1
|
Prado T, Degrave WMS, Duarte GF. Lichens and Health-Trends and Perspectives for the Study of Biodiversity in the Antarctic Ecosystem. J Fungi (Basel) 2025; 11:198. [PMID: 40137236 PMCID: PMC11942898 DOI: 10.3390/jof11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 03/27/2025] Open
Abstract
Lichens are an important vegetative component of the Antarctic terrestrial ecosystem and present a wide diversity. Recent advances in omics technologies have allowed for the identification of lichen microbiomes and the complex symbiotic relationships that contribute to their survival mechanisms under extreme conditions. The preservation of biodiversity and genetic resources is fundamental for the balance of ecosystems and for human and animal health. In order to assess the current knowledge on Antarctic lichens, we carried out a systematic review of the international applied research published between January 2019 and February 2024, using the PRISMA model (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Articles that included the descriptors "lichen" and "Antarctic" were gathered from the web, and a total of 110 and 614 publications were retrieved from PubMed and ScienceDirect, respectively. From those, 109 publications were selected and grouped according to their main research characteristics, namely, (i) biodiversity, ecology and conservation; (ii) biomonitoring and environmental health; (iii) biotechnology and metabolism; (iv) climate change; (v) evolution and taxonomy; (vi) reviews; and (vii) symbiosis. Several topics were related to the discovery of secondary metabolites with potential for treating neurodegenerative, cancer and metabolic diseases, besides compounds with antimicrobial activity. Survival mechanisms under extreme environmental conditions were also addressed in many studies, as well as research that explored the lichen-associated microbiome, its biodiversity, and its use in biomonitoring and climate change, and reviews. The main findings of these studies are discussed, as well as common themes and perspectives.
Collapse
Affiliation(s)
- Tatiana Prado
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Wim Maurits Sylvain Degrave
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Gabriela Frois Duarte
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
- Federal University of Rio de Janeiro (UFRJ), Av. Pedro Calmon, 550, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
2
|
Mota A, Koch S, Matthiae D, Santos N, Cortesão M. How Habitable Are M Dwarf Exoplanets? Modeling Surface Conditions and Exploring the Role of Melanins in the Survival of Aspergillus niger Spores Under Exoplanet-Like Radiation. ASTROBIOLOGY 2025; 25:161-176. [PMID: 40042196 DOI: 10.1089/ast.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Exoplanet habitability remains a challenging field due to the large distances separating Earth from other stars. Using insights from biology and astrophysics, we studied the habitability of M dwarf exoplanets by modeling their surface temperature and flare ultraviolet (UV) and X-ray doses using the martian atmosphere as a shielding model. Analyzing the Proxima Centauri and TRAPPIST-1 systems, our models suggest that Proxima b and TRAPPIST-1 e are likeliest to have temperatures compatible with surface liquid water, as well as tolerable radiation environments. Results of the modeling were used as a basis for microbiology experiments to assess spore survival and germination of the melanin-rich fungus Aspergillus niger to exoplanet-like radiation (UV-C and X-rays). Results showed that A. niger spores can endure superflare events on M dwarf planets when shielded by a Mars-like atmosphere or by a thin layer of soil or water. Melanin-deficient spores suspended in a melanin-rich solution showed higher survival rates and germination efficiency when compared to melanin-free solutions. Overall, the models developed in this work establish a framework for microbiological research in habitability studies. Finally, we showed that A. niger spores can survive harsh radiation conditions of simulated exoplanets, which also emphasizes the importance of multifunctional molecules like melanins in radiation shielding beyond Earth.
Collapse
Affiliation(s)
- Afonso Mota
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal
| | - Stella Koch
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Daniel Matthiae
- Biophysics Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Nuno Santos
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal
- Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Marta Cortesão
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
3
|
Richards JT, Mortenson TE, Spern CJ, Mousseau TA, Gooden JL, Spencer LE, Khodadad CL, Fischer JA, Meyers AD, Papenfuhs CK, Buell JG, Levine HG, Dimapilis DI, Zhang Y. Simulated deep space exposure on seeds utilizing the MISSE flight facility. NPJ Microgravity 2025; 11:3. [PMID: 39824863 PMCID: PMC11742015 DOI: 10.1038/s41526-024-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/30/2024] [Indexed: 01/20/2025] Open
Abstract
The MISSE-Seed project was designed to investigate the effects of space exposure on seed quality and storage. The project tested the Multipurpose Materials International Space Station Experiment-Flight Facility (MISSE-FF) hardware as a platform for exposing biological samples to the space environment outside the International Space Station (ISS). Furthermore, it evaluated the capability of a newly designed passive sample containment canister as a suitable exposure unit for biological samples for preserving their vigor while exposing to the space environment to study multi-stressor effects. The experiment was launched to the ISS on Northrup Grumman (NG)-15. The exposure lasted eight months outside the ISS in the MISSE-FF at the Zenith position. The specimens consisted of eleven seed varieties. Temperature dataloggers and thermoluminescent dosimeters were included in each container to record environmental data. We presented here the hardware and experimental design, environmental profiles, and seed survival from post-flight germination tests.
Collapse
Affiliation(s)
- Jeffrey T Richards
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- AETOS Systems Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Todd E Mortenson
- The Bionetics Corporation, LASSO Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Cory J Spern
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- Noetic Strategies, Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jennifer L Gooden
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- AETOS Systems Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Lashelle E Spencer
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- Noetic Strategies, Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Christina L Khodadad
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- Noetic Strategies, Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Jason A Fischer
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- AETOS Systems Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Alexander D Meyers
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- NASA Postdoctoral Program, John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
| | - Chad K Papenfuhs
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- NASA Internship Program, John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
| | | | - Howard G Levine
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
| | - Dinah I Dimapilis
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
| | - Ye Zhang
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA.
| |
Collapse
|
4
|
Amaral CRL, Anjos D, Bones FLV, Freitas ACDE, Magalhães MGP, Moreira LM, Goldenberg-Barbosa R, Donato A. May Antarctic plants grow on Martian and Lunar soil simulants under terrestrial conditions? AN ACAD BRAS CIENC 2024; 96:e20240571. [PMID: 39699396 DOI: 10.1590/0001-3765202420240571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024] Open
Abstract
Extremophile organisms have been largely studied in Astrobiology. Among them, two antarctic plants emerge as good candidates to become colonizers of other celestial bodies, such as Mars and the Moon. The present research aimed to evaluate survival and growing capacity of Sanionia uncinata and Colobanthus quitensis on Martian (MGS-1) and Lunar (LMS-1) regolith simulants, under terrestrial conditions. The survival responses of both species on the simulators and the original sampling site of Antarctic soil were observed during 15 days, in laboratory conditions at 'Comandante Ferraz' Station. Based on physiological parameters changes under the three soil conditions tested, our results suggest that Martian soil can be too harsh for plant growth, showing expressive decay, especially for C. quitensis. While lunar soil might provide more favorable conditions, with less observed changes, similarly to how they would in Antarctic soil from their natural habitat. This preliminary study provides resources and fosters knowledge about the possibility of these Antarctic species to survive in extraterrestrial environments, starting with soil parameters; and discusses the importance and use of Antarctic plants in astrobiology.
Collapse
Affiliation(s)
- Cesar R L Amaral
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Dafne Anjos
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Mestrado Profissional em Saúde, Medicina Laboratorial e Tecnologia Forense, Policlínica Universitária Piquet Carneiro, Avenida Marechal Rondon, 381, Pavilhão José Roberto Feresin Moraes, São Francisco Xavier, 20950-003 Rio de Janeiro, RJ, Brazil
| | - Fábio L V Bones
- Universidade Federal de Santa Catarina, Programa de Pós-graduação em Algas, Fungos e Plantas, Rua Engenheiro Agronômico Andrei Cristian Ferreira, s/n, Sala 208, Bloco E, Prédio Administrativo, Campus Universitário, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Antonio Carlos DE Freitas
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Fotografia Científica Ambiental Biocenas, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Maithê G P Magalhães
- Instituto Oswaldo Cruz (IOC/Fiocruz), Laboratório de Genômica Aplicada e Bio Inovações, Avenida Brasil, 4365, Pavilhão Leônidas Deane, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Lucas M Moreira
- Instituto Oswaldo Cruz (IOC/Fiocruz), Instituto Nacional de Infectologia Evandro Chagas, Avenida Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Rodrigo Goldenberg-Barbosa
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Ecologia e Evolução, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, 2º andar, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Anna Donato
- Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Ecologia e Evolução, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, 2º andar, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Sidorova M, Pavlov SG, Böttger U, Baqué M, Semenov AD, Hübers HW. Feasibility of a Fiber-Dispersive Raman Spectrometer for Biomarker Detection. APPLIED SPECTROSCOPY 2024; 78:1098-1104. [PMID: 39091019 PMCID: PMC11492548 DOI: 10.1177/00037028241267892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
Raman spectroscopy is among the top analytical techniques for ultra-low-dense organic matter, crucial to the search for life and analysis of celestial body surfaces in space exploration missions. Achieving the ultimate sensitivity of in-situ Raman spectroscopy necessitates a breakthrough in detecting inelastically scattered light. Single-photon detectors (SPDs) operating in photon counting mode, which can differentiate between Raman and luminescence responses, are promising candidates for the challenging scientific requirements. Since large SPD arrays are not yet commercially available, a dispersive element can be adapted to a single-pixel detector. By exploiting chromatic dispersion in optical fibers and picosecond-pulsed excitation, we delay the arrivals of different spectral components onto a single-pixel SPD. This method also separates weak Raman signals from stronger luminescence through correlated time-domain measurements. We study the impact of fiber properties and the excitation wavelength of a pulsed laser on the spectral resolution of the fiber-dispersive Raman spectrometer (FDRS). Additionally, we demonstrate the FDRS's potential for studying biomarkers and discuss its feasibility for analyzing inclusions in ice matrices.
Collapse
Affiliation(s)
- Mariia Sidorova
- Humboldt-Universität zu Berlin, Department of Physics, Berlin, Germany
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| | - Sergey G. Pavlov
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - Alexei D. Semenov
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| | - Heinz-Wilhelm Hübers
- Humboldt-Universität zu Berlin, Department of Physics, Berlin, Germany
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| |
Collapse
|
6
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024; 59:337-362. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
7
|
Waisberg E, Ong J, Paladugu P, Kamran SA, Zaman N, Tavakkoli A, Lee AG. Radiation-induced ophthalmic risks of long duration spaceflight: Current investigations and interventions. Eur J Ophthalmol 2024; 34:1337-1345. [PMID: 38151034 DOI: 10.1177/11206721231221584] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
PURPOSE As the average duration of space missions increases, astronauts will experience longer periods of exposure to risks of long duration space flight including microgravity and radiation. The risks from long-term exposure to space radiation remains ill-defined. We review the current literature on the possible and known risks of radiation on the eye (including radiation retinopathy) after long duration spaceflight. METHODS A PubMed and Google Scholar search of the English language ophthalmic literature was performed from inception to July 11, 2022. The following search terms were utilized independently or in conjunction to build this manuscript: "Radiation Retinopathy", "Spaceflight", "Space Radiation", "Spaceflight Associated Neuro-Ocular Syndrome", "Microgravity", "Hypercapnia", "Radiation Shield", "Cataract", and "SANS". A concise and selective approach of references was conducted in including relevant original studies and reviews. RESULTS A total of 65 papers were reviewed and 47 papers were included in our review. CONCLUSION We discuss the potential and developing countermeasures to mitigate these radiation risks in preparation for future space exploration. Given the complex nature of space radiation, no single approach will fully reduce the risks of developing radiation maculopathy in long-duration spaceflight. Understanding and appropriately overcoming the risks of space radiation is key to becoming a multi-planetary species.
Collapse
Affiliation(s)
- Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Joshua Ong
- Department of Ophthalmology, Michigan Medicine, University of Michigan, Ann Arbor, USA
| | - Phani Paladugu
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, USA
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas A&M College of Medicine, Bryant, Texas, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Çiftçi O, Zervas A, Lutz S, Feord H, Keusching C, Leya T, Tranter M, Anesio AM, Benning LG. Long-Read-Based Hybrid Genome Assembly and Annotation of Snow Algal Strain CCCryo 101-99 (cf. Sphaerocystis sp., Chlamydomonadales). Genome Biol Evol 2024; 16:evae140. [PMID: 38941446 PMCID: PMC11247165 DOI: 10.1093/gbe/evae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Polar regions harbor a diversity of cold-adapted (cryophilic) algae, which can be categorized into psychrophilic (obligate cryophilic) and cryotrophic (nonobligate cryophilic) snow algae. Both can accumulate significant biomasses on glacier and snow habitats and play major roles in global climate dynamics. Despite their significance, genomic studies on these organisms remain scarce, hindering our understanding of their evolutionary history and adaptive mechanisms in the face of climate change. Here, we present the draft genome assembly and annotation of the psychrophilic snow algal strain CCCryo 101-99 (cf. Sphaerocystis sp.). The draft haploid genome assembly is 122.5 Mb in length and is represented by 664 contigs with an N50 of 0.86 Mb, a Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness of 92.9% (n = 1,519), a maximum contig length of 5.3 Mb, and a guanine-cystosine (GC) content of 53.1%. In total, 28.98% of the genome (35.5 Mb) contains repetitive elements. We identified 417 noncoding RNAs and annotated the chloroplast genome. The predicted proteome comprises 14,805 genes with a BUSCO completeness of 97.8%. Our preliminary analyses reveal a genome with a higher repeat content compared with mesophilic chlorophyte relatives, alongside enrichment in gene families associated with photosynthesis and flagella functions. Our current data will facilitate future comparative studies, improving our understanding of the likely response of polar algae to a warming climate as well as their evolutionary trajectories in permanently cold environments.
Collapse
Affiliation(s)
- Ozan Çiftçi
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Stefanie Lutz
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Helen Feord
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Christoph Keusching
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Potsdam, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Liane G Benning
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Lorenz C, Bianchi E, Alberini A, Poggiali G, Benesperi R, Papini A, Brucato JR. UV photo-degradation of the secondary lichen substance parietin: A multi-spectroscopic analysis in astrobiology perspective. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:191-201. [PMID: 38670647 DOI: 10.1016/j.lssr.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
The cortical anthraquinone yellow-orange pigment parietin is a secondary lichen substance providing UV-shielding properties that is produced by several lichen species. In our work, the secondary metabolite has been extracted from air-dried thalli of Xanthoria parietina. The aims of this study were to characterize parietin absorbance through UV-VIS spectrophotometry and with IR spectroscopy and to evaluate its photodegradability under UV radiation through in situ reflectance IR spectroscopy to understand to what extent the substance may have a photoprotective role. This allows us to relate parietin photo-degradability to the lichen UV tolerance in its natural terrestrial habitat and in extreme environments relevant for astrobiology such as Mars. Extracted crystals were UV irradiated for 5.59 h under N2 flux. After the UV irradiation, we assessed relevant degradations in the 1614, 1227, 1202, 1160 and 755 cm-1 bands. However, in light of Xanthoria parietina survivability in extreme conditions such as space- and Mars-simulated ones, we highlight parietin UV photo-resistance and its relevance for astrobiology as photo-protective substance and possible bio-hint.
Collapse
Affiliation(s)
- Christian Lorenz
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125 Florence, Italy; Department of Biology, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - Elisabetta Bianchi
- Department of Biology, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - Andrew Alberini
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125 Florence, Italy
| | - Giovanni Poggiali
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125 Florence, Italy; LESIA-Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92190 Meudon, France
| | - Renato Benesperi
- Department of Biology, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125 Florence, Italy.
| |
Collapse
|
10
|
Shen J, Paterson GA, Wang Y, Kirschvink JL, Pan Y, Lin W. Renaissance for magnetotactic bacteria in astrobiology. THE ISME JOURNAL 2023; 17:1526-1534. [PMID: 37592065 PMCID: PMC10504353 DOI: 10.1038/s41396-023-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Capable of forming magnetofossils similar to some magnetite nanocrystals observed in the Martian meteorite ALH84001, magnetotactic bacteria (MTB) once occupied a special position in the field of astrobiology during the 1990s and 2000s. This flourish of interest in putative Martian magnetofossils faded from all but the experts studying magnetosome formation, based on claims that abiotic processes could produce magnetosome-like magnetite crystals. Recently, the rapid growth in our knowledge of the extreme environments in which MTB thrive and their phylogenic heritage, leads us to advocate for a renaissance of MTB in astrobiology. In recent decades, magnetotactic members have been discovered alive in natural extreme environments with wide ranges of salinity (up to 90 g L-1), pH (1-10), and temperature (0-70 °C). Additionally, some MTB populations are found to be able to survive irradiated, desiccated, metal-rich, hypomagnetic, or microgravity conditions, and are capable of utilizing simple inorganic compounds such as sulfate and nitrate. Moreover, MTB likely emerged quite early in Earth's history, coinciding with a period when the Martian surface was covered with liquid water as well as a strong magnetic field. MTB are commonly discovered in suboxic or oxic-anoxic interfaces in aquatic environments or sediments similar to ancient crater lakes on Mars, such as Gale crater and Jezero crater. Taken together, MTB can be exemplary model microorganisms in astrobiology research, and putative ancient Martian life, if it ever occurred, could plausibly have included magnetotactic microorganisms. Furthermore, we summarize multiple typical biosignatures that can be applied for the detection of ancient MTB on Earth and extraterrestrial MTB-like life. We suggest transporting MTB to space stations and simulation chambers to further investigate their tolerance potential and distinctive biosignatures to aid in understanding the evolutionary history of MTB and the potential of magnetofossils as an extraterrestrial biomarker.
Collapse
Affiliation(s)
- Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Greig A Paterson
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Joseph L Kirschvink
- Division of Geological & Planetary Sciences, Calfiornia Institute of Technology, Pasadena, CA, 91125, USA
- Marine Core Research Institute, Kochi University, Kochi, 780-8520, Japan
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
11
|
Trubl G, Stedman KM, Bywaters KF, Matula EE, Sommers P, Roux S, Merino N, Yin J, Kaelber JT, Avila-Herrera A, Johnson PA, Johnson JC, Borges S, Weber PK, Pett-Ridge J, Boston PJ. Astrovirology: how viruses enhance our understanding of life in the Universe. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2023; 22:247-271. [PMID: 38046673 PMCID: PMC10691837 DOI: 10.1017/s1473550423000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth M. Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Nancy Merino
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter Anto Johnson
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Peter K. Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | | |
Collapse
|
12
|
Elsaesser A, Burr DJ, Mabey P, Urso RG, Billi D, Cockell C, Cottin H, Kish A, Leys N, van Loon JJWA, Mateo-Marti E, Moissl-Eichinger C, Onofri S, Quinn RC, Rabbow E, Rettberg P, de la Torre Noetzel R, Slenzka K, Ricco AJ, de Vera JP, Westall F. Future space experiment platforms for astrobiology and astrochemistry research. NPJ Microgravity 2023; 9:43. [PMID: 37308480 DOI: 10.1038/s41526-023-00292-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry. In this perspective, the European Space Agency (ESA) Topical Team Astrobiology and Astrochemistry (with feedback from the wider scientific community) identifies a number of key topics and summarizes the 2021 "ESA SciSpacE Science Community White Paper" for astrobiology and astrochemistry. We highlight recommendations for the development and implementation of future experiments, discuss types of in situ measurements, experimental parameters, exposure scenarios and orbits, and identify knowledge gaps and how to advance scientific utilization of future space-exposure platforms that are either currently under development or in an advanced planning stage. In addition to the ISS, these platforms include CubeSats and SmallSats, as well as larger platforms such as the Lunar Orbital Gateway. We also provide an outlook for in situ experiments on the Moon and Mars, and welcome new possibilities to support the search for exoplanets and potential biosignatures within and beyond our solar system.
Collapse
Affiliation(s)
- Andreas Elsaesser
- Freie Universitaet Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany.
| | - David J Burr
- Freie Universitaet Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Paul Mabey
- Freie Universitaet Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | | | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Hervé Cottin
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | - Adrienne Kish
- Muséum National d'Histoire Naturelle (MNHN), Molécules de Communication et Adaptation des Microorganismes (MCAM), CNRS, 57 rue Cuvier, 75005, Paris, France
| | - Natalie Leys
- Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK CEN, 2400, Mol, Belgium
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Eva Mateo-Marti
- Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Christine Moissl-Eichinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | | | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147, Cologne, Germany
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147, Cologne, Germany
| | - Rosa de la Torre Noetzel
- Instituto Nacional de Técnica Aeroespacial (INTA), Departamento de Observación de la Tierra, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Klaus Slenzka
- KS-3D-3D-Printing and Laser Services, In der Heide 16, 27243, Gross Ippener, Germany
| | | | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center (MUSC), Linder Höhe, 51147, Cologne, Germany
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| |
Collapse
|
13
|
Li Y, Collins DA, Grintzalis K. A Simple Biochemical Method for the Detection of Proteins as Biomarkers of Life on Martian Soil Simulants and the Impact of UV Radiation. Life (Basel) 2023; 13:life13051150. [PMID: 37240795 DOI: 10.3390/life13051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The search for life on other planets relies on the detection of biosignatures of life. Many macromolecules have been suggested as potential targets, among which are proteins that are considered vital components of life due to their essential roles in forming cellular structures, facilitating cellular communication and signaling, and catalyzing metabolic reactions. In this context, accurate quantification of protein signatures in soil would be advantageous, and while several proposed methods exist, which are limited by their sensitivity and specificity, their applicability needs further testing and validation. To this aim, we optimized a Bradford-based assay with high sensitivity and reproducibility and a simple protocol to quantify protein extracted from a Martian soil simulant. Methods for protein spiking, extraction, and recovery were optimized, using protein standards and bacterial proteins as representative models. The proposed method achieved high sensitivity and reproducibility. Taking into account that life remains could exist on the surface of Mars, which is subjected to UV radiation, a simulation of UV exposure was performed on a spiked soil simulant. UV radiation degraded the protein spike, thus highlighting the importance of searching for the remaining signal from degraded proteins. Finally, the applicability of the method was explored in relation to the storage of the reagent which was stable even up to 12 months, thus making its application possible for future planetary exploration missions.
Collapse
Affiliation(s)
- Yongda Li
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland
| | - David A Collins
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland
| | | |
Collapse
|
14
|
Lorenz C, Bianchi E, Poggiali G, Alemanno G, Benesperi R, Brucato JR, Garland S, Helbert J, Loppi S, Lorek A, Maturilli A, Papini A, de Vera JP, Baqué M. Survivability of the lichen Xanthoria parietina in simulated Martian environmental conditions. Sci Rep 2023; 13:4893. [PMID: 36966209 PMCID: PMC10039903 DOI: 10.1038/s41598-023-32008-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
Xanthoria parietina (L.) Th. Fr. is a widely spread foliose lichen showing high tolerance against UV-radiation thanks to parietin, a secondary lichen substance. We exposed samples of X. parietina under simulated Martian conditions for 30 days to explore its survivability. The lichen's vitality was monitored via chlorophyll a fluorescence that gives an indication for active light reaction of photosynthesis, performing in situ and after-treatment analyses. Raman spectroscopy and TEM were used to evaluate carotenoid preservation and possible variations in the photobiont's ultrastructure respectively. Significant differences in the photo-efficiency between UV irradiated samples and dark-kept samples were observed. Fluorescence values correlated with temperature and humidity day-night cycles. The photo-efficiency recovery showed that UV irradiation caused significant effects on the photosynthetic light reaction. Raman spectroscopy showed that the carotenoid signal from UV exposed samples decreased significantly after the exposure. TEM observations confirmed that UV exposed samples were the most affected by the treatment, showing chloroplastidial disorganization in photobionts' cells. Overall, X. parietina was able to survive the simulated Mars conditions, and for this reason it may be considered as a candidate for space long-term space exposure and evaluations of the parietin photodegradability.
Collapse
Affiliation(s)
- Christian Lorenz
- Department of Biology, University of Florence, Via la Pira 4, 50121, Florence, Italy
| | - Elisabetta Bianchi
- Department of Biology, University of Florence, Via la Pira 4, 50121, Florence, Italy
| | - Giovanni Poggiali
- LESIA-Observatoire de Paris, CNRS, Université PSL, Sorbonne Université, Université de Paris, 5 Place Jules Janssen, 92190, Meudon, France
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125, Florence, Italy
| | - Giulia Alemanno
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Renato Benesperi
- Department of Biology, University of Florence, Via la Pira 4, 50121, Florence, Italy
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125, Florence, Italy.
| | - Stephen Garland
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Jörn Helbert
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Stefano Loppi
- Department of Environmental Sciences, University of Siena, Via P. A. Mattioli 4, 53100, Siena, Italy
| | - Andreas Lorek
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Alessandro Maturilli
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Alessio Papini
- Department of Biology, University of Florence, Via la Pira 4, 50121, Florence, Italy
| | - Jean-Pierre de Vera
- Microgravity User Support Center (MUSC), Space Operations and Astronaut Training, German Aerospace Center (DLR), Linder Höhe, 51147, Cologne, Germany
| | - Mickaël Baqué
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| |
Collapse
|
15
|
Uyeki SC, Pacheco CM, Simeral ML, Hafner JH. The Raman Active Vibrations of Flavone and Quercetin: The Impact of Conformers and Hydrogen Bonding on Fingerprint Modes. J Phys Chem A 2023; 127:1387-1394. [PMID: 36735995 DOI: 10.1021/acs.jpca.2c06718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The detection and analysis of flavonoids by Raman spectroscopy are of interest in many fields, including medicinal chemistry, food science, and astrobiology. Spectral interpretation would benefit from better identification of the fingerprint vibrational peaks of different flavonoids and how they are affected by intermolecular interactions. The Raman spectra of two flavonoids, flavone and quercetin, were investigated through comparisons between spectra recorded from pure powders and spectra calculated with time dependent density functional theory (TDDFT). For both flavone and quercetin, 17 peaks were assigned to specific molecular vibrations. Both flavonoids were found to have a split peak between 1250-1350 cm-1 that is not predicted by TDDFT calculations on isolated molecules. In each case, it is shown that the addition of hydrogen bonded molecules arranged based on crystal structures reproduces the split peaks. These peaks were due to a stretching vibration of the bond between benzopyrone and phenyl rings and represent a characteristic spectral feature of flavonoids. Spectra of pollen grains from Quercus virginiana were also recorded and exhibit several peaks that correspond to the quercetin spectrum.
Collapse
Affiliation(s)
- S Campbell Uyeki
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Charles M Pacheco
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mathieu L Simeral
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jason H Hafner
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Bishé B, Golden SS, Golden JW. Glycogen metabolism is required for optimal cyanobacterial growth in the rapid light-dark cycle of low-Earth orbit. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:18-26. [PMID: 36682825 PMCID: PMC9989776 DOI: 10.1016/j.lssr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Some designs for bioregenerative life support systems to enable human space missions incorporate cyanobacteria for removal of carbon dioxide, generation of oxygen, and treatment of wastewater, as well as providing a source of nutrition. In this study, we examined the effects of the short light-dark (LD) cycle of low-Earth orbit on algal and cyanobacterial growth, approximating conditions on the International Space Station, which orbits Earth roughly every 90 min. We found that growth of green algae was similar in both normal 12 h light:12 h dark (12 h:12 h LD) and 45':45' LD cycles. Three diverse strains of cyanobacteria were not only capable of growth in short 45':45' LD cycles, but actually grew better than in 12 h:12 h LD cycles. We showed that 45':45' LD cycles do not affect the endogenous 24 h circadian rhythms of Synechococcus elongatus. Using a dense library of randomly barcoded transposon mutants, we identified genes whose loss is detrimental for the growth of S. elongatus under 45':45' LD cycles. These include several genes involved in glycogen metabolism and the oxidative pentose phosphate pathway. Notably, 45':45' LD cycles did not affect the fitness of strains that carry mutations in the biological circadian oscillator or the clock input and output regulatory pathways. Overall, this study shows that cultures of cyanobacteria could be grown under natural sunlight of low-Earth orbit and highlights the utility of a functional genomic study in a model organism to better understand key biological processes in conditions that are relevant to space travel.
Collapse
Affiliation(s)
- Bryan Bishé
- Department of Molecular Biology, University of California San Diego, 92093 La Jolla, CA, United States
| | - Susan S Golden
- Department of Molecular Biology, University of California San Diego, 92093 La Jolla, CA, United States
| | - James W Golden
- Department of Molecular Biology, University of California San Diego, 92093 La Jolla, CA, United States.
| |
Collapse
|
17
|
Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions. Sci Rep 2022; 12:12580. [PMID: 35869252 PMCID: PMC9307615 DOI: 10.1038/s41598-022-16789-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
Understanding the impact of long-term exposure of microorganisms to space is critical in understanding how these exposures impact the evolution and adaptation of microbial life under space conditions. In this work we subjected Nostoc sp. CCCryo 231-06, a cyanobacterium capable of living under many different ecological conditions, and also surviving in extreme ones, to a 23-month stay at the International Space Station (the Biology and Mars Experiment, BIOMEX, on the EXPOSE-R2 platform) and returned it to Earth for single-cell genome analysis. We used microfluidic technology and single cell sequencing to identify the changes that occurred in the whole genome of single Nostoc cells. The variant profile showed that biofilm and photosystem associated loci were the most altered, with an increased variant rate of synonymous base pair substitutions. The cause(s) of these non-random alterations and their implications to the evolutionary potential of single bacterial cells under long-term cosmic exposure warrants further investigation.
Collapse
|
18
|
Mu X, He W, Rivera VAM, De Alba RAD, Newman DJ, Zhang YS. Small tissue chips with big opportunities for space medicine. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:150-157. [PMID: 36336360 PMCID: PMC11016463 DOI: 10.1016/j.lssr.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The spaceflight environment, including microgravity and radiation, may have considerable effects on the health and performance of astronauts, especially for long-duration and Martian missions. Conventional on-ground and in-space experimental approaches have been employed to investigate the comprehensive biological effects of the spaceflight environment. As a class of recently emerging bioengineered in vitro models, tissue chips are characterized by a small footprint, potential automation, and the recapitulation of tissue-level physiology, thus promising to help provide molecular and cellular insights into space medicine. Here, we briefly review the technical advantages of tissue chips and discuss specific on-chip physiological recapitulations. Several tissue chips have been launched into space, and more are poised to come through multi-agency collaborations, implying an increasingly important role of tissue chips in space medicine.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, IA 52242, USA
| | - Weishen He
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Raul Armando Duran De Alba
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Dava J Newman
- MIT Media Lab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
19
|
Coleine C, Delgado-Baquerizo M. Unearthing terrestrial extreme microbiomes for searching terrestrial-like life in the Solar System. Trends Microbiol 2022; 30:1101-1115. [PMID: 35568658 DOI: 10.1016/j.tim.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023]
Abstract
The possibility of life elsewhere in the universe has fascinated humankind for ages. To the best of our knowledge, life, as we know it, is limited to planet Earth; yet current investigation suggests that life might be more common than previously thought. In this review, we explore extreme terrestrial analogue environments in the search for some notable examples of extreme organisms, including overlooked microbial groups such as viruses, fungi, and protists, associated with limits of life on Earth. This knowledge is integral to provide the foundational principles needed to predict what sort of Earth-like organisms we might find in the Solar System and beyond, and to understand the future and origins of life on Earth.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain; Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| |
Collapse
|
20
|
Billi D, Blanco Y, Ianneo A, Moreno-Paz M, Aguirre J, Baqué M, Moeller R, de Vera JP, Parro V. Mars-like UV Flux and Ionizing Radiation Differently Affect Biomarker Detectability in the Desert Cyanobacterium Chroococcidiopsis as Revealed by the Life Detector Chip Antibody Microarray. ASTROBIOLOGY 2022; 22:1199-1209. [PMID: 36194868 DOI: 10.1089/ast.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.
Collapse
Affiliation(s)
- Daniela Billi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Yolanda Blanco
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Andrea Ianneo
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mercedes Moreno-Paz
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Jacobo Aguirre
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Berlin, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center, Cologne, Germany
| | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
21
|
Baqué M, Backhaus T, Meeßen J, Hanke F, Böttger U, Ramkissoon N, Olsson-Francis K, Baumgärtner M, Billi D, Cassaro A, de la Torre Noetzel R, Demets R, Edwards H, Ehrenfreund P, Elsaesser A, Foing B, Foucher F, Huwe B, Joshi J, Kozyrovska N, Lasch P, Lee N, Leuko S, Onofri S, Ott S, Pacelli C, Rabbow E, Rothschild L, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wagner D, Westall F, Zucconi L, de Vera JPP. Biosignature stability in space enables their use for life detection on Mars. SCIENCE ADVANCES 2022; 8:eabn7412. [PMID: 36070383 PMCID: PMC9451166 DOI: 10.1126/sciadv.abn7412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/20/2022] [Indexed: 06/14/2023]
Abstract
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.
Collapse
Affiliation(s)
- Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Theresa Backhaus
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joachim Meeßen
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Nisha Ramkissoon
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Michael Baumgärtner
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz-28850, Madrid, Spain
| | - René Demets
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),, Noordwijk, Netherlands
| | - Howell Edwards
- University of Bradford, University Analytical Centre, Division of Chemical and Forensic Sciences, Raman Spectroscopy Group, West Yorkshire, UK
| | - Pascale Ehrenfreund
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- George Washington University, Space Policy Institute, Washington, DC 20052, USA
| | - Andreas Elsaesser
- Freie Universitaet Berlin, Experimental Biophysics and Space Sciences, Institute of Experimental Physics; Arnimallee 14, 14195 Berlin, Germany
| | - Bernard Foing
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV, Amsterdam, Netherlands
| | - Frédéric Foucher
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Björn Huwe
- Biodiversity Research/Systematic Botany, University of Potsdam, Maulbeerallee 1, D-14469 Potsdam, Germany
- Department Technology Assessment and Substance Cycles, Leibniz- Institute for Agriculture Engineering and Bioeconomy, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Jasmin Joshi
- Institute for Landscape and Open Space, Eastern Switzerland University of Applied Sciences, Seestrasse 10, 8640 Rapperswil, Switzerland
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str.150, 03680, Kyiv Ukraine
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens (ZBS 6), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Natuschka Lee
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Sieglinde Ott
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Research and Science Department, Italian Space Agency (ASI), Via del Politecnico snc, 00133, Rome, Italy
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Lynn Rothschild
- NASA Ames Research Center, Mail Stop 239-20, P.O. Box 1, Moffett Field, CA 94035-0001, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Dirk Schulze-Makuch
- Technical University Berlin, ZAA, Hardenbergstr. 36, D-10623 Berlin, Germany
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), 16121 Genoa, Italy
| | - Paloma Serrano
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Telegrafenberg, 14473 Potsdam, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Environmental Microbiology, Technical University Berlin, Ernst-Reuter-Platz 1, Berlin, 10587 Berlin, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359, Bremen, Germany
| | - Dirk Wagner
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24, 14476, Potsdam, Germany
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR), Microgravity User Support Center (MUSC), Linder Höhe, 51147 Köln, Germany
| |
Collapse
|
22
|
Sabatino R, Sbaffi T, Corno G, de Carvalho DS, Trovatti Uetanabaro AP, Góes-Neto A, Podolich O, Kozyrovska N, de Vera JP, Azevedo V, Barh D, Di Cesare A. Metagenome Analysis Reveals a Response of the Antibiotic Resistome to Mars-like Extraterrestrial Conditions. ASTROBIOLOGY 2022; 22:1072-1080. [PMID: 35714354 PMCID: PMC9508453 DOI: 10.1089/ast.2021.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The spread of antibiotic resistance is becoming a serious global health concern. Numerous studies have been done to investigate the dynamics of antibiotic resistance genes (ARGs) in both indoor and outdoor environments. Nonetheless, few studies are available about the dynamics of the antibiotic resistome (total content of ARGs in the microbial cultures or communities) under stress in outer space environments. In this study, we aimed to experimentally investigate the dynamics of ARGs and metal resistance genes (MRGs) in Kombucha Mutualistic Community (KMC) samples exposed to Mars-like conditions simulated during the BIOMEX experiment outside the International Space Station with analysis of the metagenomics data previously produced. Thus, we compared them with those of the respective non-exposed KMC samples. The antibiotic resistome responded to the Mars-like conditions by enriching its diversity with ARGs after exposure, which were not found in non-exposed samples (i.e., tet and van genes against tetracycline and vancomycin, respectively). Furthermore, ARGs and MRGs were correlated; therefore, their co-selection could be assumed as a mechanism for maintaining antibiotic resistance in Mars-like environments. Overall, these results highlight the high plasticity of the antibiotic resistome in response to extraterrestrial conditions and in the absence of anthropogenic stresses.
Collapse
Affiliation(s)
- Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania, Italy
| | - Tomasa Sbaffi
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania, Italy
| | - Daniel Santana de Carvalho
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Laboratório de Microbiologia Aplicada, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center (MUSC), Cologne, Germany
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), West Bengal, India
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania, Italy
| |
Collapse
|
23
|
Jiang A, Yao X, Westland S, Hemingray C, Foing B, Lin J. The Effect of Correlated Colour Temperature on Physiological, Emotional and Subjective Satisfaction in the Hygiene Area of a Space Station. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159090. [PMID: 35897510 PMCID: PMC9332769 DOI: 10.3390/ijerph19159090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
The hygiene area is one of the most important facilities in a space station. If its environmental lighting is appropriately designed, it can significantly reduce the psychological pressure on astronauts. This study investigates the effect of correlated colour temperature (CCT) on heart rate, galvanic skin response, emotion and satisfaction in the hygiene area of a space station. Forty subjects participated in experiments in a hygiene area simulator with a controlled lighting environment. The lighting conditions included 2700 K, 3300 K, 3600 K, 5000 K and 6300 K; physiological responses (heart rate, galvanic skin response), as well as emotion and satisfaction, were recorded. The results showed that CCT significantly influenced the participants’ physiological and subjective responses in the space station hygiene area. 6300 K led to the best emotion and satisfaction levels, the highest galvanic skin response and the lowest heart rate. The opposite was true for 2700 K.
Collapse
Affiliation(s)
- Ao Jiang
- International Lunar Exploration Working Group, EuroMoonMars at The European Space Research and Technology Centre, European Space Agency, 2200 AG Noordwijk, The Netherlands;
- School of Design, University of Leeds, Leeds LS2 9JT, UK; (S.W.); (C.H.); (J.L.)
- Correspondence: (A.J.); (X.Y.)
| | - Xiang Yao
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
- Correspondence: (A.J.); (X.Y.)
| | - Stephen Westland
- School of Design, University of Leeds, Leeds LS2 9JT, UK; (S.W.); (C.H.); (J.L.)
| | - Caroline Hemingray
- School of Design, University of Leeds, Leeds LS2 9JT, UK; (S.W.); (C.H.); (J.L.)
| | - Bernard Foing
- International Lunar Exploration Working Group, EuroMoonMars at The European Space Research and Technology Centre, European Space Agency, 2200 AG Noordwijk, The Netherlands;
- Faculty of Science, Leiden University, 2311 EZ Leiden, The Netherlands
- Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jing Lin
- School of Design, University of Leeds, Leeds LS2 9JT, UK; (S.W.); (C.H.); (J.L.)
| |
Collapse
|
24
|
Oliveira MF, Maciel-Silva AS. Biological soil crusts and how they might colonize other worlds: insights from these Brazilian ecosystem engineers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4362-4379. [PMID: 35522077 DOI: 10.1093/jxb/erac162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
When bryophytes, lichens, eukaryotic algae, cyanobacteria, bacteria, and fungi live interacting intimately with the most superficial particles of the soil, they form a complex community of organisms called the biological soil crust (BSC or biocrust). These biocrusts occur predominantly in drylands, where they provide important ecological services such as soil aggregation, moisture retention, and nitrogen fixation. Unfortunately, many BSC communities remain poorly explored, especially in the tropics. This review summarizes studies about BSCs in Brazil, a tropical megadiverse country, and shows the importance of ecological, physiological, and taxonomic knowledge of biocrusts. We also compare Brazilian BSC communities with others around the world, describe why BSCs can be considered ecosystem engineers, and propose their use in the colonization of other worlds.
Collapse
Affiliation(s)
- Mateus Fernandes Oliveira
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Adaíses Simone Maciel-Silva
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
25
|
Macário IPE, Veloso T, Frankenbach S, Serôdio J, Passos H, Sousa C, Gonçalves FJM, Ventura SPM, Pereira JL. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front Microbiol 2022; 13:840098. [PMID: 35865930 PMCID: PMC9295076 DOI: 10.3389/fmicb.2022.840098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are indicated as organisms that can possibly support Mars colonization, contributing to the production of oxygen and other commodities therein. In this general context, the aim of this work was to evaluate the ability of three species of cyanobacteria (Anabaena cylindrica, Nostoc muscorum, and Arthrospira platensis) and a green microalga (Chlorella vulgaris) to grow using only the resources existing in Mars, i.e., water and Martian regolith stimulant (MGS-1), under an Earth-like atmosphere. A Martian regolith extract was produced and used as a culture medium to grow these species. Their growth was assessed during a period of 25 days, using optical density and fluorometric parameters. After this period, the possible contribution of end-of-life cyanobacteria/microalga as biofertilizing agents was also assessed, using the macrophyte Lemna minor as a vegetable model. Among the three species, N. muscorum showed the best growth performance when compared to the other species, while A. platensis and C. vulgaris were not able to thrive on Mars regolith extract. Therefore, N. muscorum should be the target of future studies not only due to their role in oxygen production but also due to their possible use as a food source, as many members of the Nostoc genus. Cyanobacteria and microalgae (A. platensis and C. vulgaris) showed good abilities as biofertilizing agents, i.e., they stimulated biomass (i.e., dry weight) production at levels comparable to the plants that grew on standard synthetic medium. The highest yield was reached with A. platensis, while the lowest was achieved using the media with N. muscorum. FTIR-ATR (Fourier transform infrared with attenuated total reflectance) spectroscopy showed that the differences between the plants grown on media with or without Martian regolith seem to be related mainly to polysaccharides.
Collapse
Affiliation(s)
- Inês P. E. Macário
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Telma Veloso
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Silja Frankenbach
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - João Serôdio
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Helena Passos
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Clara Sousa
- Laboratório Associado, Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Fernando J. M. Gonçalves
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Sónia P. M. Ventura
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Joana L. Pereira
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Canizarès A, Foucher F, Baqué M, de Vera JP, Sauvage T, Wendling O, Bellamy A, Sigot P, Georgelin T, Simon P, Westall F. In Situ Raman Spectroscopy Monitoring of Material Changes During Proton Irradiation. APPLIED SPECTROSCOPY 2022; 76:723-729. [PMID: 35128962 DOI: 10.1177/00037028211062943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic molecules are prime targets in the search for life on other planetary bodies in the Solar System. Understanding their preservation potential and detectability after ionic irradiation, with fluences potentially representing those received for several millions to billions of years at Mars or in interplanetary space, is a crucial goal for astrobiology research. In order to be able to perform in situ characterization of such organic molecules under ionic irradiation in the near future, a feasibility experiment was performed with polymer test samples to validate the optical configuration and the irradiation chamber geometry. We present here a Raman in situ investigation of the evolution of a series of polymers during proton irradiation. To achieve this goal, a new type of Raman optical probe was designed, which documented that proton irradiation (with a final fluence of 3.1014 at·cm-2) leads to an increase in the background level of the signal, potentially explained by the scission of the polymeric chains and by atom displacements creating defects in the materials. To improve the setup further, a micro-Raman probe and a temperature-controlled sample holder are under development to provide higher spectral and spatial resolutions (by reducing the depth of field and laser spot size), to permit Raman mapping as well as to avoid any thermal effects.
Collapse
Affiliation(s)
- Aurelien Canizarès
- Center National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR3079, 27051University of Orléans, Orléans, France
| | - Frederic Foucher
- Centre de Biophysique Moléculaire (CBM), 27051Center National de la Recherche Scientifique, UPR 4301 Orléans Cedex 2, France
| | - Mickael Baqué
- Department of Planetary Laboratories, Astrobiological Laboratories, Institute of Planetary Research, 14930German Aerospace Center (DLR), Berlin, Germany
| | - Jean-Pierre de Vera
- Space Operations and Astronaut Training, MUSC, 14930German Aerospace Center (DLR), Cologne, Germany
| | - Thierry Sauvage
- Center National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR3079, 27051University of Orléans, Orléans, France
| | - Olivier Wendling
- Center National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR3079, 27051University of Orléans, Orléans, France
| | - Aurelien Bellamy
- Center National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR3079, 27051University of Orléans, Orléans, France
| | - Paul Sigot
- Center National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR3079, 27051University of Orléans, Orléans, France
| | - Thomas Georgelin
- Centre de Biophysique Moléculaire (CBM), 27051Center National de la Recherche Scientifique, UPR 4301 Orléans Cedex 2, France
| | - Patrick Simon
- Center National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR3079, 27051University of Orléans, Orléans, France
| | - Frances Westall
- Centre de Biophysique Moléculaire (CBM), 27051Center National de la Recherche Scientifique, UPR 4301 Orléans Cedex 2, France
| |
Collapse
|
27
|
Fungi are key players in extreme ecosystems. Trends Ecol Evol 2022; 37:517-528. [PMID: 35246323 DOI: 10.1016/j.tree.2022.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Extreme environments on Earth are typically devoid of macro life forms and are inhabited predominantly by highly adapted and specialized microorganisms. The discovery and persistence of these extremophiles provides tools to model how life arose on Earth and inform us on the limits of life. Fungi, in particular, are among the most extreme-tolerant organisms with highly versatile lifestyles and stunning ecological and morphological plasticity. Here, we overview the most notable examples of extremophilic and stress-tolerant fungi, highlighting their key roles in the functionality and balance of extreme ecosystems. The remarkable ability of fungi to tolerate and even thrive in the most extreme environments, which preclude most organisms, have reshaped current concepts regarding the limits of life on Earth.
Collapse
|
28
|
Napoli A, Micheletti D, Pindo M, Larger S, Cestaro A, de Vera JP, Billi D. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station. Sci Rep 2022; 12:8437. [PMID: 35589950 PMCID: PMC9120168 DOI: 10.1038/s41598-022-12631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Despite the increasing interest in using microbial-based technologies to support human space exploration, many unknowns remain not only on bioprocesses but also on microbial survivability and genetic stability under non-Earth conditions. Here the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated for robustness of the repair capability of DNA lesions accumulated under Mars-like conditions (UV radiation and atmosphere) simulated in low Earth orbit using the EXPOSE-R2 facility installed outside the International Space Station. Genomic alterations were determined in a space-derivate of Chroococcidiopsis sp. CCMEE 029 obtained upon reactivation on Earth of the space-exposed cells. Comparative analysis of whole-genome sequences showed no increased variant numbers in the space-derivate compared to triplicates of the reference strain maintained on the ground. This result advanced cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Diego Micheletti
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Simone Larger
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Microgravity User Support Center, Linder Höhe, 51147, Cologne, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy.
| |
Collapse
|
29
|
Gevi F, Leo P, Cassaro A, Pacelli C, de Vera JPP, Rabbow E, Timperio AM, Onofri S. Metabolomic Profile of the Fungus Cryomyces antarcticus Under Simulated Martian and Space Conditions as Support for Life-Detection Missions on Mars. Front Microbiol 2022; 13:749396. [PMID: 35633719 PMCID: PMC9133366 DOI: 10.3389/fmicb.2022.749396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus Cryomyces antarcticus, grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Patrick Leo
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Venice, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | | | - Elke Rabbow
- German Aerospace Centre, Institute of Aerospace Medicine (DLR), Cologne, Germany
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
30
|
Liu Y, Jeraldo P, Herbert W, McDonough S, Eckloff B, Schulze-Makuch D, de Vera JP, Cockell C, Leya T, Baqué M, Jen J, Walther-Antonio M. Whole genome sequencing of cyanobacterium Nostoc sp. CCCryo 231-06 using microfluidic single cell technology. iScience 2022; 25:104291. [PMID: 35573199 PMCID: PMC9095746 DOI: 10.1016/j.isci.2022.104291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
The Nostoc sp. strain CCCryo 231-06 is a cyanobacterial strain capable of surviving under extreme conditions and thus is of great interest for the astrobiology community. The knowledge of its complete genome sequence would serve as a guide for further studies. However, a major concern has been placed on the effects of contamination on the quality of sequencing data without a reference genome. Here, we report the use of microfluidic technology combined with single cell sequencing and de novo assembly to minimize the contamination and recover the complete genome of the Nostoc strain CCCryo 231-06 with high quality. 100% of the whole genome was recovered with all contaminants removed and a strongly supported phylogenetic tree. The data reported can be useful for comparative genomics for phylogenetic and taxonomic studies. The method used in this work can be applied to studies that require high-quality assemblies of genomes of unknown microorganisms. This work uses a microfluidic platform for Nostoc single cell sequencing This technology provides minimal contamination in single cell sequencing Complete genome of the Nostoc strain CCCryo 231-06 was recovered with high quality
Collapse
|
31
|
Cassaro A, Pacelli C, Baqué M, Cavalazzi B, Gasparotto G, Saladino R, Botta L, Böttger U, Rabbow E, de Vera JP, Onofri S. Investigation of fungal biomolecules after Low Earth Orbit exposure: a testbed for the next Moon missions. Environ Microbiol 2022; 24:2938-2950. [PMID: 35437941 PMCID: PMC9540993 DOI: 10.1111/1462-2920.15995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Abstract
The Moon is characterized by extremely harsh conditions due to ultraviolet irradiation, wide temperature extremes, vacuum resulting from the absence of an atmosphere and high ionizing radiation. Therefore, its surface may provide a unique platform to investigate the effects of such conditions. For lunar exploration with the Lunar Gateway platform, exposure experiments in Low Earth Orbit are useful testbeds to prepare for lunar space experiments and to understand how and if potential biomarkers are influenced by extra‐terrestrial conditions. During the BIOMEX (BIOlogy and Mars EXperiment) project, dried colonies of the fungus Cryomyces antarcticus grown on Lunar Regolith Analogue (LRA) were exposed to space conditions for 16 months aboard the EXPOSE‐R2 payload outside the International Space Station. In this study, we investigated the stability/degradation of fungal biomarkers in LRA after exposure to (i) simulated space and (ii) real space conditions, using Raman spectroscopy, gas chromatography–mass spectrometry and DNA amplification. The results demonstrated that fungal biomarkers were detectable after 16 months of real space exposure. This work will contribute to the interpretation of data from future biological experiments in the Cislunar orbit with the Lunar Gateway platform and/or on the lunar surface, in preparation for the next step of human exploration.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy.,Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, 00133, Italy
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstraße 2, Berlin, Germany
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy.,Department of Geology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.,Le Studium Loire Valley Institute for Advanced Studies, Rue Dupanloup 1, Orléans, France
| | - Giorgio Gasparotto
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstraße 2, Berlin, Germany
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, Cologne, 51147, Germany
| | - Jean-Pierre de Vera
- Space Operations and Astronaut Training, MUSC, German Aerospace Center (DLR), Linder Höhe, Cologne, 51147, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| |
Collapse
|
32
|
Santana de Carvalho D, Trovatti Uetanabaro AP, Kato RB, Aburjaile FF, Jaiswal AK, Profeta R, De Oliveira Carvalho RD, Tiwar S, Cybelle Pinto Gomide A, Almeida Costa E, Kukharenko O, Orlovska I, Podolich O, Reva O, Ramos PIP, De Carvalho Azevedo VA, Brenig B, Andrade BS, de Vera JPP, Kozyrovska NO, Barh D, Góes-Neto A. The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. Front Microbiol 2022; 13:782175. [PMID: 35369445 PMCID: PMC8970348 DOI: 10.3389/fmicb.2022.782175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.
Collapse
Affiliation(s)
- Daniel Santana de Carvalho
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Biology and Biotechnology of Microorganisms, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Rodrigo Bentes Kato
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Dias De Oliveira Carvalho
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwar
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Almeida Costa
- Computational Biology and Biotechnological Information Management Center (NBCGIB), State University of Santa Cruz, Ilhéus, Brazil
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Pablo Ivan P. Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Institute Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ-Bahia), Salvador, Brazil
| | - Vasco Ariston De Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Brazil
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | | - Debmalya Barh
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
33
|
Alekseev VR, Hwang JS, Levinskikh MA. Effect of Space Flight Factor on Dormant Stages in Aquatic Organisms: A Review of International Space Station and Terrestrial Experiments. Life (Basel) 2021; 12:life12010047. [PMID: 35054440 PMCID: PMC8779471 DOI: 10.3390/life12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
This work is a review of the experiments carried out in the Russian segment of the ISS (inside and outside) from 2005 to 2016 on the effect of the space flight factor on the resting stages of organisms. In outer space, ultraviolet, a wide range of high and low temperatures, cosmic radiation, altered gravity, modified electromagnetic field, vacuum, factors of technical origin, ultrasound, microwave radiation, etc. and their combination determine the damaging effect on living organisms. At the same time, biological dormancy, known in a wide range of bacteria, fungi, animals and plants, allows them to maintain the viability of their dormant stages in extreme conditions for a long time, which possibly allows them to survive during space flight. From 2005 to 2016, the resting stages (propagules) of micro- and multicellular organisms were tested on the ISS to assess their ability to survive after prolonged exposure to the conditions of open space and space flight. Among the more than 40 species studied, about a third were dormant stages of aquatic organisms (eggs of cyprinodont fish, daphnia embryos, resting eggs of fairy shrimps, tadpole shrimps, copepods and ostracods, diapausing larvae of dipterans, as well as resting cysts of algae). The experiments were carried out within the framework of four research programs: (1) inside the ISS with a limited set of investigated species (Akvarium program); (2) outside the station in outer space without exposure to ultraviolet radiation (Biorisk program); (3) under modified space conditions simulating the surface of Mars (Expose program); and (4) in an Earth-based laboratory where single-factor experiments were carried out with neutron radiation, modified magnetic field, microwave radiation and ultrasound. Fundamentally new data were obtained on the stability of the resting stages of aquatic organisms exposed to the factors of the space environment, which modified the idea of the possibility of bringing Earth life forms to other planets with spacecraft and astronauts. It also can be used for creating an extraterrestrial artificial ecosystem and searching for extraterrestrial life.
Collapse
Affiliation(s)
- Victor R. Alekseev
- Zoological Institute RAS, 199034 St. Petersburg, Russia
- Correspondence: (V.R.A.); (J.-S.H.)
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (V.R.A.); (J.-S.H.)
| | | |
Collapse
|
34
|
Alekseev VR. Study of the Biological Dormancy of Aquatic Organisms in Open Space and Space Flight Conditions. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021060030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Tomita-Yokotani K, Kimura S, Ong M, Tokita M, Katoh H, Abe T, Hashimoto H, Sonoike K, Ohmori M. Investigation of Nostoc sp. HK-01, Cell Survival over Three Years during the Tanpopo Mission. ASTROBIOLOGY 2021; 21:1505-1514. [PMID: 34889664 DOI: 10.1089/ast.2021.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The survival of the terrestrial cyanobacterium Nostoc sp. HK-01 was tested as part of the Tanpopo mission experiment, which was conducted both outside and inside the International Space Station (ISS). The selection of Nostoc sp. HK-01 was based on the results of on-ground experiments that demonstrated that the cyanobacterium can survive simulated space environments. This study verified cell survival after exposure to the outside environment in low Earth orbit (LEO). We examined the cellular tolerance of Nostoc sp. HK-01 simultaneously outside and inside of the ISS over a 3-year period. After the experiments were conducted, we confirmed cell viability by fluorescein diacetate (FDA). Cell growth abilities for 3 years without sunlight in space-vacuum-exposed cells were not significantly different from those of cells kept in the dark of control cells in the ISS and on the ground. Though a few light-exposed cells in space vacuum survived outside the ISS after 3 years as judged by FDA staining assay, the survival could not be verified by testing the growth ability due to an insufficient number of cells. To the best of our knowledge, this is the first pure strain of Nostoc sp. HK-01 that survived in a space environment on the inside and outside of the ISS with and without sunlight for more than 3 years (1126 days).
Collapse
Affiliation(s)
- Kaori Tomita-Yokotani
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shunta Kimura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Midori Ong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Miku Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Katoh
- Division of Plant Functional Genomics, Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, Tsu, Mie, Japan
| | - Tomoko Abe
- School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki-gun, Saitama, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Sciences, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Masayuki Ohmori
- The University of Tokyo, Komaba, Graduate School of Arts and Sciences, Meguro-ku, Tokyo, Japan
| |
Collapse
|
36
|
The Ground-Based BIOMEX Experiment Verification Tests for Life Detection on Mars. Life (Basel) 2021; 11:life11111212. [PMID: 34833088 PMCID: PMC8619271 DOI: 10.3390/life11111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
The success of an astrobiological search for life campaign on Mars, or other planetary bodies in the Solar System, relies on the detectability of past or present microbial life traces, namely, biosignatures. Spectroscopic methods require little or no sample preparation, can be repeated almost endlessly, and can be performed in contact or even remotely. Such methods are therefore ideally suited to use for the detection of biosignatures, which can be confirmed with supporting instrumentation. Here, we discuss the use of Raman and Fourier Transform Infrared (FT-IR) spectroscopies for the detection and characterization of biosignatures from colonies of the fungus Cryomyces antarcticus, grown on Martian analogues and exposed to increasing doses of UV irradiation under dried conditions. The results report significant UV-induced DNA damage, but the non-exceeding of thresholds for allowing DNA amplification and detection, while the spectral properties of the fungal melanin remained unaltered, and pigment detection and identification was achieved via complementary analytical techniques. Finally, this work found that fungal cell wall compounds, likely chitin, were not degraded, and were still detectable even after high UV irradiation doses. The implications for the preservation and detection of biosignatures in extraterrestrial environments are discussed.
Collapse
|
37
|
Jung P, Brust K, Schultz M, Büdel B, Donner A, Lakatos M. Opening the Gap: Rare Lichens With Rare Cyanobionts - Unexpected Cyanobiont Diversity in Cyanobacterial Lichens of the Order Lichinales. Front Microbiol 2021; 12:728378. [PMID: 34690969 PMCID: PMC8527099 DOI: 10.3389/fmicb.2021.728378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The last decades of research led to a change in understanding of lichens that are now seen as self-sustaining micro-ecosystems, harboring diverse microbial organisms in tight but yet not fully understood relationships. Among the diverse interdependencies, the relationship between the myco- and photobiont is the most crucial, determining the shape, and ecophysiological properties of the symbiotic consortium. Roughly 10% of lichens associate with cyanobacteria as their primary photobiont, termed cyanolichens. Up to now, the diversity of cyanobionts of bipartite lichens resolved by modern phylogenetic approaches is restricted to the filamentous and heterocytous genera of the order Nostocales. Unicellular photobionts were placed in the orders Chroococcales, Pleurocapsales, and Chroococcidiopsidales. However, especially the phylogeny and taxonomy of the Chroococcidiopsidales genera remained rather unclear. Here we present new data on the identity and phylogeny of photobionts from cyanolichens of the genera Gonohymenia, Lichinella, Peccania, and Peltula from a broad geographical range. A polyphasic approach was used, combining morphological and cultivation-depending characteristics (microscopy, staining techniques, life cycle observation, baeocyte motility, and nitrogen fixation test) with phylogenetic analyses of the 16S rRNA and 16S–23S ITS gene region. We found an unexpectedly high cyanobiont diversity in the cyanobacterial lichens of the order Lichinales, including two new genera and seven new species, all of which were not previously perceived as lichen symbionts. As a result, we describe the novel unicellular Chroococcidiopsidales genera Pseudocyanosarcina gen. nov. with the species Pseudocyanosarcina phycocyania sp. nov. (from Peltula clavata, Australia) and Compactococcus gen. nov. with the species Compactococcus sarcinoides sp. nov. (from Gonohymenia sp., Australia) and the new Chroococcidiopsidales species Aliterella compacta sp. nov. (from Peltula clavata, Australia), Aliterella gigantea sp. nov. (from Peltula capensis; South Africa), Sinocapsa ellipsoidea sp. nov. (from Peccania cerebriformis, Austria), as well as the two new Nostocales species Komarekiella gloeocapsoidea sp. nov. (from Gonohymenia sp., Czechia) and Komarekiella globosa sp. nov. (from Lichinella cribellifera, Canary Islands, Spain). Our study highlights the role of cyanolichens acting as a key in untangling cyanobacterial taxonomy and diversity. With this study, we hope to stimulate further research on photobionts, especially of rare cyanolichens.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Katharina Brust
- Ecology Group, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Schultz
- Institute for Plant Science and Microbiology, Herbarium Hamburgense, University of Hamburg, Hamburg, Germany
| | - Burkhard Büdel
- Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Antje Donner
- Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| |
Collapse
|
38
|
Matula EE, Nabity JA, McKnight DM. Supporting Simultaneous Air Revitalization and Thermal Control in a Crewed Habitat With Temperate Chlorella vulgaris and Eurythermic Antarctic Chlorophyta. Front Microbiol 2021; 12:709746. [PMID: 34504481 PMCID: PMC8422879 DOI: 10.3389/fmicb.2021.709746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Including a multifunctional, bioregenerative algal photobioreactor for simultaneous air revitalization and thermal control may aid in carbon loop closure for long-duration surface habitats. However, using water-based algal media as a cabin heat sink may expose the contained culture to a dynamic, low temperature environment. Including psychrotolerant microalgae, native to these temperature regimes, in the photobioreactor may contribute to system stability. This paper assesses the impact of a cycled temperature environment, reflective of spacecraft thermal loops, to the oxygen provision capability of temperate Chlorella vulgaris and eurythermic Antarctic Chlorophyta. The tested 28-min temperature cycles reflected the internal thermal control loops of the International Space Station (C. vulgaris, 9-27°C; Chlorophyta-Ant, 4-14°C) and included a constant temperature control (10°C). Both sample types of the cycled temperature condition concluded with increased oxygen production rates (C. vulgaris; initial: 0.013 mgO2 L-1, final: 3.15 mgO2 L-1 and Chlorophyta-Ant; initial: 0.653 mgO2 L-1, final: 1.03 mgO2 L-1) and culture growth, suggesting environmental acclimation. Antarctic sample conditions exhibited increases or sustainment of oxygen production rates normalized by biomass dry weight, while both C. vulgaris sample conditions decreased oxygen production per biomass. However, even with the temperature-induced reduction, cycled temperature C. vulgaris had a significantly higher normalized oxygen production rate than Antarctic Chlorophyta. Chlorophyll fluorometry measurements showed that the cycled temperature conditions did not overly stress both sample types (FV/FM: 0.6-0.75), but the Antarctic Chlorophyta sample had significantly higher fluorometry readings than its C. vulgaris counterpart (F = 6.26, P < 0.05). The steady state C. vulgaris condition had significantly lower fluorometry readings than all other conditions (FV/FM: 0.34), suggesting a stressed culture. This study compares the results to similar experiments conducted in steady state or diurnally cycled temperature conditions. Recommendations for surface system implementation are based off the presented results. The preliminary findings imply that both C. vulgaris and Antarctic Chlorophyta can withstand the dynamic temperature environment reflective of a thermal control loop and these data can be used for future design models.
Collapse
Affiliation(s)
- Emily E Matula
- Bioastronautics, Smead Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - James A Nabity
- Bioastronautics, Smead Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Diane M McKnight
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States.,Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
39
|
Metagenome-Assembled Genome Sequences Obtained from a Reactivated Kombucha Microbial Community Exposed to a Mars-Like Environment outside the International Space Station. Microbiol Resour Announc 2021; 10:e0054921. [PMID: 34498919 PMCID: PMC8428250 DOI: 10.1128/mra.00549-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Kombucha is a traditional tea fermented by symbiotic microbiota, and it has been known as a functional fermented product. Here, we report four microbial metagenome-assembled genome sequences (MAGs) reconstructed from the microbiomes in kombucha exposed to a Mars-like environment outside the International Space Station.
Collapse
|
40
|
Jung P, Azua-Bustos A, Gonzalez-Silva C, Mikhailyuk T, Zabicki D, Holzinger A, Lakatos M, Büdel B. Emendation of the Coccoid Cyanobacterial Genus Gloeocapsopsis and Description of the New Species Gloeocapsopsis diffluens sp. nov. and Gloeocapsopsis dulcis sp. nov. Isolated From the Coastal Range of the Atacama Desert (Chile). Front Microbiol 2021; 12:671742. [PMID: 34305839 PMCID: PMC8295473 DOI: 10.3389/fmicb.2021.671742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S–23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S–23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.
Collapse
Affiliation(s)
- Patrick Jung
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain.,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Tatiana Mikhailyuk
- M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Daniel Zabicki
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | | | - Michael Lakatos
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Burkhard Büdel
- Technical University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
41
|
Fahrion J, Mastroleo F, Dussap CG, Leys N. Use of Photobioreactors in Regenerative Life Support Systems for Human Space Exploration. Front Microbiol 2021; 12:699525. [PMID: 34276632 PMCID: PMC8281973 DOI: 10.3389/fmicb.2021.699525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
There are still many challenges to overcome for human space exploration beyond low Earth orbit (LEO) (e.g., to the Moon) and for long-term missions (e.g., to Mars). One of the biggest problems is the reliable air, water and food supply for the crew. Bioregenerative life support systems (BLSS) aim to overcome these challenges using bioreactors for waste treatment, air and water revitalization as well as food production. In this review we focus on the microbial photosynthetic bioprocess and photobioreactors in space, which allow removal of toxic carbon dioxide (CO2) and production of oxygen (O2) and edible biomass. This paper gives an overview of the conducted space experiments in LEO with photobioreactors and the precursor work (on ground and in space) for BLSS projects over the last 30 years. We discuss the different hardware approaches as well as the organisms tested for these bioreactors. Even though a lot of experiments showed successful biological air revitalization on ground, the transfer to the space environment is far from trivial. For example, gas-liquid transfer phenomena are different under microgravity conditions which inevitably can affect the cultivation process and the oxygen production. In this review, we also highlight the missing expertise in this research field to pave the way for future space photobioreactor development and we point to future experiments needed to master the challenge of a fully functional BLSS.
Collapse
Affiliation(s)
- Jana Fahrion
- Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Felice Mastroleo
- Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Claude-Gilles Dussap
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Natalie Leys
- Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
42
|
Orlovska I, Podolich O, Kukharenko O, Zaets I, Reva O, Khirunenko L, Zmejkoski D, Rogalsky S, Barh D, Tiwari S, Kumavath R, Góes-Neto A, Azevedo V, Brenig B, Ghosh P, de Vera JP, Kozyrovska N. Bacterial Cellulose Retains Robustness but Its Synthesis Declines After Exposure to a Mars-like Environment Simulated Outside the International Space Station. ASTROBIOLOGY 2021; 21:706-717. [PMID: 33646011 DOI: 10.1089/ast.2020.2332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose is a widespread macromolecule in terrestrial environments and a major architectural component of microbial biofilm. Therefore, cellulose might be considered a biosignature that indicates the presence of microbial life. We present, for the first time, characteristics of bacterial cellulose after long-term spaceflight and exposure to simuled Mars-like stressors. The pristine cellulose-based pellicle membranes from a kombucha microbial community (KMC) were exposed outside the International Space Station, and after their return to Earth, the samples were reactivated and cultured for 2.5 years to discern whether the KMC could be restored. Analyses of cellulose polymer integrity and mechanical properties of cellulose-based pellicle films, as well as the cellulose biosynthesis-related genes' structure and expression, were performed. We observed that (i) the cellulose polymer integrity was not significantly changed under Mars-like conditions; (ii) de novo cellulose production was 1.5 times decreased in exposed KMC samples; (iii) the dry cellulose yield from the reisolated Komagataeibacter oboediens was 1.7 times lower than by wild type; (iv) there was no significant change in mechanical properties of the de novo synthesized cellulose-based pellicles produced by the exposed KMCs and K. oboediens; and (v) the gene, encoding biosynthesis of cellulose (bcsA) of the K. oboediens, was downregulated, and no topological change or mutation was observed in any of the bcs operon genes, indicating that the decreased cellulose production by the space-exposed samples was probably due to epigenetic regulation. Our results suggest that the cellulose-based pellicle could be a good material with which to protect microbial communities during space journeys, and the cellulose produced by KMC members could be suitable in the fabrication of consumer goods for extraterrestrial locations.
Collapse
Affiliation(s)
- Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | - Danica Zmejkoski
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sergiy Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, West Bengal, India
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala Tejaswini Hills, Kerala, India
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, Göttingen, Germany
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | |
Collapse
|
43
|
Dadachova E. Melanin - protecting and enhancing the earliest life on Earth: Comment on "Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life?" by Marco d'Ischia et al. Phys Life Rev 2021; 38:127-128. [PMID: 34088610 DOI: 10.1016/j.plrev.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
44
|
Matula EE, Nabity JA. Effects of stepwise changes in dissolved carbon dioxide concentrations on metabolic activity in Chlorella for spaceflight applications. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:73-84. [PMID: 33888291 DOI: 10.1016/j.lssr.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
This paper assesses the impacts to the growth rate, health, oxygen production, and carbon dioxide fixation and nitrogen assimilation of Chlorella vulgaris while sparging the culture with various influent concentrations of carbon dioxide. Selected concentrations reflect a cabin environment with one crew member (0.12% v/v) and four crew members (0.45% v/v). Stepwise, sustained changes in influent carbon dioxide concentration on day four of the eight-day experiments simulated a dynamic crew size, reflective of a planetary surface mission. Control experiments used constant influent concentrations across eight days. Significant changes in growth rate (0.12%-to-0.45%: 57% increase; 0.45%-to-0.12%: 59% reduction) suggest a positive correlation between metabolic activity of C. vulgaris and environmental carbon dioxide concentration. Statistical tests illustrate that algae are more sensitive to reductions in influent carbon dioxide. No specific correlation of the nitrogen assimilation rate to influent carbon dioxide, suggesting a nitrogen-limited or irradiance-limited system. Photosynthetic yield results (0.59-0.72) indicate that the culture was minimally stressed in all tested conditions. This paper compares these results to findings of published, steady-state experiments conducted under similar carbon dioxide environments. The findings presented here imply that a sufficient volume of C. vulgaris, with nutrient supplementation or biomass harvesting, could support the respiratory requirements of a long duration human mission with a dynamic cabin environment and these data can be used in future dynamic models.
Collapse
Affiliation(s)
- Emily E Matula
- Aerospace Engineering Sciences, University of Colorado Boulder, 429 UCB, Boulder, CO 80309, United States.
| | - James A Nabity
- Aerospace Engineering Sciences, University of Colorado Boulder, 429 UCB, Boulder, CO 80309, United States
| |
Collapse
|
45
|
Mosca C, Fagliarone C, Napoli A, Rabbow E, Rettberg P, Billi D. Revival of Anhydrobiotic Cyanobacterium Biofilms Exposed to Space Vacuum and Prolonged Dryness: Implications for Future Missions beyond Low Earth Orbit. ASTROBIOLOGY 2021; 21:541-550. [PMID: 33956489 DOI: 10.1089/ast.2020.2359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dried biofilms of Chroococcidiopsis sp. CCMEE 029 were revived after a 672-day exposure to space vacuum outside the International Space Station during the EXPOSE-R2 space mission. After retrieval, they were air-dried stored for 3.5 years. Space vacuum reduced cell viability and increased DNA damage compared to air-dried storage for 6 years under laboratory conditions. Long exposure times to space vacuum and extreme dryness decrease the changes of survival that ultimately depend on DNA damage repair upon rehydration, and hence, an in silico analysis of Chroococcidiopsis sp. CCMEE 029's genome was performed with a focus on DNA repair pathways. The analysis identified a high number of genes that encode proteins of the homologous recombination RecF pathway and base excision repair that were over-expressed during 1 and 6 h rehydration of space-vacuum exposed biofilms. This suggests that Chroococcidiopsis developed a survival strategy against desiccation, with DNA repair playing a key role, which allowed the revival of biofilms exposed to space vacuum. Unravelling how long anhydrobiotic cyanobacteria can persist under space vacuum followed by prolonged air-dried storage is relevant to future astrobiological experiments that use space platforms and might require prolonged air-dried storage of the exposed samples before retrieval to Earth.
Collapse
Affiliation(s)
- Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Elke Rabbow
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Petra Rettberg
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
46
|
Simões MF, Antunes A. Microbial Pathogenicity in Space. Pathogens 2021; 10:450. [PMID: 33918768 PMCID: PMC8069885 DOI: 10.3390/pathogens10040450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
After a less dynamic period, space exploration is now booming. There has been a sharp increase in the number of current missions and also of those being planned for the near future. Microorganisms will be an inevitable component of these missions, mostly because they hitchhike, either attached to space technology, like spaceships or spacesuits, to organic matter and even to us (human microbiome), or to other life forms we carry on our missions. Basically, we never travel alone. Therefore, we need to have a clear understanding of how dangerous our "travel buddies" can be; given that, during space missions, our access to medical assistance and medical drugs will be very limited. Do we explore space together with pathogenic microorganisms? Do our hitchhikers adapt to the space conditions, as well as we do? Do they become pathogenic during that adaptation process? The current review intends to better clarify these questions in order to facilitate future activities in space. More technological advances are needed to guarantee the success of all missions and assure the reduction of any possible health and environmental risks for the astronauts and for the locations being explored.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences (SKLPlanets), Macau University of Science and Technology (MUST), Avenida Wai Long, Taipa, Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences (SKLPlanets), Macau University of Science and Technology (MUST), Avenida Wai Long, Taipa, Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| |
Collapse
|
47
|
Abstract
Astrobiology is focused on the study of life in the universe. However, lifeless planetary environments yield biological information on the variety of ways in which physical and chemical conditions in the universe preclude the possibility of the origin or persistence of life, and in turn this will help explain the distribution and abundance of life, or lack of it, in the universe. Furthermore, many places that humans wish to explore and settle in space are lifeless, and studying the fate of life in these environments will aid our own success in thriving in them. In this synthetic review, I have three objectives, as follows: (1) To discuss the biological value and use of lifeless environments, (2) To explore the diverse planetary bodies and environments that can be lifeless and to categorize them, and (3) To propose sets of biological experiments that can be undertaken in different categories of lifeless worlds and environments and suggest concepts for mission ideas to realize these goals. They include origin of life and microbial inoculation experiments in lifeless but habitable environments. I suggest that the biological study of lifelessness is an underappreciated area in planetary sciences.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
48
|
Milojevic T, Kish A, Yamagishi A. Editorial: Astrobiology at the Interface: Interactions Between Biospheres, Geospheres, Hydrospheres and Atmospheres Under Planetary Conditions. Front Microbiol 2021; 12:629961. [PMID: 33643257 PMCID: PMC7906982 DOI: 10.3389/fmicb.2021.629961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | | | - Akihiko Yamagishi
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
49
|
Góes-Neto A, Kukharenko O, Orlovska I, Podolich O, Imchen M, Kumavath R, Kato RB, de Carvalho DS, Tiwari S, Brenig B, Azevedo V, Reva O, de Vera JPP, Kozyrovska N, Barh D. Shotgun metagenomic analysis of kombucha mutualistic community exposed to Mars-like environment outside the International Space Station. Environ Microbiol 2021; 23:3727-3742. [PMID: 33476085 DOI: 10.1111/1462-2920.15405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Kombucha is a multispecies microbial ecosystem mainly composed of acetic acid bacteria and osmophilic acid-tolerant yeasts, which is used to produce a probiotic drink. Furthermore, Kombucha Mutualistic Community (KMC) has been recently proposed to be used during long space missions as both a living functional fermented product to improve astronauts' health and an efficient source of bacterial nanocellulose. In this study, we compared KMC structure and functions before and after samples were exposed to the space/Mars-like environment outside the International Space Station in order to investigate the changes related to their re-adaptation to Earth-like conditions by shotgun metagenomics, using both diversity and functional analyses of Community Ecology and Complex Networks approach. Our study revealed that the long-term exposure to space/Mars-like conditions on low Earth orbit may disorganize the KMC to such extent that it will not restore the initial community structure; however, KMC core microorganisms of the community were maintained. Nonetheless, there were no significant differences in the community functions, meaning that the KMC communities are ecologically resilient. Therefore, despite the extremely harsh conditions, key KMC species revived and provided the community with the genetic background needed to survive long periods of time under extraterrestrial conditions.
Collapse
Affiliation(s)
- Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, Kyiv, 03680, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, Kyiv, 03680, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, Kyiv, 03680, Ukraine
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Padannakkad P.O., Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Padannakkad P.O., Kasaragod, Kerala, 671320, India
| | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Daniel Santana de Carvalho
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Vasco Azevedo
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Padannakkad P.O., Kasaragod, Kerala, 671320, India
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, Kyiv, 03680, Ukraine
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| |
Collapse
|
50
|
Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010068] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human Space exploration has created new challenges and new opportunities for science. Reaching beyond the Earth’s surface has raised the issue of the importance of gravity for the development and the physiology of biological systems, while giving scientists the tools to study the mechanisms of response and adaptation to the microgravity environment. As life has evolved under the constant influence of gravity, gravity affects biological systems at a very fundamental level. Owing to limited access to spaceflight platforms, scientists rely heavily on on-ground facilities that reproduce, to a different extent, microgravity or its effects. However, the technical constraints of counterbalancing the gravitational force on Earth add complexity to data interpretation. In-flight experiments are also not without their challenges, including additional stressors, such as cosmic radiation and lack of convection. It is thus extremely important in Space biology to design experiments in a way that maximizes the scientific return and takes into consideration all the variables of the chosen setup, both on-ground or on orbit. This review provides a critical analysis of current ground-based and spaceflight facilities. In particular, the focus was given to experimental design to offer the reader the tools to select the appropriate setup and to appropriately interpret the results.
Collapse
|