1
|
Tran TQ, Riechelmann S, Banning A, Wohnlich S. Environmental relevance monitoring and assessment of ochreous precipitates, hydrochemistry and water sources from abandoned coal mine drainage. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:700. [PMID: 38963476 PMCID: PMC11224094 DOI: 10.1007/s10661-024-12858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the mineralogical and chemical characteristics of ochreous precipitates and mine water samples from abandoned Upper Carboniferous hard coal mines in an extensive former mining area in western Germany. Mine water characteristics have been monitored and assessed using a multi-methodological approach. Thirteen mine water discharge locations were sampled for hydrochemical analysis, with a total of 46 water samples seasonally collected in the whole study area for stable isotopic analyses. Mineralogical composition of 13 ochreous precipitates was identified by a combination of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM/EDS). Results showed that abandoned mine drainage was characterized by circumneutral pH, Eh values ranging from 163 to 269 mV, relatively low concentrations of Fe and Mn, and was dominated by HCO3- > SO42- > Cl- > NO3- and Na+ > Ca2+ > Mg2+ > K+. Goethite and ferrihydrite were the dominant precipitated Fe minerals, with traces of quartz, dolomite, and clay minerals. Some metal and metalloid elements (Mn, Al, Si, and Ti) were found in the ochreous sediments. The role of bacteria in the formation of secondary minerals was assessed with the detection of Leptothrix ochracea. The δ18O and δ2H values of mine water plotted on and close to the GMWL and LMWLs indicated local derivation from meteoric water and represented the annual mean precipitation isotopic composition. Results might help to develop strategies for the management of water resources, contaminated mine water, and public health.
Collapse
Affiliation(s)
- Tuan Quang Tran
- Department of Hydrogeochemistry and Hydrogeology, Institute of Geology, Mineralogy and Geophysics, Faculty of Geosciences, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
- Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, No. 18, Pho Vien, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam.
| | - Sylvia Riechelmann
- Department of Sediment and Isotope Geology, Institute of Geology, Mineralogy and Geophysics, Faculty of Geosciences, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Andre Banning
- Department of Applied Geology, Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17A, 17489, Greifswald, Germany
| | - Stefan Wohnlich
- Department of Hydrogeochemistry and Hydrogeology, Institute of Geology, Mineralogy and Geophysics, Faculty of Geosciences, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
2
|
Narihara S, Chida S, Matsunaga N, Akimoto R, Akimoto M, Hagio A, Mori T, Nittami T, Sato M, Mun S, Kang H, Back JH, Takeda M. Taxonomic characterization of Sphaerotilus microaerophilus sp. nov., a sheath-forming microaerophilic bacterium of activated sludge origin. Arch Microbiol 2024; 206:252. [PMID: 38727820 PMCID: PMC11087309 DOI: 10.1007/s00203-024-03991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
A microaerophilic Gram-stain-negative bacilliform bacterial strain, FB-5 T, was isolated from activated sludge in Yokohama, Japan, that exhibited filamentous growth and formed a microtube (sheath). Cells were motile using a single polar flagellum. The optimum growth temperature and pH were 30 °C and 7.5, respectively. Strain FB-5 T was catalase-negative. Peptides and amino acids were utilized as energy and carbon sources. Sugars and organic acids were not utilized. Vitamin B12 enhanced the growth of strain FB-5 T. Sulfur-dependent lithotrophic growth was possible. Major respiratory quinone was UQ-8. Major fatty acids were C16:1ω7 and C16:0. The genomic DNA G + C content was 69.16%. Phylogenetic analysis of the 16S rRNA gene suggested that strain FB-5 T belongs to the genus Sphaerotilus. The close relatives were S. natans subsup. sulfidivorans and S. natans subsup. natans with 98.0% and 97.8% similarity based on the 16S rRNA gene analysis, respectively. The genome size (6.06 Mbp) was larger than that (4.39-5.07 Mbp) of the Sphaerotilus strains. The AAI values against the related strains ranged from 71.0 to 72.5%. The range of ANI values was 81.7 - 82.5%. In addition to these distinguishable features of the genome, the core genome and dDDH analyses suggested that this strain is a novel member of the genus Sphaerotilus. Based on its physiological properties and genomic features, strain FB-5 T is considered as a novel species of the genus Sphaerotilus, for which the name S. microaerophilus sp. nov. is proposed. The type strain is FB-5 T (= JCM 35424 T = KACC 23146 T).
Collapse
Affiliation(s)
- Shiori Narihara
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan
| | - Shun Chida
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan
| | - Naoki Matsunaga
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan
| | - Ryosuke Akimoto
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan
| | - Mizuki Akimoto
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan
| | - Aoi Hagio
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan
| | - Tomomi Mori
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan
| | - Tadashi Nittami
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan
| | - Michio Sato
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, 214-8571, Japan
| | - Sehui Mun
- Department of Food Science and Nutrition, Gwangju University, 277, Hyodeok-Ro, Nam-Gu, Gwangju, 61743, Korea
| | - Hyeonjin Kang
- Department of Food Science and Nutrition, Gwangju University, 277, Hyodeok-Ro, Nam-Gu, Gwangju, 61743, Korea
| | - Ji Hwan Back
- Department of Food Science and Nutrition, Gwangju University, 277, Hyodeok-Ro, Nam-Gu, Gwangju, 61743, Korea
| | - Minoru Takeda
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama, 240-8501, Japan.
| |
Collapse
|
3
|
Brooks CN, Field EK. Microbial community response to hydrocarbon exposure in iron oxide mats: an environmental study. Front Microbiol 2024; 15:1388973. [PMID: 38800754 PMCID: PMC11116660 DOI: 10.3389/fmicb.2024.1388973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Hydrocarbon pollution is a widespread issue in both groundwater and surface-water systems; however, research on remediation at the interface of these two systems is limited. This interface is the oxic-anoxic boundary, where hydrocarbon pollutant from contaminated groundwaters flows into surface waters and iron mats are formed by microaerophilic iron-oxidizing bacteria. Iron mats are highly chemically adsorptive and host a diverse community of microbes. To elucidate the effect of hydrocarbon exposure on iron mat geochemistry and microbial community structure and function, we sampled iron mats both upstream and downstream from a leaking underground storage tank. Hydrocarbon-exposed iron mats had significantly higher concentrations of oxidized iron and significantly lower dissolved organic carbon and total dissolved phosphate than unexposed iron mats. A strong negative correlation between dissolved phosphate and benzene was observed in the hydrocarbon-exposed iron mats and water samples. There were positive correlations between iron and other hydrocarbons with benzene in the hydrocarbon-exposed iron mats, which was unique from water samples. The hydrocarbon-exposed iron mats represented two types, flocculent and seep, which had significantly different concentrations of iron, hydrocarbons, and phosphate, indicating that iron mat is also an important context in studies of freshwater mats. Using constrained ordination, we found the best predictors for community structure to be dissolved oxygen, pH, and benzene. Alpha diversity and evenness were significantly lower in hydrocarbon-exposed iron mats than unexposed mats. Using 16S rDNA amplicon sequences, we found evidence of three putative nitrate-reducing iron-oxidizing taxa in microaerophile-dominated iron mats (Azospira, Paracoccus, and Thermomonas). 16S rDNA amplicons also indicated the presence of taxa that are associated with hydrocarbon degradation. Benzene remediation-associated genes were found using metagenomic analysis both in exposed and unexposed iron mats. Furthermore, the results indicated that season (summer vs. spring) exacerbates the negative effect of hydrocarbon exposure on community diversity and evenness and led to the increased abundance of numerous OTUs. This study represents the first of its kind to attempt to understand how contaminant exposure, specifically hydrocarbons, influences the geochemistry and microbial community of freshwater iron mats and further develops our understanding of hydrocarbon remediation at the land-water interface.
Collapse
Affiliation(s)
- Chequita N. Brooks
- Department of Biology, East Carolina University, Greenville, NC, United States
- Louisiana Universities Marine Consortium, Chauvin, LA, United States
| | - Erin K. Field
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
4
|
Samanta B, Sharma S, Budhwar R. Metagenome Analysis of Speleothem Microbiome from Subterranean Cave Reveals Insight into Community Structure, Metabolic Potential, and BGCs Diversity. Curr Microbiol 2023; 80:317. [PMID: 37561193 DOI: 10.1007/s00284-023-03431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
The Borra caves, the second largest subterranean karst cave ecosystem in the Indian sub-continent, are located at the Ananthagiri hills of Araku Valley in the Alluri district of Andhra Pradesh, India. The present investigation applied a shotgun metagenomic approach to gain insights into the microbial community structure, metabolic potential, and biosynthetic gene cluster (BGC) diversity of the microbes colonizing the surface of the speleothems from the aphotic zone of Borra caves. The taxonomic analysis of the metagenome data illustrated that the speleothem-colonizing core microbial community was dominated mainly by Alpha-, Beta-, and Gamma-Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The key energy metabolic pathways analysis provides strong evidence of chemolithoautotrophic and chemoheterotrophic modes of nutrition in the speleothem-colonizing microbial community. Metagenome data suggests that sulfur reducers and sulfur-disproportionating microbes might play a vital role in energy generation in this ecosystem. Our metagenome data also suggest that the dissimilatory nitrifiers and nitrifying denitrifiers might play an essential role in conserving nitrogen pools in the ecosystem. Furthermore, metagenome-wide BGCs mining retrieved 451 putative BGCs; NRPS was the most abundant (24%). Phylogenetic analysis of the C domain of NRPS showed that sequences were distributed across all six function categories of the known C domain, including several novel subclades. For example, a novel subclade had been recovered within the LCL domain clade as a sister subclade of immunosuppressant cyclosporin encoding C domain sequences. Our result suggested that subterranean cave microbiomes might be a potential reservoir of novel microbial metabolites.
Collapse
Affiliation(s)
- Brajogopal Samanta
- Department of Microbiology and FST, GITAM School of Science, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Shivasmi Sharma
- Bionivid Technology Private Limited, Bengaluru, Karnataka, 560043, India
| | - Roli Budhwar
- Bionivid Technology Private Limited, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
5
|
Zhu HZ, Jiang CY, Liu SJ. Microbial roles in cave biogeochemical cycling. Front Microbiol 2022; 13:950005. [PMID: 36246268 PMCID: PMC9554484 DOI: 10.3389/fmicb.2022.950005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Among fundamental research questions in subterranean biology, the role of subterranean microbiomes playing in key elements cycling is a top-priority one. Karst caves are widely distributed subsurface ecosystems, and cave microbes get more and more attention as they could drive cave evolution and biogeochemical cycling. Research have demonstrated the existence of diverse microbes and their participance in biogeochemical cycling of elements in cave environments. However, there are still gaps in how these microbes sustain in caves with limited nutrients and interact with cave environment. Cultivation of novel cave bacteria with certain functions is still a challenging assignment. This review summarized the role of microbes in cave evolution and mineral deposition, and intended to inspire further exploration of microbial performances on C/N/S biogeocycles.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Demaret L, Hutchinson IB, Ingley R, Edwards HGM, Fagel N, Compere P, Javaux EJ, Eppe G, Malherbe C. Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy. ASTROBIOLOGY 2022; 22:1081-1098. [PMID: 35704291 DOI: 10.1089/ast.2021.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
On Earth, the circulation of Fe-rich fluids in hydrothermal environments leads to characteristic iron mineral deposits, reflecting the pH and redox chemical conditions of the hydrothermal system, and is often associated with chemotroph microorganisms capable of deriving energy from chemical gradients. On Mars, iron-rich hydrothermal sites are considered to be potentially important astrobiological targets for searching evidence of life during exploration missions, such as the Mars 2020 and the ExoMars 2022 missions. In this study, an extinct hydrothermal chimney from the Jaroso hydrothermal system (SE Spain), considered an interesting geodynamic and mineralogical terrestrial analog for Mars, was analyzed using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The sample consists of a fossil vent in a Miocene shallow-marine sedimentary deposit composed of a marl substrate, an iron-rich chimney pipe, and a central space filled with backfilling deposits and vent condensates. The iron crust is particularly striking due to the combined presence of molecular and morphological indications of a microbial colonization, including mineral microstructures (e.g., stalks, filaments), iron oxyhydroxide phases (altered goethite, ferrihydrite), and organic signatures (carotenoids, organopolymers). The clear identification of pigments by resonance Raman spectroscopy and the preservation of organics in association with iron oxyhydroxides by Raman microimaging demonstrate that the iron crust was indeed colonized by microbial communities. These analyses confirm that Raman spectroscopy is a powerful tool for documenting the habitability of such historical hydrothermal environments. Finally, based on the results obtained, we propose that the ancient iron-rich hydrothermal pipes should be recognized as singular terrestrial Mars analog specimens to support the preparatory work for robotic in situ exploration missions to Mars, as well as during the subsequent interpretation of data returned by those missions.
Collapse
Affiliation(s)
- Lucas Demaret
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liege, Liege, Belgium
| | - Ian B Hutchinson
- Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
| | - Richard Ingley
- Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
| | - Howell G M Edwards
- Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
| | - Nathalie Fagel
- Laboratory Argiles, Géochimie et Environnements Sédimentaires, University of Liege, Liege, Belgium
| | - Philippe Compere
- Laboratory of Functional and Evolutionary Morphology, UR FOCUS, and Centre for Applied Research and Education in Microscopy (CAREM), University of Liege, Liege, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liege, Liege, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Cédric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liege, Liege, Belgium
- Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
7
|
Abstract
Freshwater iron mats are dynamic geochemical environments with broad ecological diversity, primarily formed by the iron-oxidizing bacteria. The community features functional groups involved in biogeochemical cycles for iron, sulfur, carbon, and nitrogen. Despite this complexity, iron mat communities provide an excellent model system for exploring microbial ecological interactions and ecological theories in situ Syntrophies and competition between the functional groups in iron mats, how they connect cycles, and the maintenance of these communities by taxons outside bacteria (the eukaryota, archaea, and viruses) have been largely unstudied. Here, we review what is currently known about freshwater iron mat communities, the taxa that reside there, and the interactions between these organisms, and we propose ways in which future studies may uncover exciting new discoveries. For example, the archaea in these mats may play a greater role than previously thought as they are diverse and widespread in iron mats based on 16S rRNA genes and include methanogenic taxa. Studies with a holistic view of the iron mat community members focusing on their diverse interactions will expand our understanding of community functions, such as those involved in pollution removal. To begin addressing questions regarding the fundamental interactions and to identify the conditions in which they occur, more laboratory culturing techniques and coculture studies, more network and keystone species analyses, and the expansion of studies to more freshwater iron mat systems are necessary. Increasingly accessible bioinformatic, geochemical, and culturing tools now open avenues to address the questions that we pose herein.
Collapse
Affiliation(s)
- Chequita N Brooks
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
8
|
Chan CS, McAllister SM, Leavitt AH, Glazer BT, Krepski ST, Emerson D. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments. Front Microbiol 2016; 7:796. [PMID: 27313567 PMCID: PMC4888753 DOI: 10.3389/fmicb.2016.00796] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/11/2016] [Indexed: 11/13/2022] Open
Abstract
Microbes form mats with architectures that promote efficient metabolism within a particular physicochemical environment, thus studying mat structure helps us understand ecophysiology. Despite much research on chemolithotrophic Fe-oxidizing bacteria, Fe mat architecture has not been visualized because these delicate structures are easily disrupted. There are striking similarities between the biominerals that comprise freshwater and marine Fe mats, made by Beta- and Zetaproteobacteria, respectively. If these biominerals are assembled into mat structures with similar functional morphology, this would suggest that mat architecture is adapted to serve roles specific to Fe oxidation. To evaluate this, we combined light, confocal, and scanning electron microscopy of intact Fe microbial mats with experiments on sheath formation in culture, in order to understand mat developmental history and subsequently evaluate the connection between Fe oxidation and mat morphology. We sampled a freshwater sheath mat from Maine and marine stalk and sheath mats from Loihi Seamount hydrothermal vents, Hawaii. Mat morphology correlated to niche: stalks formed in steeper O2 gradients while sheaths were associated with low to undetectable O2 gradients. Fe-biomineralized filaments, twisted stalks or hollow sheaths, formed the highly porous framework of each mat. The mat-formers are keystone species, with nascent marine stalk-rich mats comprised of novel and uncommon Zetaproteobacteria. For all mats, filaments were locally highly parallel with similar morphologies, indicating that cells were synchronously tracking a chemical or physical cue. In the freshwater mat, cells inhabited sheath ends at the growing edge of the mat. Correspondingly, time lapse culture imaging showed that sheaths are made like stalks, with cells rapidly leaving behind an Fe oxide filament. The distinctive architecture common to all observed Fe mats appears to serve specific functions related to chemolithotrophic Fe oxidation, including (1) removing Fe oxyhydroxide waste without entombing cells or clogging flow paths through the mat and (2) colonizing niches where Fe(II) and O2 overlap. This work improves our understanding of Fe mat developmental history and how mat morphology links to metabolism. We can use these results to interpret biogenicity, metabolism, and paleoenvironmental conditions of Fe microfossil mats, which would give us insight into Earth's Fe and O2 history.
Collapse
Affiliation(s)
- Clara S Chan
- School of Marine Science and Policy, University of DelawareNewark, DE, USA; Geological Sciences, University of DelawareNewark, DE, USA
| | - Sean M McAllister
- School of Marine Science and Policy, University of DelawareNewark, DE, USA; Geological Sciences, University of DelawareNewark, DE, USA
| | - Anna H Leavitt
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - Brian T Glazer
- Department of Oceanography, University of Hawaii Honolulu, HI, USA
| | - Sean T Krepski
- Geological Sciences, University of Delaware Newark, DE, USA
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| |
Collapse
|
9
|
Shabarova T, Widmer F, Pernthaler J. Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environ Microbiol 2013; 15:2476-88. [PMID: 23614967 DOI: 10.1111/1462-2920.12124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Abstract
We investigated the transformations of the microbial communities in epiphreatic karst cave pools with different flooding frequencies. Fingerprinting of 16S rRNA genes was combined with microscopic and sequence analysis to examine if source water would transport comparable microbial inocula into the pools at consecutive flood events, and to assess possible effects of residence time on the microbial assemblages during stagnant periods. Variability in the concentrations of dissolved organic carbon and conductivity indicated differences between floods and changes of pool water over time. High numbers of Betaproteobacteria affiliated with Methylophilaceae and Comamonadaceae were introduced into the pools during floodings. While the former persisted in the pools, the latter exhibited considerable microdiversification. These Betaproteobacteria might thus represent core microbial groups in karst water. A decrease in the estimated total diversity of the remaining bacterial taxa was apparent after a few weeks of residence: Some were favoured by stagnant conditions, whereas the majority was rapidly outcompeted. Thus, the microbial communities consisted of different components governed by complementary assembly mechanisms (dispersal versus environmental filtering) upon introduction into the pools. High overlap of temporary and persistent community members between samplings from two winters, moreover, reflected the seasonal recurrence of the studied microbial assemblages.
Collapse
Affiliation(s)
- Tanja Shabarova
- Limnological Station, Institute of Plant Biology, University of Zurich, Seestr. 187, CH-8802, Kilchberg, Switzerland
| | | | | |
Collapse
|