1
|
Mufti IU, Ain QU, Malik A, Shahid I, Alzahrani AR, Ijaz B, Rehman S. Exploring antiviral activity of Betanin and Glycine Betaine against dengue virus type-2 in transfected Hela cells. Microb Pathog 2024; 195:106894. [PMID: 39214424 DOI: 10.1016/j.micpath.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Dengue virus (DENV) infection is a worldwide public health concern infecting approximately 400 million individuals and about 40,000 mortalities yearly. Despite this, no licensed or readily available antiviral medication is currently available specifically for DENV infection, and therapy is typically symptomatic. Therefore, the objective of the study was to investigate the antiviral activity of Beta vulgaris L. phytoconstituents against DENV-2 targeting NS3 protein. The antiviral activity of phytochemicals was examined through virtual ligand-based screening, antiviral inhibition and dosage response assays, western blotting analysis and MD simulations. We conducted toxicological, and pharmacokinetic analysis to assess plant-based natural compound's efficacy, safety, and non-toxic doses. Molecular docking and MD simulation results revealed that the nonstructural protein-3 (NS3) might prove as a funamental target for Betanin and Glycine Betaine against Dengue virus. Betanin and Glycine betaine were initially studied for their non-toxic doses in HeLa, CHO, and Vero cells via MTT assay. HeLa cells were transiently transfected with cloned vector pcDNA3.1/Zeo(+)/DENV-2 NS3 along with non-toxic doses (80 μM-10 μM) of selected phytochemicals. The dose-response assay illustrated downregulated expression of DENV-2 NS3 gene after administration of Betanin (IC50 = 4.35 μM) and Glycine Betaine (IC50 = 4.49 μM). Dose response analysis of Betanin (80 μM-10 μM) depicted the significant inhibition of NS3 protein expression as well. These results suggested downregulated expression of DENV-2 NS3 at mRNA and protein level portraying the DENV replication inhibition. Based on our study findings, NS3 protease is depicted as distinctive DENV-2 inhibitor target. We will channel our study further into in vitro characterization employing the mechanistic study to understand the role of host factors in anti-flavi therapeutic.
Collapse
Affiliation(s)
- Isra Umbreen Mufti
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Qurrat Ul Ain
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan; Department of Medical Laboratory Technology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ayesha Malik
- Center of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thoker Niaz Baig, Lahore, Punjab, 53700, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, P.O. Box 13578, Makkah, 21955, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, P.O. Box 13578, Makkah, 21955, Saudi Arabia
| | - Bushra Ijaz
- Center of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thoker Niaz Baig, Lahore, Punjab, 53700, Pakistan.
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan.
| |
Collapse
|
2
|
Marti A, Nater A, Pego Magalhaes J, Almeida L, Lewandowska M, Liniger M, Ruggli N, Grau-Roma L, Brito F, Alnaji FG, Vignuzzi M, García-Nicolás O, Summerfield A. Fitness adaptations of Japanese encephalitis virus in pigs following vector-free serial passaging. PLoS Pathog 2024; 20:e1012059. [PMID: 39186783 PMCID: PMC11379391 DOI: 10.1371/journal.ppat.1012059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/06/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic mosquito-transmitted Flavivirus circulating in birds and pigs. In humans, JEV can cause severe viral encephalitis with high mortality. Considering that vector-free direct virus transmission was observed in experimentally infected pigs, JEV introduction into an immunologically naïve pig population could result in a series of direct transmissions disrupting the alternating host cycling between vertebrates and mosquitoes. To assess the potential consequences of such a realistic scenario, we passaged JEV ten times in pigs. This resulted in higher in vivo viral replication, increased shedding, and stronger innate immune responses in pigs. Nevertheless, the viral tissue tropism remained similar, and frequency of direct transmission was not enhanced. Next generation sequencing showed single nucleotide deviations in 10% of the genome during passaging. In total, 25 point mutations were selected to reach a frequency of at least 35% in one of the passages. From these, six mutations resulted in amino acid changes located in the precursor of membrane, the envelope, the non-structural 3 and the non-structural 5 proteins. In a competition experiment with two lines of passaging, the mutation M374L in the envelope protein and N275D in the non-structural protein 5 showed a fitness advantage in pigs. Altogether, the interruption of the alternating host cycle of JEV caused a prominent selection of viral quasispecies as well as selection of de novo mutations associated with fitness gains in pigs, albeit without enhancing direct transmission frequency.
Collapse
Affiliation(s)
- Andrea Marti
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alexander Nater
- Interfaculty Bioinformatics Unit (IBU) and Swiss Institute of Bioinformatics (SIB), University of Bern, Bern, Switzerland
| | - Jenny Pego Magalhaes
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marta Lewandowska
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, COMPATH, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Francisco Brito
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fadi G Alnaji
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Marco Vignuzzi
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
CRISPR-Cas13a Cleavage of Dengue Virus NS3 Gene Efficiently Inhibits Viral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1460-1469. [PMID: 32160714 PMCID: PMC7056623 DOI: 10.1016/j.omtn.2020.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
The CRISPR-Cas9 system has been applied to DNA editing with precision in eukaryotic and prokaryotic systems, but it is unable to edit RNA directly. A recently developed CRISPR-Cas13a system has been shown to be capable of effectively knocking down RNA expression in mammalian and plant cells. In this study, we employ the CRISPR-Cas13a system to achieve reprogrammable inactivation of dengue virus in mammalian cells. Quantitative reverse transcription PCR (qRT-PCR), fluorescence-activated cell sorting (FACS), and plaque assays showed that CRISPR RNA (crRNA) targeting the NS3 region led to the greatest viral inhibition among 10 crRNAs targeting different regions along the dengue viral genomic RNA. Deletions and insertions had also been found adjacent to the NS3 region after NS3-crRNA/Cas13a complex transfection. Our results demonstrate that the CRISPR-Cas13a system is a novel and effective technology to inhibit dengue viral replication, suggesting that such a programmable method may be further developed into a novel therapeutic strategy for dengue and other RNA viruses.
Collapse
|