1
|
Mota A, Koch S, Matthiae D, Santos N, Cortesão M. How Habitable Are M Dwarf Exoplanets? Modeling Surface Conditions and Exploring the Role of Melanins in the Survival of Aspergillus niger Spores Under Exoplanet-Like Radiation. ASTROBIOLOGY 2025; 25:161-176. [PMID: 40042196 DOI: 10.1089/ast.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Exoplanet habitability remains a challenging field due to the large distances separating Earth from other stars. Using insights from biology and astrophysics, we studied the habitability of M dwarf exoplanets by modeling their surface temperature and flare ultraviolet (UV) and X-ray doses using the martian atmosphere as a shielding model. Analyzing the Proxima Centauri and TRAPPIST-1 systems, our models suggest that Proxima b and TRAPPIST-1 e are likeliest to have temperatures compatible with surface liquid water, as well as tolerable radiation environments. Results of the modeling were used as a basis for microbiology experiments to assess spore survival and germination of the melanin-rich fungus Aspergillus niger to exoplanet-like radiation (UV-C and X-rays). Results showed that A. niger spores can endure superflare events on M dwarf planets when shielded by a Mars-like atmosphere or by a thin layer of soil or water. Melanin-deficient spores suspended in a melanin-rich solution showed higher survival rates and germination efficiency when compared to melanin-free solutions. Overall, the models developed in this work establish a framework for microbiological research in habitability studies. Finally, we showed that A. niger spores can survive harsh radiation conditions of simulated exoplanets, which also emphasizes the importance of multifunctional molecules like melanins in radiation shielding beyond Earth.
Collapse
Affiliation(s)
- Afonso Mota
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal
| | - Stella Koch
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Daniel Matthiae
- Biophysics Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Nuno Santos
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal
- Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Marta Cortesão
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
2
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
3
|
Thweatt JL, Harman CE, Araújo MN, Marlow JJ, Oliver GC, Sabuda MC, Sevgen S, Wilpiszeki RL. Chapter 6: The Breadth and Limits of Life on Earth. ASTROBIOLOGY 2024; 24:S124-S142. [PMID: 38498824 DOI: 10.1089/ast.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.
Collapse
Affiliation(s)
- Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - C E Harman
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Serhat Sevgen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | |
Collapse
|
4
|
Armas-Vázquez MZ, González-Espinoza CE, Segura A, Heredia A, Miranda-Rosete A. Impact of M Dwarfs Ultraviolet Radiation on Prebiotic Chemistry: The Case of Adenine. ASTROBIOLOGY 2023; 23:705-722. [PMID: 37115581 DOI: 10.1089/ast.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, several exoplanets have been found to orbit within the habitable zone of main sequence M stars (M dwarfs). These stars exhibit different levels of chromospheric activity that produces ultraviolet (UV) radiation. UV may be harmful to life, but it can also trigger reactions of prebiotic importance on the surface of a potentially habitable planet (PHP). We created a code to obtain the adenine yield for a known adenine synthesis route from diaminomaleonitrile (DAMN). We used computational methods to calculate the reaction coefficient rates (photolysis rate J and rate constant K) for the intermediate molecules DAMN, diaminofumaronitrile (DAFN), and 4-aminoimidazole-5-carbonitrile (AICN) of the adenine synthesis route. We used stellar UV sources and a mercury lamp to compare the theoretical results with experiments performed with lamps. The surface UV flux of planets in the habitable zone of two active M dwarfs (Proxima Centauri and AD Leonis) and the prebiotic Earth was calculated using the photochemical model ATMOS, considering a CO2-N2-H2O atmosphere. We obtained UV absorption coefficients for DAMN and DAFN and thermodynamic parameters that are useful for prebiotic chemistry studies. According to our results, experiments using UV lamps may underestimate the photolysis production of molecules of prebiotic importance. Our results indicate that photolysis reactions are fast with a yield of 50% of AICN in 10 s for the young Sun and ∼1 h for Proxima Centauri b. Planets around active M dwarfs may provide the most favorable environment for UV-mediated production of compounds relevant to the origins of life. The kinetic reaction AICN + HCN adenine is the bottleneck of the pathway with reaction rates <10-22 L/(mol·s).
Collapse
Affiliation(s)
- M Zulema Armas-Vázquez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | | | - Antígona Segura
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Alejandro Heredia
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Arturo Miranda-Rosete
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| |
Collapse
|
5
|
Hu J, Airapetian VS, Li G, Zank G, Jin M. Extreme energetic particle events by superflare-asssociated CMEs from solar-like stars. SCIENCE ADVANCES 2022; 8:eabi9743. [PMID: 35333577 PMCID: PMC8956258 DOI: 10.1126/sciadv.abi9743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Discovery of frequent superflares on active cool stars opened a new avenue in understanding the properties of eruptive events and their impact on exoplanetary environments. Solar data suggest that coronal mass ejections (CMEs) should be associated with superflares on active solar-like planet hosts and produce solar/stellar energetic particle (SEP/StEP) events. Here, we apply the 2D Particle Acceleration and Transport in the Heliosphere model to simulate the SEPs accelerated via CME-driven shocks from the Sun and young solar-like stars. We derive the scaling of SEP fluence and hardness of energy spectra with CME speed and associated flare energy. These results have crucial implications for the prebiotic chemistry and expected atmospheric biosignatures from young rocky exoplanets as well as the chemistry and isotopic composition of circumstellar disks around infant solar-like stars.
Collapse
Affiliation(s)
- Junxiang Hu
- Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Vladimir S Airapetian
- NASA Goddard Space Flight Center/SEEC, Greenbelt, MD, USA
- American University, DC, USA
| | - Gang Li
- Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Gary Zank
- Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Meng Jin
- SETI Institute, Mountain View, CA, USA
- Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA, USA
| |
Collapse
|
6
|
Coelho LF, Madden J, Kaltenegger L, Zinder S, Philpot W, Esquível MG, Canário J, Costa R, Vincent WF, Martins Z. Color Catalogue of Life in Ice: Surface Biosignatures on Icy Worlds. ASTROBIOLOGY 2022; 22:313-321. [PMID: 34964651 DOI: 10.1089/ast.2021.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With thousands of discovered planets orbiting other stars and new missions that will explore our solar system, the search for life in the universe has entered a new era. However, a reference database to enable our search for life on the surface of icy exoplanets and exomoons by using records from Earth's icy biota is missing. Therefore, we developed a spectra catalogue of life in ice to facilitate the search for extraterrestrial signs of life. We measured the reflection spectra of 80 microorganisms-with a wide range of pigments-isolated from ice and water. We show that carotenoid signatures are wide-ranged and intriguing signs of life. Our measurements allow for the identification of such surface life on icy extraterrestrial environments in preparation for observations with the upcoming ground- and space-based telescopes. Dried samples reveal even higher reflectance, which suggests that signatures of surface biota could be more intense on exoplanets and moons that are drier than Earth or on environments like Titan where potential life-forms may use a different solvent. Our spectra library covers the visible to near-infrared and is available online. It provides a guide for the search for surface life on icy worlds based on biota from Earth's icy environments.
Collapse
Affiliation(s)
- Lígia F Coelho
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Jack Madden
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Ithaca, New York, USA
| | - Lisa Kaltenegger
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Ithaca, New York, USA
| | - Stephen Zinder
- Carl Sagan Institute, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - William Philpot
- Carl Sagan Institute, Ithaca, New York, USA
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - M Glória Esquível
- Landscape, Environment, Agriculture and Food-LEAF Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Warwick F Vincent
- Centre for Northern Studies (CEN), Takuvik & Biology Department, Université Laval, Québec, Canada
| | - Zita Martins
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Graham RJ. High pCO 2 Reduces Sensitivity to CO 2 Perturbations on Temperate, Earth-like Planets Throughout Most of Habitable Zone. ASTROBIOLOGY 2021; 21:1406-1420. [PMID: 34375145 DOI: 10.1089/ast.2020.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nearly logarithmic radiative impact of CO2 means that planets near the outer edge of the liquid water habitable zone (HZ) require ∼106 × more CO2 to maintain temperatures that are conducive to standing liquid water on the planetary surface than their counterparts near the inner edge. This logarithmic radiative response also means that atmospheric CO2 changes of a given mass will have smaller temperature effects on higher pCO2 planets. Ocean pH is linked to atmospheric pCO2 through seawater carbonate speciation and calcium carbonate dissolution/precipitation, and the response of pH to changes in pCO2 also decreases at higher initial pCO2. Here, we use idealized climate and ocean chemistry models to demonstrate that CO2 perturbations large enough to cause catastrophic changes to surface temperature and ocean pH on temperate, low-pCO2 planets in the innermost region of the HZ are likely to have much smaller effects on planets with higher pCO2, as may be the case for terrestrial planets with active carbonate-silicate cycles receiving less instellation than the Earth. Major bouts of extraterrestrial fossil fuel combustion or volcanic CO2 outgassing on high-pCO2 planets in the mid-to-outer HZ should have mild or negligible impacts on surface temperature and ocean pH. Owing to low pCO2, Phanerozoic Earth's surface environment may be unusually volatile compared with similar planets receiving lower instellation.
Collapse
Affiliation(s)
- Robert J Graham
- Atmospheric, Oceanic, and Planetary Physics, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Zhan Z, Seager S, Petkowski JJ, Sousa-Silva C, Ranjan S, Huang J, Bains W. Assessment of Isoprene as a Possible Biosignature Gas in Exoplanets with Anoxic Atmospheres. ASTROBIOLOGY 2021; 21:765-792. [PMID: 33798392 DOI: 10.1089/ast.2019.2146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The search for possible biosignature gases in habitable exoplanet atmospheres is accelerating, although actual observations are likely years away. This work adds isoprene, C5H8, to the roster of biosignature gases. We found that isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methane (CH4; ∼500 Tg/year). Unlike methane, on Earth isoprene is rapidly destroyed by oxygen-containing radicals. Although isoprene is predominantly produced by deciduous trees, isoprene production is ubiquitous to a diverse array of evolutionary distant organisms, from bacteria to plants and animals-few, if any, volatile secondary metabolites have a larger evolutionary reach. Although non-photochemical sinks of isoprene may exist, such as degradation of isoprene by life or other high deposition rates, destruction of isoprene in an anoxic atmosphere is mainly driven by photochemistry. Motivated by the concept that isoprene might accumulate in anoxic environments, we model the photochemistry and spectroscopic detection of isoprene in habitable temperature, rocky exoplanet anoxic atmospheres with a variety of atmosphere compositions under different host star ultraviolet fluxes. Limited by an assumed 10 ppm instrument noise floor, habitable atmosphere characterization when using James Webb Space Telescope (JWST) is only achievable with a transit signal similar or larger than that for a super-Earth-sized exoplanet transiting an M dwarf star with an H2-dominated atmosphere. Unfortunately, isoprene cannot accumulate to detectable abundance without entering a run-away phase, which occurs at a very high production rate, ∼100 times the Earth's production rate. In this run-away scenario, isoprene will accumulate to >100 ppm, and its spectral features are detectable with ∼20 JWST transits. One caveat is that some isoprene spectral features are hard to distinguish from those of methane and also from other hydrocarbons containing the isoprene substructure. Despite these challenges, isoprene is worth adding to the menu of potential biosignature gases.
Collapse
Affiliation(s)
- Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
- Department of Physics, MIT, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, and MIT, Cambridge, Massachusetts, USA
| | - Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | - Clara Sousa-Silva
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | | | - William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
- Rufus Scientific, Royston, United Kingdom
| |
Collapse
|
9
|
Estrela R, Palit S, Valio A. Surface and Oceanic Habitability of Trappist-1 Planets under the Impact of Flares. ASTROBIOLOGY 2020; 20:1465-1475. [PMID: 33320780 DOI: 10.1089/ast.2019.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discovery of potentially habitable planets around the ultracool dwarf star Trappist-1 naturally poses the question: could Trappist-1 planets be home to life? These planets orbit very close to the host star and are most susceptible to the UV radiation emitted by the intense and frequent flares of Trappist-1. Here, we calculate the UV spectra (100-450 nm) of a superflare observed on Trappist-1 with the K2 mission. We couple radiative transfer models to this spectra to estimate the UV surface flux on planets in the habitable zone of Trappist-1 (planets e, f, and g), assuming atmospheric scenarios based on a prebiotic and an oxygenic atmosphere. We quantify the impact of the UV radiation on living organisms on the surface and on a hypothetical planet ocean. Finally, we find that for non-oxygenic planets, UV-resistant life-forms would survive on the surface of planets f and g. Nevertheless, more fragile organisms (i.e., Escherichia coli) could be protected from the hazardous UV effects at ocean depths greater than 8 m. If the planets have an ozone layer, any life-forms studied here would survive in the habitable zone planets.
Collapse
Affiliation(s)
- Raissa Estrela
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Center for Radioastronomy and Astrophysics Mackenzie, Sao Paulo, Brazil
| | - Sourav Palit
- Center for Radioastronomy and Astrophysics Mackenzie, Sao Paulo, Brazil
- Department of Physics, Indian Institute of Technology Bombay (IITB), Mumbai, India
| | - Adriana Valio
- Center for Radioastronomy and Astrophysics Mackenzie, Sao Paulo, Brazil
| |
Collapse
|
10
|
Estrela R, Valio A. Superflare Ultraviolet Impact on Kepler-96 System: A Glimpse of Habitability When the Ozone Layer First Formed on Earth. ASTROBIOLOGY 2018; 18:1414-1424. [PMID: 30230354 DOI: 10.1089/ast.2017.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Kepler-96 is an active solar-type star harboring a Super-Earth planet in close orbit. Its age of 2.3 gigayears is the same as the Sun when there was a considerable increase of oxygen in Earth's atmosphere due to micro-organisms living in the ocean. We present the analysis of superflares seen on the transit light curves of Kepler-96b. The model used here simulates the planetary transit in a flaring star. By fitting the observational data with this model, it is possible to infer the physical properties of the flares, such as their duration and the energy released. We found three flares within the energy range of superflares, where the biggest superflare observed was found to have an energy of 1.81 × 1029 J (1.81 × 1035 ergs). The goal is to analyze the biological impact of these superflares on a hypothetical Earth in the habitable zone of Kepler-96, assuming this planet has protection through different scenarios: an Archean and present-day atmospheres. Also, we compute the attenuation of the flare ultraviolet (UV) radiation through an Archean ocean. The conclusion is that considering the increase in the UV flux by the strongest superflare emission, Escherichia coli and Deinococcus radiodurans could survive on the surface of the planet only if there was an ozone layer present on the planet atmosphere. However, they could escape from the hazardous UV effects at a depth of 28 and 12 m below the ocean surface, respectively. For smaller superflares contribution, D. radiodurans could survive in the surface even in an Archean atmosphere with no ozone.
Collapse
Affiliation(s)
- Raissa Estrela
- Center for Radioastronomy and Astrophysics Mackenzie (CRAAM), Mackenzie Presbyterian University , Sao Paulo, Brazil
| | - Adriana Valio
- Center for Radioastronomy and Astrophysics Mackenzie (CRAAM), Mackenzie Presbyterian University , Sao Paulo, Brazil
| |
Collapse
|