1
|
Tan G, LeCates CN, Simpson A, Holtzen S, Parris DJ, Stewart FJ, Stockton A. Amplicon Sequencing Reveals Diversity in Spatially Separated Microbial Communities in the Icelandic Mars Analog Environment Mælifellssandur. ASTROBIOLOGY 2025; 25:72-81. [PMID: 39792461 DOI: 10.1089/ast.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Exploration missions to Mars rely on landers or rovers to perform multiple analyses over geographically small sampling regions, while landing site selection is done using large-scale but low-resolution remote-sensing data. Utilizing Earth analog environments to estimate small-scale spatial and temporal variation in key geochemical signatures and biosignatures will help mission designers ensure future sampling strategies meet mission science goals. Icelandic lava fields can serve as Mars analog sites due to conditions that include low nutrient availability, temperature extremes, desiccation, and isolation from anthropogenic contamination. This work reports analysis of samples collected using methods analogous to those of planetary missions to characterize microbial communities at different spatial scales in Mælifellssandur, Iceland, an environment with homogeneity at "remote imaging" resolution (overall temperature, apparent moisture content, and regolith grain size). Although microbial richness did not vary significantly among samples, the phylogenetic composition of the sediment microbiome differed significantly among sites separated by 100 m, which suggests distinct microbial signatures despite apparent homogeneity from remote observations. This work highlights the importance of considering microenvironments in future life-detection missions to extraterrestrial planetary bodies.
Collapse
Affiliation(s)
- George Tan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chloe N LeCates
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna Simpson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Jet Propulsion Laboratory, Pasadena, California, USA
| | - Samuel Holtzen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - D Joshua Parris
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Kimberly-Clark Corporation, Roswell, Georgia, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Amanda Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Bonaccorsi R, Glass B, Moreno-Paz M, García-Villadangos M, Warren-Rhodes K, Parro V, Manchado JM, Wilhelm MB, McKay CP. In Situ Real-Time Monitoring for Aseptic Drilling: Lessons Learned from the Atacama Rover Astrobiology Drilling Studies Contamination Control Strategy and Implementation and Application to the Icebreaker Mars Life Detection Mission. ASTROBIOLOGY 2023; 23:1303-1336. [PMID: 38133823 DOI: 10.1089/ast.2022.0133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.
Collapse
Affiliation(s)
- Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - Kimberley Warren-Rhodes
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | |
Collapse
|
3
|
Madzunkova S, Nikolić D. Method for Accurate Detection of Amino Acids and Mycotoxins in Planetary Atmospheres. Life (Basel) 2022; 12:2122. [PMID: 36556487 PMCID: PMC9784085 DOI: 10.3390/life12122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We present a systematic analysis of a large number of mass spectra accumulated as the number of ion fragments recorded in unit mass-to-charge detector channels. The method retrieves the abundances of detected species using an efficient deconvolution algorithm, which relies on fragment pattern recognition, mass calibration, and background correction. The abundance analysis identifies target species, amino acids, and mycotoxins through their characteristic fragmentation patterns in the presence of an increasing number of interfering species. The method offered robust and efficient retrieval of abundances of metabolic molecules in complex mixtures obscured by a wide range of toxic compounds.
Collapse
Affiliation(s)
- Sigrid Madzunkova
- La Cañada High School, 4463 Oak Grove Dr, La Cañada Flintridge, CA 91011, USA
| | - Dragan Nikolić
- California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| |
Collapse
|
4
|
Fabre V, Carcenac F, Laborde A, Doucet JB, Vieu C, Louarn P, Trevisiol E. Hierarchical Superhydrophobic Device to Concentrate and Precisely Localize Water-Soluble Analytes: A Route to Environmental Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14249-14260. [PMID: 36368024 DOI: 10.1021/acs.langmuir.2c01690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient superhydrophobic concentrator is developed using a hierarchical superhydrophobic surface on which the evaporation of a sessile droplet (6 μL) drives the nonvolatile elements it contains on a predefined micrometric analytical surface (pedestal of 80 μm diameter). This hierarchical silicon surface exhibits a surface texture made of etched nanopillars and consists of micropillars and guiding lines, arranged in radial symmetry around the central pedestal. The guiding lines ensure the overall convergence of the sessile droplet toward the central pedestal during evaporation. The nanopillar texturing induced a delay in the Cassie-Baxter to Wenzel regime transition, until the edge of the droplet reaches the periphery of the pedestal. Experiments performed with polymer microparticles suspended in ultrapure water or with DNA molecules solubilized in ultrapure water at sub-fM concentrations demonstrated that the totality of the nonvolatile elements in the liquid microvolume is delivered on or close to the pedestal area, in a very reproducible manner. The very high concentration capacity of the device enabled the discrimination of the degree of purity of ultrapure water samples from different origins. The concentrator also turned out to be functional for raw water samples, opening possible applications to environmental analysis.
Collapse
Affiliation(s)
- Victor Fabre
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Franck Carcenac
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | - Adrian Laborde
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | | | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | - Philippe Louarn
- IRAP, CNRS, Université de Toulouse, CNES, 31400 Toulouse, France
| | | |
Collapse
|
5
|
Enya K, Yamagishi A, Kobayashi K, Yoshimura Y. Comparative study of methods for detecting extraterrestrial life in exploration mission of Mars and the solar system. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:53-67. [PMID: 35940690 DOI: 10.1016/j.lssr.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The detection and analysis of extraterrestrial life are important issues of space science. Mars is among the most important planets to explore for extraterrestrial life, owing both to its physical properties and to its ancient and present environments as revealed by previous exploration missions. In this paper, we present a comparative study of methods for detecting extraterrestrial life and life-related substances. To this end, we have classified and summarized the characteristics targeted for the detection of extraterrestrial life in solar system exploration mission and the methods used to evaluate them. A summary table is presented. We conclude that at this moment (i) there is no realistic single detection method capable of concluding the discovery of extraterrestrial life, (ii) no single method has an advantage over the others in all respects, and (iii) there is no single method capable of distinguishing extraterrestrial life from terrestrial life. Therefore, a combination of complementary methods is essential. We emphasize the importance of endeavoring to detect extraterrestrial life without overlooking possible alien life forms, even at the cost of tolerating false positives. Summaries of both the targets and the detection methods should be updated continuously, and comparative studies of both should be pursued. Although this study assumes Mars to be a model site for the primary environment for life searches, both the targets and detection methods described herein will also be useful for searching for extraterrestrial life in any celestial environment and for the initial inspection of returned samples.
Collapse
Affiliation(s)
- Keigo Enya
- Institute of Space & Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou, Sagamihara, Kanagawa 252-5210, Japan.
| | - Akihiko Yamagishi
- School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kensei Kobayashi
- Department of Chemistry, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Yoshitaka Yoshimura
- Department of Life Science, Tamagawa University, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| |
Collapse
|
6
|
Laboratory experiment of ATP measurement using Mars soil simulant: as a method for extraterrestrial life detection. ANAL SCI 2022; 38:725-730. [PMID: 35286642 PMCID: PMC9013681 DOI: 10.1007/s44211-022-00081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/06/2022] [Indexed: 12/04/2022]
Abstract
We present a laboratory experiment of ATP measurement using Mars soil simulant and Escherichia coli (E. coli) with a point of view for future application to searching extraterrestrial life. We used Mars Global Simulant MGS-1 (Exolith Lab) as soil simulant, added E. coli suspension to it, then the soil simulant with E. coli was dried. Various configurations of samples with different E. coli density, 1.75 × 102, 1.75 × 103, 1.75 × 104, 1.75 × 105, and 1.75 × 106 cells (g soil)−1, were prepared together with controls. ATP extraction reagent and luminescence reagent were added to the sample, and bioluminescence measurement was performed. The result suggests significant detection of ATP for samples with E. coli density used in this work. Similar experiments but without the soil simulant were carried out, and results with and without the soil simulant are compared. Based on the ATP measurement studied in this work, we discussed extraterrestrial life search, planetary protection, relation with the panspermia hypothesis, and also other applications.
Collapse
|
7
|
Raymond-Bouchard I, Maggiori C, Brennan L, Altshuler I, Manchado JM, Parro V, Whyte LG. Assessment of Automated Nucleic Acid Extraction Systems in Combination with MinION Sequencing As Potential Tools for the Detection of Microbial Biosignatures. ASTROBIOLOGY 2022; 22:87-103. [PMID: 34962136 DOI: 10.1089/ast.2020.2349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The utilization of nanopore technologies for the detection of organic biogenic compounds has garnered significant focus in recent years. Oxford Nanopore Technologies' (ONT) MinION instrument, which can detect and sequence nucleic acids (NAs), is one such example. These technologies have much promise for unambiguous life detection but require significant development in terms of methods for extraction and preparation of NAs for biosignature detection and their feasibility for use in astrobiology-focused field missions. In this study, we tested pre-existing, automated, or semiautomated NA extraction technologies, coupled with automated ONT VolTRAX NA sample preparation, and verification with Nanopore MinION sequencing. All of the extraction systems tested (SuperFastPrep2, ClaremontX1, and SOLID-Sample Preparation Unit) showed potential for extracting DNA from Canadian High Arctic environments analogous to Mars, Europa, and Enceladus, which could subsequently be detected and sequenced with the MinION. However, they differed with regard to efficacy, yield, purity, and sequencing and annotation quality. Overall, bead beating-based systems performed the best for these parameters. In addition, we showed that the MinION could sequence unpurified DNA contained in crude cell lysates. This is valuable from an astrobiology perspective because purification steps are time-consuming and complicate the requirements for an automated extraction and life detection system. Our results indicate that semiautomated NA extraction and preparation technologies hold much promise, and with increased optimization and automation could be coupled to a larger platform incorporating nanopore detection and sequencing of NAs for life detection applications.
Collapse
Affiliation(s)
| | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Laura Brennan
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | | | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| |
Collapse
|
8
|
Ryan CH, Daly MG, Brady AL, Slater GF, Lim DSS. Organic Material Distribution in Mars-Analog Volcanic Rocks, as Determined with Ultraviolet Laser-Induced Fluorescence Spectroscopy. ASTROBIOLOGY 2021; 21:981-996. [PMID: 34406806 DOI: 10.1089/ast.2020.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the distribution of trace organic material in a rocky environment is a key to constraining the material requirements for sustaining microbial life. We used an ultraviolet laser-induced fluorescence (LIF) spectroscopy instrument to characterize the distribution of organic biosignatures in basalts collected from two Mars-analog environments. We correlated the fluorescence results with alteration-related sample properties. These samples exhibit a range of alteration conditions found in the volcanic environments of Hawai'i Volcanoes National Park, Hawai'i (HI), and Craters of the Moon National Monument, Idaho (ID), including fumarolic systems. LIF mapping of the sample surfaces and interiors showed a heterogeneous distribution of areas of highly fluorescent material (point[s]-of-interest [POIs])-with fluorescence characteristics indicative of organic material. Results suggest that POIs are associated with secondary alteration mineral deposits in the rock's vesicles, including zeolites and calcite. Scanning electron microscopy with electron-dispersive X-ray spectroscopy was used to characterize the mineralogy present at POIs and support the evidence of carbon-bearing material. Overall, samples collected proximate to active or relict meteoric fumaroles from Hawai'i were shown to contain evidence for organic deposits. This suggests that these minerals are measurable spectroscopic targets that may be used to inform sample-site selection for astrobiology research.
Collapse
Affiliation(s)
- Catheryn H Ryan
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
| | - Michael G Daly
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
| | - Allyson L Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Canada
| | - Greg F Slater
- National Aeronautics and Space Administration Ames Research Center, Moffett Field, California, USA
| | - Darlene S S Lim
- National Aeronautics and Space Administration Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
9
|
Marshall SM, Mathis C, Carrick E, Keenan G, Cooper GJT, Graham H, Craven M, Gromski PS, Moore DG, Walker SI, Cronin L. Identifying molecules as biosignatures with assembly theory and mass spectrometry. Nat Commun 2021; 12:3033. [PMID: 34031398 PMCID: PMC8144626 DOI: 10.1038/s41467-021-23258-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
The search for alien life is hard because we do not know what signatures are unique to life. We show why complex molecules found in high abundance are universal biosignatures and demonstrate the first intrinsic experimentally tractable measure of molecular complexity, called the molecular assembly index (MA). To do this we calculate the complexity of several million molecules and validate that their complexity can be experimentally determined by mass spectrometry. This approach allows us to identify molecular biosignatures from a set of diverse samples from around the world, outer space, and the laboratory, demonstrating it is possible to build a life detection experiment based on MA that could be deployed to extraterrestrial locations, and used as a complexity scale to quantify constraints needed to direct prebiotically plausible processes in the laboratory. Such an approach is vital for finding life elsewhere in the universe or creating de-novo life in the lab.
Collapse
Affiliation(s)
| | - Cole Mathis
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Emma Carrick
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Graham Keenan
- School of Chemistry, University of Glasgow, Glasgow, UK
| | | | - Heather Graham
- Astrobiology Analytical Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | | | - Douglas G Moore
- Beyond Centre for Concepts in Fundamental Science, Arizona State University, Tempe, AZ, USA
| | - Sara I Walker
- Beyond Centre for Concepts in Fundamental Science, Arizona State University, Tempe, AZ, USA
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
10
|
Cockell CS. Persistence of Habitable, but Uninhabited, Aqueous Solutions and the Application to Extraterrestrial Environments. ASTROBIOLOGY 2020; 20:617-627. [PMID: 32105517 DOI: 10.1089/ast.2019.2179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In most environments on Earth, habitable environments contain life. Experiments were conducted to investigate the decoupling of the presence of habitable conditions and life. A set of microcosms habitable for known groups of organisms, but uninhabited (i.e., uninhabited habitats), was exposed to external environmental conditions to test the hypothesis that extreme habitable environments can remain uninhabited for sustained time periods. These microcosms were made of tubes containing liquid water and inorganic N, P, and S. Organics (used as electron donors and as a C source) were provided as L and D amino acids. One set of uninhabited habitats contained no additional salts, one set contained saturated NaCl, and one set contained saturated MgSO4. A ddH2O control and a complex medium for Halobacterium were used as controls. The presence of organisms was tested by enumeration of colonists and sequencing of extracted DNA. At each time point, inoculation into fresh medium was used to test for growth of organisms. After 1 week, the "no salt" and saturated MgSO4 solutions were colonized. After 6 months, both the NaCl-saturated and Halobacterium solutions remained uninhabited, but all other samples were colonized. These experiments demonstrate that certain types of habitable liquid water environments exposed to microbial atmospheric inoculation, even on Earth, can remain devoid of reproducing life for many months. On other planetary bodies, such as Mars, these data imply the possibility of preserved transient water bodies that would record habitable conditions, but no evidence of life, even if life existed elsewhere on the planet.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, James Clerk Maxwell Building, The King's Buildings, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Shen Q, Mahoney D, Peltzer J, Rahman F, Krueger KJ, Hiebert JB, Pierce JD. Using the NIH symptom science model to understand fatigue and mitochondrial bioenergetics. ACTA ACUST UNITED AC 2020; 7. [PMID: 33628458 DOI: 10.7243/2056-9157-7-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The symptom of fatigue is prevalent among patients with chronic diseases and conditions such as congestive heart failure and cancer. It has a significant debilitating impact on patients' physical health, quality of life, and well-being. Early detection and appropriate assessment of fatigue is essential for diagnosing, treating, and monitoring disease progression. However, it is often challenging to manage the symptom of fatigue without first investigating the underlying biological mechanisms. In this narrative review, we conceptualize the symptom of fatigue and its relationship with mitochondrial bioenergetics using the National Institute of Health Symptom Science Model (NIH-SSM). In particular, we discuss mental and physical measures to assess fatigue, the importance of adenosine triphosphate (ATP) in cellular and organ functions, and how impaired ATP production contributes to fatigue. Specific methods to measure ATP are described. Recommendations are provided concerning how to integrate biological mechanisms with the symptom of fatigue for future research and clinical practice to help alleviate symptoms and improve patients' quality of life.
Collapse
Affiliation(s)
- Qiuhua Shen
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Diane Mahoney
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Jill Peltzer
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Faith Rahman
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Kathryn J Krueger
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - John B Hiebert
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Janet D Pierce
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| |
Collapse
|
12
|
Cockell CS, Harrison JP, Stevens AH, Payler SJ, Hughes SS, Kobs Nawotniak SE, Brady AL, Elphic R, Haberle CW, Sehlke A, Beaton KH, Abercromby AF, Schwendner P, Wadsworth J, Landenmark H, Cane R, Dickinson AW, Nicholson N, Perera L, Lim DS. A Low-Diversity Microbiota Inhabits Extreme Terrestrial Basaltic Terrains and Their Fumaroles: Implications for the Exploration of Mars. ASTROBIOLOGY 2019; 19:284-299. [PMID: 30840501 PMCID: PMC6442273 DOI: 10.1089/ast.2018.1870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A major objective in the exploration of Mars is to test the hypothesis that the planet hosted life. Even in the absence of life, the mapping of habitable and uninhabitable environments is an essential task in developing a complete understanding of the geological and aqueous history of Mars and, as a consequence, understanding what factors caused Earth to take a different trajectory of biological potential. We carried out the aseptic collection of samples and comparison of the bacterial and archaeal communities associated with basaltic fumaroles and rocks of varying weathering states in Hawai'i to test four hypotheses concerning the diversity of life in these environments. Using high-throughput sequencing, we found that all these materials are inhabited by a low-diversity biota. Multivariate analyses of bacterial community data showed a clear separation between sites that have active fumaroles and other sites that comprised relict fumaroles, unaltered, and syn-emplacement basalts. Contrary to our hypothesis that high water flow environments, such as fumaroles with active mineral leaching, would be sites of high biological diversity, alpha diversity was lower in active fumaroles compared to relict or nonfumarolic sites, potentially due to high-temperature constraints on microbial diversity in fumarolic sites. A comparison of these data with communities inhabiting unaltered and weathered basaltic rocks in Idaho suggests that bacterial taxon composition of basaltic materials varies between sites, although the archaeal communities were similar in Hawai'i and Idaho. The taxa present in both sites suggest that most of them obtain organic carbon compounds from the atmosphere and from phototrophs and that some of them, including archaeal taxa, cycle fixed nitrogen. The low diversity shows that, on Earth, extreme basaltic terrains are environments on the edge of sustaining life with implications for the biological potential of similar environments on Mars and their exploration by robots and humans.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Address correspondence to: Charles S. Cockell, School of Physics and Astronomy, University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, UK
| | - Jesse P. Harrison
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Samuel J. Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Scott S. Hughes
- Department of Geosciences, Idaho State University, Pocatello, Idaho, USA
| | | | - Allyson L. Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Canada
| | - R.C. Elphic
- NASA Ames Research Center, Mountain View, California, USA
| | | | | | | | - Andrew F.J. Abercromby
- Biomedical Research & Environmental Sciences Division (SK), NASA Johnson Space Center, Houston, Texas, USA
| | - Petra Schwendner
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jennifer Wadsworth
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Hanna Landenmark
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Rosie Cane
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Andrew W. Dickinson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Liam Perera
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Darlene S.S. Lim
- NASA Ames Research Center, Mountain View, California, USA
- Bay Area Environmental Research Institute (BAERI), Moffett Field, California, USA
| |
Collapse
|
13
|
Brady AL, Kobs Nawotniak SE, Hughes SS, Payler SJ, Stevens AH, Cockell CS, Elphic RC, Sehlke A, Haberle CW, Slater GF, Lim DS. Strategic Planning Insights for Future Science-Driven Extravehicular Activity on Mars. ASTROBIOLOGY 2019; 19:347-368. [PMID: 30840500 PMCID: PMC6442241 DOI: 10.1089/ast.2018.1850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/08/2018] [Indexed: 05/26/2023]
Abstract
Short-term and long-term science plans were developed as part of the strategic planning process used by the Biologic Analog Science Associated with Lava Terrains (BASALT) science team to conduct two Mars-simulation missions investigating basalt habitability at terrestrial volcanic analog sites in 2016. A multidisciplinary team of scientists generated and codified a range of scientific hypotheses distilled into a Science Traceability Matrix (STM) that defined the set of objectives pursued in a series of extravehicular activity (EVA) campaigns performed across multiple field deployments. This STM was used to guide the pre-deployment selection of sampling stations within the selected Mars analog sites on the Earth based on precursor site information such as multispectral imagery. It also informed selection of hand-held instruments and observational data to collect during EVA to aid sample selection through latency-impacted interaction with an Earth-based Science Support Team. A significant portion of the pre-deployment strategic planning activities were devoted to station selection, ultimately the locations used for sample collection and EVA planning. During development of the EVAs, the BASALT science team identified lessons learned that could be used to inform future missions and analog activities, including the critical need for high-resolution precursor imagery that would enable the selection of stations that could meet the scientific objectives outlined in the STM.
Collapse
Affiliation(s)
- Allyson L. Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Canada
| | | | - Scott S. Hughes
- Department of Geosciences, Idaho State University, Pocatello, Idaho
| | - Samuel J. Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Greg F. Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, Canada
| | - Darlene S.S. Lim
- NASA Ames Research Center, Moffett Field, California
- Bay Area Environmental Research Institute (BAERI), NASA Research Park, Moffett Field, California
| |
Collapse
|