1
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Armas-Vázquez MZ, González-Espinoza CE, Segura A, Heredia A, Miranda-Rosete A. Impact of M Dwarfs Ultraviolet Radiation on Prebiotic Chemistry: The Case of Adenine. ASTROBIOLOGY 2023; 23:705-722. [PMID: 37115581 DOI: 10.1089/ast.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, several exoplanets have been found to orbit within the habitable zone of main sequence M stars (M dwarfs). These stars exhibit different levels of chromospheric activity that produces ultraviolet (UV) radiation. UV may be harmful to life, but it can also trigger reactions of prebiotic importance on the surface of a potentially habitable planet (PHP). We created a code to obtain the adenine yield for a known adenine synthesis route from diaminomaleonitrile (DAMN). We used computational methods to calculate the reaction coefficient rates (photolysis rate J and rate constant K) for the intermediate molecules DAMN, diaminofumaronitrile (DAFN), and 4-aminoimidazole-5-carbonitrile (AICN) of the adenine synthesis route. We used stellar UV sources and a mercury lamp to compare the theoretical results with experiments performed with lamps. The surface UV flux of planets in the habitable zone of two active M dwarfs (Proxima Centauri and AD Leonis) and the prebiotic Earth was calculated using the photochemical model ATMOS, considering a CO2-N2-H2O atmosphere. We obtained UV absorption coefficients for DAMN and DAFN and thermodynamic parameters that are useful for prebiotic chemistry studies. According to our results, experiments using UV lamps may underestimate the photolysis production of molecules of prebiotic importance. Our results indicate that photolysis reactions are fast with a yield of 50% of AICN in 10 s for the young Sun and ∼1 h for Proxima Centauri b. Planets around active M dwarfs may provide the most favorable environment for UV-mediated production of compounds relevant to the origins of life. The kinetic reaction AICN + HCN adenine is the bottleneck of the pathway with reaction rates <10-22 L/(mol·s).
Collapse
Affiliation(s)
- M Zulema Armas-Vázquez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | | | - Antígona Segura
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Alejandro Heredia
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Arturo Miranda-Rosete
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| |
Collapse
|
3
|
Retallack GJ. Soil Carbon Dioxide Planetary Thermostat. ASTROBIOLOGY 2022; 22:116-123. [PMID: 35020414 DOI: 10.1089/ast.2020.2415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological regulation of planetary temperature has been explained with the Daisyworld model, in which reflective-cooling white daises balance absorbing-warming black daisies. This article advances the proposition that cooling "daisies" of Daisyworld represent carbon sequestration and consumption by productive soils and ecosystems, such as grasslands expanding into deserts and tropical forests migrating toward the poles. On the other hand, warming "daisies" represent continued CO2 emissions from volcanoes and springs allowed by unproductive frigid and desert ecosystems. Greenhouse spikes of CO2 in deep time from large perturbations, such as flood basalt eruptions and asteroid impacts, did not continue as lethal runaway greenhouses, such as Venus, nor did low CO2 of ice ages decline to a sterile global snowball, such as Mars. These hypotheses are quantified and tested by new global soil maps derived from paleosols of the last extremes of atmospheric CO2: middle Miocene (16 Ma) and last glacial maximum (20 ka), when CO2 levels were 588 ± 72 and 180 ppm, respectively. Observed expansion of productive soils curbed large atmospheric injections of CO2 in deep time and observed expansion of unproductive soils during ice ages of low CO2 was thwarted by continued metamorphic and volcanic degassing. This short-term Soilworld thermostat of biogeographic redistribution of ecosystems supplemented long-term evolution of terrestrial carbon sequestration curbing solar radiation increases over billions of years. Similar agricultural management of ecosystems has potential for short-term carbon sequestration.
Collapse
|
4
|
Bility MT, Agarwal Y, Ho S, Castronova I, Beatty C, Biradar S, Narala V, Periyapatna N, Chen Y, Nachega J. WITHDRAWN: Can Traditional Chinese Medicine provide insights into controlling the COVID-19 pandemic: Serpentinization-induced lithospheric long-wavelength magnetic anomalies in Proterozoic bedrocks in a weakened geomagnetic field mediate the aberrant transformation of biogenic molecules in COVID-19 via magnetic catalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020:142830. [PMID: 33071142 PMCID: PMC7543923 DOI: 10.1016/j.scitotenv.2020.142830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
This article has been withdrawn at the request of the authors and the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Moses Turkle Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America.
| | - Yash Agarwal
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| | - Cole Beatty
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| | - Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| | - Vanshika Narala
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| | - Nivitha Periyapatna
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| | - Yue Chen
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| | - Jean Nachega
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, United States of America
| |
Collapse
|