1
|
Wang J, Nikolayev AA, Marks JH, Turner AM, Chandra S, Kleimeier NF, Young LA, Mebel AM, Kaiser RI. Interstellar Formation of Nitrogen Heteroaromatics [Indole, C 8H 7N; Pyrrole, C 4H 5N; Aniline, C 6H 5NH 2]: Key Precursors to Amino Acids and Nucleobases. J Am Chem Soc 2024. [PMID: 39370877 DOI: 10.1021/jacs.4c09449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) are not only fundamental building blocks in the prebiotic synthesis of vital biomolecules such as amino acids and nucleobases of DNA and RNA but also a potential source of the prominent unidentified 6.2 μm interstellar absorption band. Although NPAHs have been detected in meteorites and are believed to be ubiquitous in the universe, their formation mechanisms in deep space have remained largely elusive. Here, we report the first bottom-up formation pathways to the simplest prototype of NPAHs, indole (C8H7N), along with its building blocks pyrrole (C4H5N) and aniline (C6H5NH2) in low-temperature model interstellar ices composed of acetylene (C2H2) and ammonia (NH3). Utilizing the isomer-selective techniques of resonance-enhanced multiphoton ionization and tunable vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, indole, pyrrole, and aniline were identified in the gas phase, suggesting that they are promising candidates for future astronomical searches in star-forming regions. Our laboratory experiments utilizing infrared spectroscopy and mass spectrometry in tandem with electronic structure calculations reveal critical insights into the reaction pathways toward NPAHs and their precursors, thus advancing our fundamental understanding of the interstellar formation of aromatic proteinogenic amino acids and nucleobases, key classes of molecules central to the Origins of Life.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | | | - Joshua H Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Andrew M Turner
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Sankhabrata Chandra
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - N Fabian Kleimeier
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Leslie A Young
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado 80302, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
2
|
Lammer H, Scherf M, Sproß L. Eta-Earth Revisited I: A Formula for Estimating the Maximum Number of Earth-Like Habitats. ASTROBIOLOGY 2024; 24:897-915. [PMID: 39481024 DOI: 10.1089/ast.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In this hypothesis article, we discuss the basic requirements of planetary environments where aerobe organisms can grow and survive, including atmospheric limitations of millimeter-to-meter-sized biological animal life based on physical limits and O2, N2, and CO2 toxicity levels. By assuming that animal-like extraterrestrial organisms adhere to similar limits, we define Earth-like habitats (EH) as rocky exoplanets in the habitable zone for complex life that host N2-O2-dominated atmospheres with minor amounts of CO2, at which advanced animal-like life or potentially even extraterrestrial intelligent life can in principle evolve and exist. We then derive a new formula that can be used to estimate the maximum occurrence rate of such Earth-like habitats in the Galaxy. This contains realistic probabilistic arguments that can be fine-tuned and constrained by atmospheric characterization with future space and ground-based telescopes. As an example, we briefly discuss two specific requirements feeding into our new formula that, although not quantifiable at present, will become scientifically quantifiable in the upcoming decades due to future observations of exoplanets and their atmospheres. Key Words: Eta-Earth-Earth-like habitats-oxygenation time-nitrogen atmospheres-carbon dioxide-animal-like life. Astrobiology 24, 897-915.
Collapse
Affiliation(s)
- Helmut Lammer
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Manuel Scherf
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
| | - Laurenz Sproß
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
3
|
The Evolution of Nitric Oxide Function: From Reactivity in the Prebiotic Earth to Examples of Biological Roles and Therapeutic Applications. Antioxidants (Basel) 2022; 11:antiox11071222. [PMID: 35883712 PMCID: PMC9311577 DOI: 10.3390/antiox11071222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
Nitric oxide was once considered to be of marginal interest to the biological sciences and medicine; however, there is now wide recognition, but not yet a comprehensive understanding, of its functions and effects. NO is a reactive, toxic free radical with numerous biological targets, especially metal ions. However, NO and its reaction products also play key roles as reductant and oxidant in biological redox processes, in signal transduction, immunity and infection, as well as other roles. Consequently, it can be sensed, metabolized and modified in biological systems. Here, we present a brief overview of the chemistry and biology of NO—in particular, its origins in geological time and in contemporary biology, its toxic consequences and its critical biological functions. Given that NO, with its intrinsic reactivity, appeared in the early Earth’s atmosphere before the evolution of complex lifeforms, we speculate that the potential for toxicity preceded biological function. To examine this hypothesis, we consider the nature of non-biological and biological targets of NO, the evolution of biological mechanisms for NO detoxification, and how living organisms generate this multifunctional gas.
Collapse
|
4
|
Jusino-Maldonado M, Rianço-Silva R, Mondal JA, Pasek M, Laneuville M, Cleaves HJ. A global network model of abiotic phosphorus cycling on Earth through time. Sci Rep 2022; 12:9348. [PMID: 35672423 PMCID: PMC9174171 DOI: 10.1038/s41598-022-12994-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Phosphorus (P) is a crucial structural component of living systems and central to modern bioenergetics. P cycles through terrestrial geochemical reservoirs via complex physical and chemical processes. Terrestrial life has altered these fluxes between reservoirs as it evolved, which is why it is of interest to explore planetary P flux evolution in the absence of biology. This is especially true, since environmental P availability affects life’s ability to alter other geochemical cycles, which could then be an example of niche construction. Understanding how P reservoir transport affects environmental P availability helps parameterize how the evolution of P reservoirs influenced the emergence of life on Earth, and potentially other planetary bodies. Geochemical P fluxes likely change as planets evolve, and element cycling models that take those changes into account can provide insights on how P fluxes evolve abiotically. There is considerable uncertainty in many aspects of modern and historical global P cycling, including Earth’s initial P endowment and distribution after core formation and how terrestrial P interactions between reservoirs and fluxes and their rates have evolved over time. We present here a dynamical box model for Earth’s abiological P reservoir and flux evolution. This model suggests that in the absence of biology, long term planetary geochemical cycling on planets similar to Earth with respect to geodynamism tends to bring P to surface reservoirs, and biology, including human civilization, tends to move P to subductable marine reservoirs.
Collapse
Affiliation(s)
- Marcos Jusino-Maldonado
- Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Arecibo, Puerto Rico.,Blue Marble Space Institute of Science, Seattle, USA
| | - Rafael Rianço-Silva
- Blue Marble Space Institute of Science, Seattle, USA.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Javed Akhter Mondal
- Blue Marble Space Institute of Science, Seattle, USA.,Department of Geology, University of Calcutta, Kolkata, 700019, India
| | | | | | - H James Cleaves
- Blue Marble Space Institute of Science, Seattle, USA. .,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan. .,Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, DC, USA.
| |
Collapse
|
5
|
Zang X, Ueno Y, Kitadai N. Photochemical Synthesis of Ammonia and Amino Acids from Nitrous Oxide. ASTROBIOLOGY 2022; 22:387-398. [PMID: 35196128 DOI: 10.1089/ast.2021.0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abiotic synthesis of ammonia (NH3) and amino acids is important for the origin of life and early evolution. Ammonia and organic nitrogen species may be produced from nitrous oxide (N2O), which is a second abundant nitrogen species in the atmosphere. Here, we report a new photochemical experiment and evaluate whether N2O can be used as a nitrogen source for prebiotic synthesis in the atmosphere. We conducted a series of experiments by using a gas mixture of N2O+CO, N2O+CO2, or N2O + H2 in the presence of liquid water. The results demonstrate that NH3, methylamine (CH3NH2), and some amino acids such as glycine, alanine, and serine can be synthesized through photochemistry from N2O even without metal catalysts. NH3 can be produced not only from CO + N2O, but also from H2+N2O. Glycine can be synthesized from CH3NH2 and CO2, which can be produced from N2O and CO under ultraviolet irradiation. Our work demonstrates, for the first time, that N2O could be an important nitrogen source and provide a new process for synthesizing ammonia and organic nitrogen species, which has not been previously considered. The contribution of organic synthesis from N2O should, therefore, be considered when discussing the prebiotic chemistry on primitive Earth.
Collapse
Affiliation(s)
- Xiaofeng Zang
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Yuichiro Ueno
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
- Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of Technology, Tokyo, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Norio Kitadai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
6
|
Ranjan S, Kufner CL, Lozano GG, Todd ZR, Haseki A, Sasselov DD. UV Transmission in Natural Waters on Prebiotic Earth. ASTROBIOLOGY 2022; 22:242-262. [PMID: 34939825 PMCID: PMC8968845 DOI: 10.1089/ast.2020.2422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
Ultraviolet (UV) light plays a key role in surficial theories of the origin of life, and numerous studies have focused on constraining the atmospheric transmission of UV radiation on early Earth. However, the UV transmission of the natural waters in which origins-of-life chemistry (prebiotic chemistry) is postulated to have occurred is poorly constrained. In this work, we combine laboratory and literature-derived absorption spectra of potential aqueous-phase prebiotic UV absorbers with literature estimates of their concentrations on early Earth to constrain the prebiotic UV environment in marine and terrestrial natural waters, and we consider the implications for prebiotic chemistry. We find that prebiotic freshwaters were largely transparent in the UV, contrary to assumptions in some models of prebiotic chemistry. Some waters, such as high-salinity waters like carbonate lakes, may be deficient in shortwave (≤220 nm) UV flux. More dramatically, ferrous waters can be strongly UV-shielded, particularly if the Fe2+ forms highly UV-absorbent species such as F e C N 6 4 - . Such waters may be compelling venues for UV-averse origin-of-life scenarios but are unfavorable for some UV-dependent prebiotic chemistries. UV light can trigger photochemistry even if attenuated through photochemical transformations of the absorber (e.g., e a q - production from halide irradiation), which may have both constructive and destructive effects for prebiotic syntheses. Prebiotic chemistries that invoke waters that contain such absorbers must self-consistently account for the chemical effects of these transformations. The speciation and abundance of Fe2+ in natural waters on early Earth is a major uncertainty and should be prioritized for further investigation, as it played a major role in UV transmission in prebiotic natural waters.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics and Astronomy, Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, Illinois, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Corinna L. Kufner
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | | | - Zoe R. Todd
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Azra Haseki
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard College, Cambridge, Massachusetts, USA
| | | |
Collapse
|
7
|
Lichtenberg T, Bower DJ, Hammond M, Boukrouche R, Sanan P, Tsai S, Pierrehumbert RT. Vertically Resolved Magma Ocean-Protoatmosphere Evolution: H 2, H 2O, CO 2, CH 4, CO, O 2, and N 2 as Primary Absorbers. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2020JE006711. [PMID: 33777608 PMCID: PMC7988593 DOI: 10.1029/2020je006711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution, even though these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. Here, we present a coupled numerical framework that links an evolutionary, vertically resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Using this method, we investigate the early evolution of idealized Earth-sized rocky planets with end-member, clear-sky atmospheres dominated by either H2, H2O, CO2, CH4, CO, O2, or N2. We find central metrics of early planetary evolution, such as energy gradient, sequence of mantle solidification, surface pressure, or vertical stratification of the atmosphere, to be intimately controlled by the dominant volatile and outgassing history of the planet. Thermal sequences fall into three general classes with increasing cooling timescale: CO, N2, and O2 with minimal effect, H2O, CO2, and CH4 with intermediate influence, and H2 with several orders of magnitude increase in solidification time and atmosphere vertical stratification. Our numerical experiments exemplify the capabilities of the presented modeling framework and link the interior and atmospheric evolution of rocky exoplanets with multiwavelength astronomical observations.
Collapse
Affiliation(s)
- Tim Lichtenberg
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | - Dan J. Bower
- Center for Space and HabitabilityUniversity of BernBernSwitzerland
| | - Mark Hammond
- Department of the Geophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Ryan Boukrouche
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | - Patrick Sanan
- Institute of Geophysics, Department of Earth SciencesETH ZurichZurichSwitzerland
| | - Shang‐Min Tsai
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | | |
Collapse
|
8
|
Gebauer S, Grenfell JL, Lammer H, de Vera JPP, Sproß L, Airapetian VS, Sinnhuber M, Rauer H. Atmospheric Nitrogen When Life Evolved on Earth. ASTROBIOLOGY 2020; 20:1413-1426. [PMID: 33121251 DOI: 10.1089/ast.2019.2212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The amount of nitrogen (N2) present in the atmosphere when life evolved on our planet is central for understanding the production of prebiotic molecules and, hence, is a fundamental quantity to constrain. Estimates of atmospheric molecular nitrogen partial surface pressures during the Archean, however, widely vary in the literature. In this study, we apply a model that combines newly gained insights into atmospheric escape, magma ocean duration, and outgassing evolution. Results suggest <420 mbar surface molecular nitrogen at the time when life originated, which is much lower compared with estimates in previous works and hence could impact our understanding of the production rate of prebiotic molecules such as hydrogen cyanide. Our revised values provide new input for atmospheric chamber experiments that simulate prebiotic chemistry on the early Earth. Our results that assume negligible nitrogen escape rates are in agreement with research based on solidified gas bubbles and the oxidation of iron in micrometeorites at 2.7 Gyr ago, which suggest that the atmospheric pressure was probably less than half the present-day value. Our results contradict previous studies that assume N2 partial surface pressures during the Archean were higher than those observed today and suggest that, if the N2 partial pressure were low in the Archean, it would likely be low in the Hadean as well. Furthermore, our results imply a biogenic nitrogen fixation rate from 9 to 14 Teragram N2 per year (Tg N2/year), which is consistent with modern marine biofixation rates and, hence, indicate an oceanic origin of this fixation process.
Collapse
Affiliation(s)
- Stefanie Gebauer
- Institute for Planetary Research (PF), German Aerospace Centre (DLR), Berlin, Germany
| | - John Lee Grenfell
- Institute for Planetary Research (PF), German Aerospace Centre (DLR), Berlin, Germany
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | | | - Laurenz Sproß
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
- Institute for Physics, University of Graz, Graz, Austria
| | - Vladimir S Airapetian
- NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
- American University, NW Washington, District of Columbia, USA
| | - Miriam Sinnhuber
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Heike Rauer
- Institute for Planetary Research (PF), German Aerospace Centre (DLR), Berlin, Germany
- Institute for Geological Sciences, Planetology and Remote Sensing, Freie Universität Berlin (FUB), Berlin, Germany
- Centre for Astronomy and Astrophysics, Technische Universität Berlin (TUB), Berlin, Germany
| |
Collapse
|
9
|
|
10
|
Chan MA, Hinman NW, Potter-McIntyre SL, Schubert KE, Gillams RJ, Awramik SM, Boston PJ, Bower DM, Des Marais DJ, Farmer JD, Jia TZ, King PL, Hazen RM, Léveillé RJ, Papineau D, Rempfert KR, Sánchez-Román M, Spear JR, Southam G, Stern JC, Cleaves HJ. Deciphering Biosignatures in Planetary Contexts. ASTROBIOLOGY 2019; 19:1075-1102. [PMID: 31335163 PMCID: PMC6708275 DOI: 10.1089/ast.2018.1903] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/10/2019] [Indexed: 05/05/2023]
Abstract
Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology & Geophysics, University of Utah, Salt Lake City, Utah
| | - Nancy W. Hinman
- Department of Geosciences, University of Montana, Missoula, Montana
| | | | - Keith E. Schubert
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas
| | - Richard J. Gillams
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Electronics and Computer Science, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Stanley M. Awramik
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California
| | - Penelope J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California
| | - Dina M. Bower
- Department of Astronomy, University of Maryland College Park (CRESST), College Park, Maryland
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | | | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Penelope L. King
- Research School of Earth Sciences, The Australian National University, Canberra, Australia
| | - Robert M. Hazen
- Geophysical Laboratory, Carnegie Institution for Science, Washington, District of Columbia
| | - Richard J. Léveillé
- Department of Earth and Planetary Sciences, McGill University, Montreal, Canada
- Geosciences Department, John Abbott College, Sainte-Anne-de-Bellevue, Canada
| | - Dominic Papineau
- London Centre for Nanotechnology, University College London, London, United Kingdom
- Department of Earth Sciences, University College London, London, United Kingdom
- Centre for Planetary Sciences, University College London, London, United Kingdom
- BioGeology and Environmental Geology State Key Laboratory, School of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado
| | - Mónica Sánchez-Román
- Earth Sciences Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Henderson James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, New Jersey
| |
Collapse
|
11
|
Lammer H, Sproß L, Grenfell JL, Scherf M, Fossati L, Lendl M, Cubillos PE. The Role of N 2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats. ASTROBIOLOGY 2019; 19:927-950. [PMID: 31314591 DOI: 10.1089/ast.2018.1914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the Archean, N2 has been a major atmospheric constituent in Earth's atmosphere. Nitrogen is an essential element in the building blocks of life; therefore, the geobiological nitrogen cycle is a fundamental factor in the long-term evolution of both Earth and Earth-like exoplanets. We discuss the development of Earth's N2 atmosphere since the planet's formation and its relation with the geobiological cycle. Then we suggest atmospheric evolution scenarios and their possible interaction with life-forms: first for a stagnant-lid anoxic world, second for a tectonically active anoxic world, and third for an oxidized tectonically active world. Furthermore, we discuss a possible demise of present Earth's biosphere and its effects on the atmosphere. Since life-forms are the most efficient means for recycling deposited nitrogen back into the atmosphere at present, they sustain its surface partial pressure at high levels. Also, the simultaneous presence of significant N2 and O2 is chemically incompatible in an atmosphere over geological timescales. Thus, we argue that an N2-dominated atmosphere in combination with O2 on Earth-like planets within circumstellar habitable zones can be considered as a geo-biosignature. Terrestrial planets with such atmospheres will have an operating tectonic regime connected with an aerobic biosphere, whereas other scenarios in most cases end up with a CO2-dominated atmosphere. We conclude with implications for the search for life on Earth-like exoplanets inside the habitable zones of M to K stars.
Collapse
Affiliation(s)
- Helmut Lammer
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Laurenz Sproß
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
- 2Institute of Physics, University of Graz, Graz, Austria
| | - John Lee Grenfell
- 3Department of Extrasolar Planets and Atmospheres, German Aerospace Center, Institute of Planetary Research, Berlin, Germany
| | - Manuel Scherf
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Luca Fossati
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Monika Lendl
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | | |
Collapse
|
12
|
|
13
|
Stanton CL, Reinhard CT, Kasting JF, Ostrom NE, Haslun JA, Lyons TW, Glass JB. Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration. GEOBIOLOGY 2018; 16:597-609. [PMID: 30133143 DOI: 10.1111/gbi.12311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 05/26/2023]
Abstract
The potent greenhouse gas nitrous oxide (N2 O) may have been an important constituent of Earth's atmosphere during Proterozoic (~2.5-0.5 Ga). Here, we tested the hypothesis that chemodenitrification, the rapid reduction of nitric oxide by ferrous iron, would have enhanced the flux of N2 O from ferruginous Proterozoic seas. We empirically derived a rate law, d N 2 O d t = 7.2 × 10 - 5 [ Fe 2 + ] 0.3 [ NO ] 1 , and measured an isotopic site preference of +16‰ for the reaction. Using this empirical rate law, and integrating across an oceanwide oxycline, we found that low nM NO and μM-low mM Fe2+ concentrations could have sustained a sea-air flux of 100-200 Tg N2 O-N year-1 , if N2 fixation rates were near-modern and all fixed N2 was emitted as N2 O. A 1D photochemical model was used to obtain steady-state atmospheric N2 O concentrations as a function of sea-air N2 O flux across the wide range of possible pO2 values (0.001-1 PAL). At 100-200 Tg N2 O-N year-1 and >0.1 PAL O2 , this model yielded low-ppmv N2 O, which would produce several degrees of greenhouse warming at 1.6 ppmv CH4 and 320 ppmv CO2 . These results suggest that enhanced N2 O production in ferruginous seawater via a previously unconsidered chemodenitrification pathway may have helped to fill a Proterozoic "greenhouse gap," reconciling an ice-free Mesoproterozoic Earth with a less luminous early Sun. A particularly notable result was that high N2 O fluxes at intermediate O2 concentrations (0.01-0.1 PAL) would have enhanced ozone screening of solar UV radiation. Due to rapid photolysis in the absence of an ozone shield, N2 O is unlikely to have been an important greenhouse gas if Mesoproterozoic O2 was 0.001 PAL. At low O2 , N2 O might have played a more important role as life's primary terminal electron acceptor during the transition from an anoxic to oxic surface Earth, and correspondingly, from anaerobic to aerobic metabolisms.
Collapse
Affiliation(s)
- Chloe L Stanton
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - James F Kasting
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania
| | - Nathaniel E Ostrom
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
- DOE Great Lakes Bioenergy Research Institute, Michigan State University, East Lansing, Michigan
| | - Joshua A Haslun
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Timothy W Lyons
- Department of Earth Sciences, University of California, Riverside, California
| | - Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|