Kawamoto K, Nakano Y, Ochiai A, Winarni ID, Kitahara M, Miyoshi K, Fukuyama K, Ohara Y, Yamaji K, Ohnuki T, Hochella MF, Utsunomiya S. Direct observation of Mn distribution/speciation within and surrounding a basidiomycete fungus in the production of Mn-oxides important in toxic element containment. CHEMOSPHERE 2023; 313:137526. [PMID: 36513194 DOI: 10.1016/j.chemosphere.2022.137526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Biogenic manganese (Mn) oxides occur ubiquitously in the environment including the uranium (U) mill tailings at the Ningyo-toge U mine in Okayama, Japan, being important in the sequestration of radioactive radium. To understand the nanoscale processes in Mn oxides formation at the U mill tailings site, Mn2+ absorption by a basidiomycete fungus, Coprinopsis urticicola, isolated from Ningyo-toge mine water samples, was investigated in the laboratory under controlled conditions utilizing electron microscopy, synchrotron-based X-ray analysis, and fluorescence microscopy with a molecular pH probe. The fungus' growth was first investigated in an agar-solidified medium supplemented with 1.0 mmol/L Mn2+, and Cu2+ (0-200 μM), Zn2+ (0-200 μM), or diphenyleneiodonium (DPI) chloride (0-100 μM) at 25 °C. The results revealed that Zn2+ has no significant effects on Mn oxide formation, whereas Cu2+ and DPI significantly inhibit both fungal growth and Mn oxidation, indicating superoxide-mediated Mn oxidation. Indeed, nitroblue tetrazolium and diaminobenzidine assays on the growing fungus revealed the production of superoxide and peroxide. During the interaction of Mn2+ with the fungus in solution medium at the initial pH of 5.67, a small fraction of Mn2+ infiltrated the fungal hyphae within 8 h, forming a few tens of nm-sized concentrates of soluble Mn2+ in the intracellular pH of ∼6.5. After 1 day of incubation, Mn oxides began to precipitate on the hyphae, which were characterized as fibrous nanocrystals with a hexagonal birnessite-structure, these forming spherical aggregates with a diameter of ∼1.5 μm. These nanoscale processes associated with the fungal species derived from the Ningyo-toge mine area provide additional insights into the existing mechanisms of Mn oxidation by filamentous fungi at other U mill tailings sites under circumneutral pH conditions. Such processes add to the class of reactions important to the sequestration of toxic elements.
Collapse
Affiliation(s)
- Ayaka Takeda
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takumi Oki
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroki Yokoo
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keisuke Kawamoto
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuriko Nakano
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Asumi Ochiai
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ilma Dwi Winarni
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mitsuki Kitahara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenta Miyoshi
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenjin Fukuyama
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama-ken, 708-0601, Japan
| | - Yoshiyuki Ohara
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama-ken, 708-0601, Japan
| | - Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8572, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Michael F Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA; Earth Systems Science Division, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
9
|
Huld S, McMahon S, Sjöberg S, Huang P, Neubeck A. Chemical Gardens Mimic Electron Paramagnetic Resonance Spectra and Morphology of Biogenic Mn Oxides. ASTROBIOLOGY 2023; 23:24-32. [PMID: 36450112 PMCID: PMC9810355 DOI: 10.1089/ast.2021.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Manganese (Mn) oxides are ubiquitous in nature and occur as both biological and abiotic minerals, but empirically distinguishing between the two remains a problem. Recently, electron paramagnetic resonance (EPR) spectroscopy has been proposed for this purpose. It has been reported that biogenic Mn oxides display a characteristic narrow linewidth in contrast to their pure abiotic counterparts, which is explained in part by the large number of cation vacancies that form within the layers of biogenic Mn oxides. It was, therefore, proposed that natural samples that display a narrow EPR linewidth, ΔHpp < 580G, could be assigned to a biogenic origin. However, in poorly crystalline or amorphous solids, both dipolar broadening and exchange narrowing simultaneously determine the linewidth. Considering that the spectral linewidth is governed by several mechanisms, this approach might be questioned. In this study, we report synthetic chemical garden Mn oxide biomorphs that exhibit both morphologically life-like structures and narrow EPR linewidths, suggesting that a narrow EPR line may be unsuitable as reliable evidence in assessment of biogenicity.
Collapse
Affiliation(s)
- Sigrid Huld
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Susanne Sjöberg
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Ping Huang
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Dangeti S, McBeth JM, Roshani B, Vyskocil JM, Rindall B, Chang W. Microbial communities and biogenic Mn-oxides in an on-site biofiltration system for cold Fe-(II)- and Mn(II)-rich groundwater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136386. [PMID: 31927292 DOI: 10.1016/j.scitotenv.2019.136386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
This study investigated relationships between microbial communities, groundwater chemistry, and geochemical and mineralogical characteristics in field-aged biofilter media from a two-stage, pilot-scale, flow-through biofiltration unit designed to remove Fe(II) and Mn(II) from cold groundwater (8 to 15 °C). High-throughput 16S rRNA gene amplicon sequencing of influent groundwater and biofilter samples (solids, effluents, and backwash water) revealed significant differences in the groundwater, Fe filter, and Mn filter communities. These community differences reflect conditions in each filter that select for populations that biologically oxidize Fe(II) and Mn(II) in the two filters, respectively. Genera identified in both filters included relatives of known Fe(II)-oxidizing bacteria (FeOB), Mn(II)-oxidizing bacteria (MnOB), and ammonia-oxidizing bacteria (AOB). Relatives of AOB and nitrite-oxidizing bacteria were abundant in sequencing reads from both filters. Relatives of FeOB in class Betaproteobacteria dominated the Fe filter. Taxa related to Mn-oxidizing organisms were minor members of the Mn-filter communities; intriguingly, while Alphaproteobacteria dominated (40 ± 10% of sequencing reads) the Mn filter community, these Alphaproteobacteria did not classify as known MnOB. Isolates from Fe and Mn filter backwash enrichment studies provide insight on the identity of MnOB in this system. Novel putative MnOB isolates included Azospirillum sp. CDMB, Solimonas soli CDMK, and Paenibacillus sp. CDME. The isolate Hydrogenophaga strain CDMN can oxidize Mn(II) at 8 °C; this known FeOB is likely capable of Mn(II) oxidation in this system. Synchrotron-based X-ray near-edge spectroscopy (XANES) coupled with electron paramagnetic resonance (EPR) revealed the dominant Mn-oxide that formed was biogenic birnessite. Co-existence of amorphous and crystallized Mn-oxide surface morphologies on the Mn-filter media suggest occurrence of both biological and autocatalytic Mn(II) oxidation in the biofilter. This study provides evidence that biofiltration is a viable approach to remove iron, manganese, and ammonia in cold groundwater systems, and that mineralogical and microbiological approaches can be used to monitor biofiltration system efficacy and function.
Collapse
Affiliation(s)
- Sandeepraja Dangeti
- Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Delco Water Division, Delco Automation, Inc., Saskatoon, SK, Canada
| | - Joyce M McBeth
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Babak Roshani
- Delco Water Division, Delco Automation, Inc., Saskatoon, SK, Canada
| | - Jonathan M Vyskocil
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brian Rindall
- Delco Water Division, Delco Automation, Inc., Saskatoon, SK, Canada
| | - Wonjae Chang
- Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
11
|
Li L, Zhang P, Cao R. Porous manganese oxides synthesized with natural products at room temperature: a superior humidity-tolerant catalyst for ozone decomposition. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00196a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous cerium-doped manganese oxides have been facilely synthesized with dopamine and exhibit prominent activity and humidity tolerance for O3 decomposition.
Collapse
Affiliation(s)
- Lianxin Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Ranran Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
12
|
Lakshman Kumar A, Eashwar M, Sreedhar G, Vengatesan S, Prabu V, Shanmugam VM. Portraying manganese biofilms via a merger of EPR spectroscopy and cathodic polarization. BIOFOULING 2019; 35:768-784. [PMID: 31530181 DOI: 10.1080/08927014.2019.1658747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Microbial biofilms on stainless steel surfaces exposed to water from a freshwater pond were dominated by manganese-oxidizing bacteria, as initially diagnosed by microscopy and elemental analysis. The application of electron paramagnetic resonance (EPR) spectroscopy revealed conspicuous sextet (six-line) patterns that intensified with immersion time, implying the gradual accumulation of Mn(II) in the biofilms. Correspondingly, cathodic polarization designated the manganese oxide (MnOx) reduction peak in the form of a distinctive 'nose', which grew increasingly more negative with biofilm growth. The progressive expansion of cathodic current densities and the concurrent area-under-the-curve also allowed the quantification of microbially mediated MnOx deposition. Furthermore, the merger of EPR and cathodic polarization techniques yielded key insights, in tandem with Mn speciation data, into the pathways of microbial manganese transformations in biofilms, besides providing meaningful interpretations of prevailing literature. Accordingly, the natural freshwater biofilm was inferred as one supporting a complete manganese cycle encompassing multiple redox states.
Collapse
Affiliation(s)
- A Lakshman Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute , Karaikudi , Tamil Nadu , India
- Biofilms and Biogeochemistry Group, Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute , Karaikudi , Tamil Nadu , India
| | - M Eashwar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute , Karaikudi , Tamil Nadu , India
- Biofilms and Biogeochemistry Group, Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute , Karaikudi , Tamil Nadu , India
| | - G Sreedhar
- Electro-Pyrometallurgy Division, CSIR-Central Electrochemical Research Institute , Karaikudi , Tamil Nadu , India
| | - S Vengatesan
- Electro-Inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute , Karaikudi , Tamil Nadu , India
| | - V Prabu
- Central Instrumentation Facility, CSIR-Central Electrochemical Research Institute , Karaikudi , Tamil Nadu , India
| | - V M Shanmugam
- Central Instrumentation Facility, CSIR-Central Electrochemical Research Institute , Karaikudi , Tamil Nadu , India
| |
Collapse
|
13
|
Charbonnet JA, Duan Y, van Genuchten CM, Sedlak DL. Chemical Regeneration of Manganese Oxide-Coated Sand for Oxidation of Organic Stormwater Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10728-10736. [PMID: 30160107 DOI: 10.1021/acs.est.8b03304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Urban stormwater, municipal wastewater effluent, and agricultural runoff contain trace amounts of organic contaminants that can compromise water quality. To provide a passive, low-cost means of oxidizing substituted phenols, aromatic amines, and other electron-rich organic compounds during infiltration of contaminated waters, we coated sand with manganese oxide using a new approach involving the room-temperature oxidation of Mn2+ with permanganate. Manganese oxide-coated sand effectively oxidized bisphenol A under typical infiltration conditions and sustained reactivity longer than previously described geomedia. Because geomedia reactivity decreased after extended operation, chlorine was evaluated for use as an in situ geomedia regenerant. Geomedia regenerated by HOCl demonstrated similar reactivity and longevity to that of virgin geomedia. Chemical analyses indicated that the average manganese oxidation state of the coatings decreased as the geomedia passivated. X-ray absorption spectroscopy and X-ray diffraction showed that the reactive virgin and regenerated geomedia coatings had nanocrystalline manganese oxide structures, whereas the failed geomedia coating exhibited greater crystallinity and resembled cryptomelane. These results suggest that it is possible to regenerate the oxidative capacity of manganese oxide-coated sands without excavating stormwater infiltration systems. These results also suggest that manganese oxide geomedia may be a cost-effective means of treating urban stormwater and other contaminated waters.
Collapse
Affiliation(s)
- Joseph A Charbonnet
- National Science Foundation Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) and Department of Civil & Environmental Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Yanghua Duan
- National Science Foundation Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) and Department of Civil & Environmental Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Case M van Genuchten
- Department of Earth Sciences, Geochemistry, Faculty of Geosciences , Utrecht University , Utrecht 3508TA , The Netherlands
| | - David L Sedlak
- National Science Foundation Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) and Department of Civil & Environmental Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
14
|
Zhao X, Wang X, Liu B, Xie G, Xing D. Characterization of manganese oxidation by Brevibacillus at different ecological conditions. CHEMOSPHERE 2018; 205:553-558. [PMID: 29709806 DOI: 10.1016/j.chemosphere.2018.04.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/01/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Bacterial Mn(II) oxidation plays an important role in the biogeochemical cycling of manganese and many trace metals. This study describes Mn(II) oxidation by two isolated manganese (Mn)-oxidizing strains that were identified and assigned as Brevibacillus brevis MO1 and Brevibacillus parabrevis MO2 based on physiochemical and phylogenetic characterizations. The ecological conditions influenced Mn(II) oxidation by both strains. Mn(II) stimulated the growth of strain MO2 while slightly inhibiting strain MO1. Mn(II)-oxidizing activity of two strains was enhanced with increase of initial pH, and maximum Mn(II)-oxidizing activity occurred at pH 8 for both strains (93.5%-94.0%). Brevibacillus showed the capability of mesophilic and psychrophilic Mn(II) oxidation. X-ray photoelectron spectroscopy (XPS) analysis indicated that the biogenic manganese oxides had an intermediate valence between 3 and 4. These results demonstrated that Brevibacillus, which is capable of oxidizing dissolved Mn(II), will be a suitable strain for exploring the mechanism of manganese oxidation in engineered and natural environments.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guojun Xie
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
15
|
Liu Y, Li Y, Chen N, Ding H, Zhang H, Liu F, Yin H, Chu S, Wang C, Lu A. Cu(ii) sorption by biogenic birnessite produced by Pseudomonas putida strain MnB1: structural differences from abiotic birnessite and its environmental implications. CrystEngComm 2018. [DOI: 10.1039/c7ce02168b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu(ii) adsorbs predominantly at the layer edges of abiobirnessite, but at vacancies in bio-birnessite with larger interlayer space.
Collapse
|
16
|
Kölbl D, Pignitter M, Somoza V, Schimak MP, Strbak O, Blazevic A, Milojevic T. Exploring Fingerprints of the Extreme Thermoacidophile Metallosphaera sedula Grown on Synthetic Martian Regolith Materials as the Sole Energy Sources. Front Microbiol 2017; 8:1918. [PMID: 29062303 PMCID: PMC5640722 DOI: 10.3389/fmicb.2017.01918] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 12/04/2022] Open
Abstract
The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0) and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52) as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.
Collapse
Affiliation(s)
- Denise Kölbl
- Extremophiles Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Mario P Schimak
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Amir Blazevic
- Extremophiles Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Tetyana Milojevic
- Extremophiles Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Ivarsson M, Broman C, Gustafsson H, Holm NG. Biogenic Mn-Oxides in Subseafloor Basalts. PLoS One 2015; 10:e0128863. [PMID: 26107948 PMCID: PMC4479566 DOI: 10.1371/journal.pone.0128863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/03/2015] [Indexed: 11/18/2022] Open
Abstract
The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Department of Palaeobiology and the Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Stockholm, Sweden
- * E-mail:
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Håkan Gustafsson
- Department of Biomedical Engineering (MTÖ), County Council of Östergötland, Radiation Physics, Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Nils G. Holm
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Bruins JH, Petrusevski B, Slokar YM, Huysman K, Joris K, Kruithof JC, Kennedy MD. Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters. WATER RESEARCH 2015; 69:154-161. [PMID: 25463936 DOI: 10.1016/j.watres.2014.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/25/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
The efficiency of manganese removal in conventional groundwater treatment consisting of aeration followed by rapid sand filtration, strongly depends on the ability of filter media to promote auto-catalytic adsorption of dissolved manganese and its subsequent oxidation. Earlier studies have shown that the compound responsible for the auto-catalytic activity in ripened filters is a manganese oxide called Birnessite. The aim of this study was to determine if the ripening of manganese removal filters and the formation of Birnessite on virgin sand is initiated biologically or physico-chemically. The ripening of virgin filter media in a pilot filter column fed by pre-treated manganese containing groundwater was studied for approximately 600 days. Samples of filter media were taken at regular time intervals, and the manganese oxides formed in the coating were analysed by Raman spectroscopy, Electron Paramagnetic Resonance (EPR) and Scanning Electron Microscopy (SEM). From the EPR analyses, it was established that the formation of Birnessite was most likely initiated via biological activity. With the progress of filter ripening and development of the coating, Birnessite formation became predominantly physico-chemical, although biological manganese oxidation continued to contribute to the overall manganese removal. The knowledge that manganese removal in conventional groundwater treatment is initiated biologically could be of help in reducing typically long ripening times by creating conditions that are favourable for the growth of manganese oxidizing bacteria.
Collapse
Affiliation(s)
- Jantinus H Bruins
- WLN, Rijksstraatweg 85, 9756 AD, Glimmen, The Netherlands; UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands; Technical University Delft, Stevinweg 1, 2628 CN, Delft, The Netherlands.
| | - Branislav Petrusevski
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Yness M Slokar
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Koen Huysman
- Pidpa Department of Process Technology and Water Quality, Desguinlei 246, 2018 Antwerp, Belgium
| | - Koen Joris
- Pidpa Department of Process Technology and Water Quality, Desguinlei 246, 2018 Antwerp, Belgium
| | - Joop C Kruithof
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands; Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, The Netherlands
| | - Maria D Kennedy
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands; Technical University Delft, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
19
|
Pei Y, Chen X, Xiong D, Liao S, Wang G. Removal and recovery of toxic silver ion using deep-sea bacterial generated biogenic manganese oxides. PLoS One 2013; 8:e81627. [PMID: 24312566 PMCID: PMC3847083 DOI: 10.1371/journal.pone.0081627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Products containing silver ion (Ag+) are widely used, leading to a large amount of Ag+-containing waste. The deep-sea manganese-oxidizing bacterium Marinobacter sp. MnI7-9 efficiently oxidizes Mn2+ to generate biogenic Mn oxide (BMO). The potential of BMO for recovering metal ions by adsorption has been investigated for some ions but not for Ag+. The main aim of this study was to develop effective methods for adsorbing and recovering Ag using BMO produced by Marinobacter sp. MnI7-9. In addition, the adsorption mechanism was determined using X-ray photoelectron spectroscopy analysis, specific surface area analysis, adsorption kinetics and thermodynamics. The results showed that BMO had a higher adsorption capacity for Ag+ compared to the chemical synthesized MnO2 (CMO). The isothermal absorption curves of BMO and CMO both fit the Langmuir model well and the maximum adsorption capacities at 28°C were 8.097 mmol/g and 0.787 mmol/g, for BMO and CMO, respectively. The change in enthalpy (ΔHθ) for BMO was 59.69 kJ/mol indicating that it acts primarily by chemical adsorption. The change in free energy (ΔGθ) for BMO was negative, which suggests that the adsorption occurs spontaneously. Ag+ adsorption by BMO was driven by entropy based on the positive ΔSθ values. The Ag+ adsorption kinetics by BMO fit the pseudo-second order model and the apparent activation energy of Ea is 21.72 kJ/mol. X-ray photoelectron spectroscopy analysis showed that 15.29% Ag+ adsorbed by BMO was transferred to Ag(0) and meant that redox reaction had happened during the adsorption. Desorption using nitric acid and Na2S completely recovered the Ag. The results show that BMO produced by strain MnI7-9 has potential for bioremediation and reutilization of Ag+-containing waste.
Collapse
Affiliation(s)
- Yuanjun Pei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Wuhan, P. R. of China
| | - Xiao Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Wuhan, P. R. of China
- State Key Laboratory of Agricultural Microbiology, College of Basic Sciences, Huazhong Agricultural University, Wuhan, P. R. of China
| | - Dandan Xiong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Wuhan, P. R. of China
| | - Shuijiao Liao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Wuhan, P. R. of China
- State Key Laboratory of Agricultural Microbiology, College of Basic Sciences, Huazhong Agricultural University, Wuhan, P. R. of China
- * E-mail: (GW); (SL)
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Wuhan, P. R. of China
- * E-mail: (GW); (SL)
| |
Collapse
|
20
|
Gourier D, Delpoux O, Binet L, Vezin H. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites. ASTROBIOLOGY 2013; 13:932-947. [PMID: 24093546 DOI: 10.1089/ast.2013.0971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.
Collapse
Affiliation(s)
- Didier Gourier
- 1 TGE Réseau National de RPE interdisciplinaire (RENARD, FR-CNRS 3443)
| | | | | | | |
Collapse
|