1
|
Alkali IM, Colombo M, Luvoni GC. Melatonin reduces oxidative stress and improves follicular morphology in feline (Felis catus) vitrified ovarian tissue. Theriogenology 2024; 224:58-67. [PMID: 38749260 DOI: 10.1016/j.theriogenology.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Ovarian tissue vitrification is associated with multiple events that promote accumulation of ROS (reactive oxygen species) which culminate in follicular apoptosis. Thus, this study was aimed at evaluating the role of melatonin in vitrification and culture of feline (Felis catus) ovarian tissue. In phase 1, domestic cat ovaries were fragmented into equal circular pieces of 1.5 mm diameter by 1 mm thickness and divided into four groups (fresh control and 3 treatments). The treatments were exposed to vitrification solutions supplemented with melatonin at 0 M, 10-9 M, and 10-7 M, then vitrified-warmed, histologically evaluated and assayed for ROS. Consequently, phase 2 experiment was designed wherein ovarian fragments were divided into two groups. One group was exposed to vitrification solution without melatonin and the other with 10-7 M melatonin supplementation, then vitrified-warmed and cultured for ten days with fresh ovarian fragments as control prior to assessment for histology, immunohistochemistry (Ki-67, MCM-7 and caspase-3) and ROS. Concentration of ROS was lower (p = 0.0009) in 10-7 M supplemented group in addition to higher proportion of grade 1 follicles. After culture, proportions of intact and activated follicles were higher (p < 0.05) in melatonin supplemented group evidenced by higher expression of Ki-67 and MCM-7. Follicular apoptosis was lower in melatonin supplemented group. In conclusion, melatonin at 10-7 M concentration preserved follicular morphological integrity while reducing ROS concentration in vitrified-warmed feline ovarian tissue. It has also promoted the follicular viability and activation with reduced apoptosis during in vitro culture of vitrified-warmed feline ovarian tissue.
Collapse
Affiliation(s)
- Isa Mohammed Alkali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Department of Theriogenology, University of Maiduguri, Maiduguri, Nigeria.
| | - Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| |
Collapse
|
2
|
Marco A, Gargallo M, Ciriza J, Shikanov A, Baquedano L, García Pérez-Llantada J, Malo C. Current Fertility Preservation Steps in Young Women Suffering from Cancer and Future Perspectives. Int J Mol Sci 2024; 25:4360. [PMID: 38673945 PMCID: PMC11050570 DOI: 10.3390/ijms25084360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Childhood cancer incidence, especially in high-income countries, has led to a focus on preserving fertility in this vulnerable population. The common treatments, such as radiation and certain chemotherapeutic agents, though effective, pose a risk to fertility. For adult women, established techniques like embryo and egg freezing are standard, requiring ovarian stimulation. However, for prepubescent girls, ovarian tissue freezing has become the primary option, eliminating the need for hormonal preparation. This review describes the beginning, evolution, and current situation of the fertility preservation options for this young population. A total of 75 studies were included, covering the steps in the current fertility preservation protocols: (i) ovarian tissue extraction, (ii) the freezing method, and (iii) thawing and transplantation. Cryopreservation and the subsequent transplantation of ovarian tissue have resulted in successful fertility restoration, with over 200 recorded live births, including cases involving ovarian tissue cryopreserved from prepubescent girls. Despite promising results, challenges persist, such as follicular loss during transplantation, which is attributed to ischemic and oxidative damage. Optimizing ovarian tissue-freezing processes and exploring alternatives to transplantation, like in vitro systems for follicles to establish maturation, are essential to mitigating associated risks. Further research is required in fertility preservation techniques to enhance clinical outcomes in the future. Ovarian tissue cryopreservation appears to be a method with specific benefits, indications, and risks, which can be an important tool in terms of preserving fertility in younger women.
Collapse
Affiliation(s)
- Alicia Marco
- Faculty of Medicine, University of Zaragoza, 50018 Zaragoza, Spain;
| | - Marta Gargallo
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; (M.G.); (J.C.)
| | - Jesús Ciriza
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; (M.G.); (J.C.)
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Baquedano
- Department of Gynecology, University Hospital Miguel Servat, 50009 Zaragoza, Spain;
| | | | - Clara Malo
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; (M.G.); (J.C.)
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
3
|
Qin Q, Li Z, Liu R, Liu S, Guo M, Zhang M, Wu H, Huang L. Effects of resveratrol on HIF-1α/VEGF pathway and apoptosis in vitrified duck ovary transplantation. Theriogenology 2023; 210:84-93. [PMID: 37481978 DOI: 10.1016/j.theriogenology.2023.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Preservation of ovarian tissues is an effective way to ensure genetic diversity of susceptible natural bird populations that are in danger of extinction. We examined whether the addition of the plant phenol resveratrol to vitrification solutions ameliorates the damaging effects of tissue hypoxia and reperfusion injury when the tissues are transplanted. Duck ovary tissues were frozen in the presence of varying concentrations of resveratrol in cryopreservation solutions and then transplanted under the renal capsules of 2-day-old Shelducks. Samples of the transplanted tissues were examined on days 3- and 9- post transplantation for activation of hypoxia-, antioxidant- and apoptosis-related gene expression and apoptosis. Resveratrol significantly increased expression of VEGF, HIF-1α, Nrf2, CAT and Bcl-2 mRNA and decreased BAX and Caspase-3 mRNA and reduced numbers of TUNEL-positive cells after vitrification and heterotopic ovarian transplantation. Resveratrol improved the antioxidant capacity, reduced apoptosis and activated the HIF-1α/VEGF pathway to promote angiogenesis 3- and 9-days following transplantation. These results indicated that the addition of resveratrol to vitrification solutions intended for long-term cryopreservation of ovary tissues improves survival in storage and the grafts following transplantation. This study provides a theoretical basis for the successful transplantation of avian ovarian tissue after vitrification.
Collapse
Affiliation(s)
- Qingming Qin
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Zhili Li
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Rongxu Liu
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Shaoxia Liu
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Minghui Guo
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Min Zhang
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Haigang Wu
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Li Huang
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China.
| |
Collapse
|
4
|
Najafi A, Asadi E, Benson JD. Ovarian tissue cryopreservation and transplantation: a review on reactive oxygen species generation and antioxidant therapy. Cell Tissue Res 2023; 393:401-423. [PMID: 37328708 DOI: 10.1007/s00441-023-03794-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cancer is the leading cause of death worldwide. Fortunately, the survival rate of cancer continues to rise, owing to advances in cancer treatments. However, these treatments are gonadotoxic and cause infertility. Ovarian tissue cryopreservation and transplantation (OTCT) is the most flexible option to preserve fertility in women and children with cancer. However, OTCT is associated with significant follicle loss and an accompanying short lifespan of the grafts. There has been a decade of research in cryopreservation-induced oxidative stress in single cells with significant successes in mitigating this major source of loss of viability. However, despite its success elsewhere and beyond a few promising experiments, little attention has been paid to this key aspect of OTCT-induced damage. As more and more clinical practices adopt OTCT for fertility preservation, it is a critical time to review oxidative stress as a cause of damage and to outline potential ameliorative interventions. Here we give an overview of the application of OTCT for female fertility preservation and existing challenges; clarify the potential contribution of oxidative stress in ovarian follicle loss; and highlight potential ability of antioxidant treatments to mitigate the OTCT-induced injuries that might be of interest to cryobiologists and reproductive clinicians.
Collapse
Affiliation(s)
- Atefeh Najafi
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
| | - Ebrahim Asadi
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada.
| |
Collapse
|
5
|
Karimi S, Tabatabaei SN, Novin MG, Kazemi M, Mofarahe ZS, Ebrahimzadeh-Bideskan A. Nanowarming improves survival of vitrified ovarian tissue and follicular development in a sheep model. Heliyon 2023; 9:e18828. [PMID: 37636467 PMCID: PMC10448434 DOI: 10.1016/j.heliyon.2023.e18828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Tissue cryopreservation has allowed long term banking of biomaterials in medicine. Ovarian tissue cryopreservation in particular helps patients by extending their fertility window. However, protection against tissue injury during the thawing process has proven to be challenging. This is mainly due to the heterogenous and slow distribution of the thermal energy across the vitrified tissue during a conventional warming process. Nanowarming is a technique that utilizes hyperthermia of magnetic nanoparticles to accelerate this process. Herein, hyperthermia of synthesized PEGylated silica-coated iron oxide nanoparticles was used to deter the injury of cryopreserved ovarian tissue in a sheep model. When compared to the conventional technique, our findings suggest that follicular development and gene expression in tissues warmed by the proposed technique have been improved. In addition, Nanowarming prevented cellular apoptosis and oxidative stress. We therefore conclude that Nanowarming is a potential complementary candidate to increase efficiency in the ovarian cryopreservation field.
Collapse
Affiliation(s)
- Sareh Karimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyed Nasrollah Tabatabaei
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, Qc, Canada
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Afzali A, Nazari H, Ahmadi E, Davoodian N, Amidi F, Taheri F, Bashiri Z, Kadivar A, Nemati Dehkordi M. The protective effects of astaxanthin on pre-antral follicle degeneration in ovine vitrified/warmed ovarian tissue. Cryobiology 2023:S0011-2240(23)00024-X. [PMID: 36925029 DOI: 10.1016/j.cryobiol.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/11/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
This study assesses the protective effects of astaxanthin (AST) against vitrification/warming-induced cryoinjuries of ovarian tissue slices in sheep. Cortical slices of slaughterhouse acquired-ovine ovaries were randomly distributed in different groups: fresh, toxicity, and five vitrification groups including vitrification in presence of 0 (control group), 1, 10 and 100 μM astaxanthin or 100 μM vitamin E. After vitrification/warming and 24 h culturing, the samples were subjected to histological studies, antioxidant evaluation by TAC and TBAR assays, and assessment of relative expression of BMP4, BMP15, GDF9 and KITLG genes related to folliculogenesis and follicular growth regulation. According to the results, vitrification reduced the percentage of morphologically intact follicles compared to the fresh and toxicity groups (p < 0.05). In vitrification groups, vitamin E and all three concentrations of AST increased the percentage of intact pre-antral follicles and antioxidant activity relative to the vitrified control (p < 0.05). This enhancement significantly occurred in 10 μM AST group more than vitamin E (p < 0.05). Also, 10 μM concentration of AST enhanced the expression of all the examined genes compared to the control (p < 0.05), while the expression of BMP4, BMP15 and KITLG was higher in the AST than vitamin E (p < 0.05). The latter could increase only the expression of GDF9 compared to the control group (p = 0.011). In conclusion, AST is a highly effective antioxidant for maintaining the survival of pre-antral follicles, retaining cell density, increasing total antioxidant capacity, and increasing the expression of some genes related to follicular development after short-term culture of vitrified/warmed ovarian tissue slices.
Collapse
Affiliation(s)
- Azita Afzali
- Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Fardin Amidi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taheri
- Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Anatomy, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Bashiri
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Omid Fertility and Infertility Clinic, Hamedan, Iran
| | - Ali Kadivar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Maryam Nemati Dehkordi
- Department of Gynecology and Obstetrics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Costa FDC, Vasconcelos EM, Nunes Azevedo VA, Feitosa Melo Paulino LR, Soares MD, Viana Silva JR, Barbalho Silva AW, Paz Souza AL. Aloe vera increases mRNA expression of antioxidant enzymes in cryopreserved bovine ovarian tissue and promotes follicular growth and survival after in vitro culture. Cryobiology 2021; 102:104-113. [PMID: 34270982 DOI: 10.1016/j.cryobiol.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 11/25/2022]
Abstract
The aims of the present study were to evaluate the effects of Aloe vera extract on expression of mRNA for antioxidant enzymes in bovine ovarian tissue after vitrification, as well as on follicular morphology, viability, activation and extracellular matrix in cultured ovarian tissues that had been previously vitrified. Fragments from bovine ovarian cortical tissue were cryopreserved in a vitrification solution alone or supplemented with two concentrations of Aloe vera (10 or 50%). After thawing, the cryopreserved tissues were analyzed by histological techniques, as well as the levels of mRNA for SOD, CAT, PRDX6 and GPX1 were investigated. Furthermore, cryopreserved fragments were then culture in vitro in α-MEM for 6 days. Histological evaluation of cultured tissues was performed to determine the percentages of normal and developing follicles. The results showed that, after vitrification, the presence of Aloe vera in both concentrations was able to maintain percentages of collagen fibers similar to fresh tissues (P < 0.05). Aloe vera in both concentrations significantly increased mRNA levels for PRDX6 and GPX1 in cryopreserved tissues, while 10% Aloe vera increased mRNA levels for SOD (P < 0.05). In parallel, after in vitro culture, fragments vitrified in the presence of 10% Aloe vera had significantly higher levels of morphologically healthy follicles when compared to tissue that were vitrified without Aloe vera. In fragments vitrified with Aloe vera, the rate of developing follicles was significantly higher than in tissues vitrified without Aloe vera. Tissues vitrified with 10% Aloe vera and cultured in vitro maintained percentages of collagen fibers similar to fresh tissues. In conclusion, 10% Aloe vera increases the expression of mRNA for PRDX6, GPX1 and SOD in vitrified ovarian tissues, maintains follicular survival and promotes activation and development of follicles after in vitro culture of vitrified bovine ovarian tissue.
Collapse
Affiliation(s)
- Francisco das Chagas Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | - Erlândia Márcia Vasconcelos
- Graduate Program in Science and Biotechnology. Institute of Biology. Fluminense Federal University, Niterói, RJ, Brazil
| | - Venância Antônia Nunes Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | | | - Mônica Dias Soares
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | - Anderson Weiny Barbalho Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | - Ana Liza Paz Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil.
| |
Collapse
|
8
|
Silva LM, Mbemya GT, Guerreiro DD, Brito DCC, Donfack NJ, Morais MLG, Rodrigues GQ, Bruno JB, Rocha RMP, Alves BG, Apgar GA, Cibin FWS, Figueiredo JR, Rodrigues APR. Effect of Catalase or Alpha Lipoic Acid Supplementation in the Vitrification Solution of Ovine Ovarian Tissue. Biopreserv Biobank 2018; 16:258-269. [DOI: 10.1089/bio.2017.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Luciana M. Silva
- PPGCV-LAMOFOPA-Universidade Estadual do Ceará (UECE), Fortaleza, Brasil
| | - Gildas T. Mbemya
- PPGCV-LAMOFOPA-Universidade Estadual do Ceará (UECE), Fortaleza, Brasil
| | | | | | | | | | | | - Jamily B. Bruno
- PPGCV-LAMOFOPA-Universidade Estadual do Ceará (UECE), Fortaleza, Brasil
| | | | - Benner G. Alves
- PPGCV-LAMOFOPA-Universidade Estadual do Ceará (UECE), Fortaleza, Brasil
| | - Gary A. Apgar
- PPGCV-LAMOFOPA-Universidade Estadual do Ceará (UECE), Fortaleza, Brasil
| | | | | | | |
Collapse
|
9
|
Rocha CD, Soares MM, de Cássia Antonino D, Júnior JM, Freitas Mohallem RF, Ribeiro Rodrigues AP, Figueiredo JR, Beletti ME, Jacomini JO, Alves BG, Alves KA. Positive effect of resveratrol against preantral follicles degeneration after ovarian tissue vitrification. Theriogenology 2018; 114:244-251. [DOI: 10.1016/j.theriogenology.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
10
|
Asadi E, Najafi A, Moeini A, Pirjani R, Hassanzadeh G, Mikaeili S, Salehi E, Adutwum E, Soleimani M, Khosravi F, Barati M, Abolhassani F. Ovarian tissue culture in the presence of VEGF and fetuin stimulates follicle growth and steroidogenesis. J Endocrinol 2017; 232:205-219. [PMID: 27852727 DOI: 10.1530/joe-16-0368] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Ovarian tissue cryopreservation together with follicle culture provides a promising technique for fertility preservation in cancer patients. The study aimed to evaluate follicle parameters in a culture medium supplemented with VEGFA165 and/or fetuin. Vitrified-warmed ovarian cortical pieces were divided randomly into four culture groups consisting of basic culture medium (control), and the basic culture medium supplemented with VEGFA165, fetuin or both. After six days of culture, we evaluated the following: percentage of resting, primary and secondary growing follicles; survival rate; steroid hormones production; levels of reactive oxygen species, lipid peroxidation and total antioxidant capacity; and developmental and antioxidant gene expression. The addition of VEGFA165 alone or in combination with fetuin to the culture medium caused resting follicle activation and increased the number of growing follicles. In the VEGFA165 group, we found a significant increase in the concentrations of 17β-estradiol at day 6 and progesterone from 4th day of the culture period. In the VEGFA165 + fetuin group, the concentration of 17β-estradiol rose at day 4 of the culture period. The levels of BMP15, GDF9 and INHB mRNAs were increased in all treated groups. In the fetuin and fetuin + VEGFA165 groups, we observed a high level of total antioxidant capacity and expression of SOD1 and CAT genes, low reactive oxygen species and lipid peroxidation levels and increased number of viable follicles. In conclusion, the present study provides useful evidence that supplementation of culture medium with VEGFA165 + fetuin leads to primordial follicle activation and development and increased percentage of healthy secondary growing follicles.
Collapse
Affiliation(s)
- Ebrahim Asadi
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Atefeh Najafi
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ashraf Moeini
- Department of Gynecology and ObstetricsArash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihaneh Pirjani
- Department of Gynecology and ObstetricsArash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Saideh Mikaeili
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Emmanuel Adutwum
- School of MedicineTehran University of Medical Science, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research CenterIran University of Medical Sciences, Tehran, Iran
- Department of Anatomical SciencesSchool of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | - Mahmood Barati
- Department of Pharmaceutical BiotechnologySchool of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Abolhassani
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
11
|
Brito DC, Domingues SF, Silva JK, Wu X, Santos RR, Pieczarka JC. Detrimental Effect of Phenol Red on the Vitrification of Cat (Felis catus) Ovarian Tissue. Biopreserv Biobank 2016; 14:17-22. [DOI: 10.1089/bio.2015.0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Danielle C. Brito
- Laboratory of Cytogenetics, Biological Sciences Institute, Federal University of Pará, Belem, Brazil
- Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Belem, Brazil
| | - Sheyla F.S. Domingues
- Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Belem, Brazil
| | - Joyce K. Silva
- Laboratory Engineering of Natural Products, Federal University of Pará, Belem, Brazil
| | - Xueqing Wu
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Regiane R. Santos
- Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Belem, Brazil
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Julio C. Pieczarka
- Laboratory of Cytogenetics, Biological Sciences Institute, Federal University of Pará, Belem, Brazil
| |
Collapse
|
12
|
Scalercio SR, Amorim CA, Brito DC, Percário S, Oskam IC, Domingues SFS, Santos RR. Trolox enhances follicular survival after ovarian tissue autograft in squirrel monkey (Saimiri collinsi). Reprod Fertil Dev 2015; 28:RD14454. [PMID: 25993990 DOI: 10.1071/rd14454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/30/2015] [Indexed: 02/28/2024] Open
Abstract
The aim of this study was to evaluate ovarian tissue pre-treatment with 50 µM Trolox followed by heterotopic transplantation in squirrel monkeys (Saimiri collinsi) and to assess tissue functionality via immunohistochemical analysis of the stroma and ovarian follicles. Five healthy and sexually mature squirrel monkey (Saimiri collinsi) females were used. Heterotopic autografting of fresh ovarian tissue with or without previous exposure to the antioxidant Trolox was performed and grafts were recovered for analysis 7 days later. Tissue vascularisation was confirmed by both macroscopic inspection and cluster of differentiation 31 (CD31) staining. Trolox prevented massive follicular activation and kept the percentages of morphologically normal follicles higher than in untreated grafts. Expression of anti-Müllerian hormone in developing follicles was observed only in controls and Trolox-treated grafts. Also, immunostaining for growth differentiation factor-9 was positive only in primordial follicles from controls and from Trolox-treated grafts. Although Trolox improved follicular quality and avoided apoptosis in stromal cells, ovarian tissue fibrosis was increased in Trolox-treated grafts, mainly due to an increase in collagen Type I synthesis.
Collapse
|
13
|
Carvalho A, Faustino L, Silva C, Castro S, Lobo C, Santos F, Santos R, Campello C, Bordignon V, Figueiredo J, Rodrigues A. Catalase addition to vitrification solutions maintains goat ovarian preantral follicles stability. Res Vet Sci 2014; 97:140-7. [DOI: 10.1016/j.rvsc.2014.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/01/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022]
|
14
|
Vitamin E-analog Trolox prevents endoplasmic reticulum stress in frozen-thawed ovarian tissue of capuchin monkey (Sapajus apella). Cell Tissue Res 2013; 355:471-80. [PMID: 24362491 DOI: 10.1007/s00441-013-1764-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/31/2013] [Indexed: 10/25/2022]
Abstract
Ovarian fragments were exposed to 0.5 M sucrose and 1 M ethylene glycol (freezing solution; FS) with or without selenium or Trolox. Histological and ultrastructural analyses showed that the percentages of normal follicles in control tissue and in tissue after exposure to FS + 50 μM Trolox were similar. Trolox prevented endoplasmic reticulum (ER)-related vacuolization, which is commonly observed in oocytes and stromal tissue after exposure to FS. From the evaluated stress markers, superoxide dismutase 1 (SOD1) was up-regulated in ovarian tissue exposed to FS + 10 ng/ml selenium. Ovarian fragments were subsequently frozen-thawed in the presence of FS with or without 50 μM Trolox, followed by in vitro culture (IVC). Antioxidant capacity in ovarian fragments decreased after freeze-thawing in Trolox-free FS compared with FS + 50 μM Trolox. Although freezing itself minimized the percentage of viable follicles in each solution, Trolox supplementation resulted in higher rates of viable follicles (67 %), even after IVC (61 %). Furthermore, stress markers SOD1 and ERp29 were up-regulated in ovarian tissue frozen-thawed in Trolox-free medium. Relative mRNA expression of growth factors markers was evaluated after freeze-thawing followed by IVC. BMP4, BMP5, CTGF, GDF9 and KL were down-regulated independently of the presence of Trolox in FS but down-regulation was less pronounced in the presence of Trolox. Thus, medium supplementation with 50 μM Trolox prevents ER stress and, consequently, protects ovarian tissue from ER-derived cytoplasmic vacuolization. ERp29 but not ERp60, appears to be a key marker linking stress caused by freezing-thawing and cell vacuolization.
Collapse
|