1
|
Pasquariello R, Pennarossa G, Arcuri S, Fernandez-Fuertes B, Lonergan P, Brevini TAL, Gandolfi F. Sperm fertilizing ability in vitro influences bovine blastocyst miRNA content. Theriogenology 2024; 222:1-9. [PMID: 38581760 DOI: 10.1016/j.theriogenology.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through post-transcriptional regulation of gene expression. During development, miRNAs play a key role in driving embryo patterning and morphogenesis in a specific and stage-dependent manner. Here, we investigated whether sperm from bulls with different fertilizing ability in vitro influence blastocyst quality and miRNA content. Results demonstrate that blastocysts obtained using sperm from high fertility sires (H group) display significantly greater cleavage and blastocyst development as well as greater transcript abundance in blastocysts for the developmental competence markers CDX2, KRT8, NANOG, OCT4, PLAC8, PTGS2, SOX17, and SOX2, compared to blastocysts generated using sperm from low fertility sires (L group). In parallel, high throughput deep sequencing and differential expression studies revealed that H blastocysts exhibit a greater miRNA content compared to L blastocysts, with hsa-miR-4755-5p and hsa-miR-548d-3p uniquely detected in the H group, and greater abundance of hsa-miR-1225-3p in the H group. Gene ontology (GO) and KEGG pathway analyses indicated that the 3 differentially expressed miRNAs identified are involved in the regulation of many biological mechanisms with a key role in aspects of early embryo development, including transcriptional regulation, cellular biosynthesis, nucleic acid metabolism, cellular differentiation, apoptosis, cytoskeleton remodeling, cell-to-cell interactions, and endocytosis. Overall, our results indicate that sperm fertilizing ability influences blastocyst developmental ability and miRNA content. In addition, we demonstrate an association between blastocyst quality and miRNA content, thus suggesting the possibility to score miRNA expression as biomarkers for improved routine embryo selection technologies to support assisted reproductive efforts.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Beatriz Fernandez-Fuertes
- Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Berling FP, Mendes CM, Goissis MD. Influence of glucose and oxygen tension on the trophectoderm and the inner cell mass of in vitro produced bovine embryos. Theriogenology 2024; 225:89-97. [PMID: 38796961 DOI: 10.1016/j.theriogenology.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The first cell differentiation event that occurs in the embryo determines the inner cell mass (ICM) and the trophectoderm (TE). In the mouse, glucose (GLC) is essential for this process, while oxygen tension (O2) also interferes with TE formation. The roles of GLC and O2 in this event in bovine embryos are not completely elucidated. We hypothesized that the absence of glucose and a higher O2 tension negatively impact ICM and TE cell allocation in the bovine embryo. The objective of this study was to evaluate the effect of GLC within different O2 levels on the formation of the TE. In vitro-produced embryos were cultured in serum-free KSOM medium and randomly submitted to treatments on the day of IVC, according to a 2x2 factorial model, in which GLC (present [+GLC] or absent [-GLC]) and O2 (low [5%O2] or high [20%O2]) were the independent variables. Cleavage and blastocyst rates were obtained at D4 and D8, respectively. Embryos at D8 were subjected to autofluorescence analysis to quantitate NADH and FAD + or fixed for GATA3 and YAP1 immunostaining using a laser scanning confocal microscope. Total, TE, and ICM cell counts were obtained. Embryos were also harvested for gene expression quantification of GATA3, YAP1, SOX2, CDX2, TFAP2C and OCT4. Results indicate that there was an effect of O2 (p = 0.018) on cleavage rates, although no differences were observed in blastocyst rates. NADH was higher in -GLC compared to + GLC (p = 0.014) and no differences in FAD+ were observed. Total cell count data were not different between variables. There was an increase in the ICM cell count in the +GLC 5%O2 condition compared to the other three conditions. No effects of GLC, O2, or their interactions were observed on TE cell count or the TE/total cell ratio. CDX2 (p = 0.007) and TFAP2C (p = 0.038) were increased in -GLC 20%O2 compared to + GLC 20%O2. SOX2 was decreased in +GLC 20%O2 compared to + GLC 5%O2 (p = 0.027) or compared to -GLC 20%O2 (p = 0.005). GATA3, YAP1, and OCT4 genes did not present differences among conditions. In conclusion, both GLC and high oxygen tension did not impair TE formation and TE cell number, although a +GLC-low oxygen environment led to a higher number of ICM cells. Interestingly, the expression of TE-related gene CDX2 was increased in the absence of glucose within higher O2 tension. Our results implicate that according to the oxygen tension used in IVC, glucose can exert different effects on blastocyst cell allocation or gene expression.
Collapse
Affiliation(s)
- Francieli Perroni Berling
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Orlando Marques de Paiva 87, Sao Paulo, SP, 05508-270, Brazil.
| | - Camilla Mota Mendes
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Orlando Marques de Paiva 87, Sao Paulo, SP, 05508-270, Brazil.
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Orlando Marques de Paiva 87, Sao Paulo, SP, 05508-270, Brazil.
| |
Collapse
|
3
|
Akagi S, Matsukawa K. Effects of Trichostatin A on the Timing of the First Cleavage and In Vitro Developmental Potential of Bovine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2022; 24:142-149. [PMID: 35404091 DOI: 10.1089/cell.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examined the relationship between the timing of the first cleavage and in vitro development of bovine somatic cell nuclear transfer (SCNT) embryos treated with trichostatin A (TSA). SCNT embryos were visually assessed at 22, 26, and 48 hours after activation. Each embryo with two or more distinct blastomeres was transferred into a microwell and cultured until day 7. Irrespective of TSA treatment, approximately half of the cleaved embryos were observed at 22 hours, and a significantly higher blastocyst formation rate was shown in the SCNT embryos cleaved at 22 hours than those cleaved at ≥26 hours. The blastocyst formation rate of TSA-treated embryos cleaved at 22 hours (80%) was slightly higher than that of the control embryos (70%). In addition, interferon-τ (IFN-τ) expression was significantly lower in control SCNT embryos and late-cleaving (>26 hours) TSA-treated embryos than in in vitro fertilized (IVF) embryos. However, a significant difference was not observed between TSA-treated SCNT embryos cleaved at 22 and 26 hours, and IVF embryos. These results suggest that TSA treatment has no influence on the timing of the first cleavage of SCNT embryos; however, it slightly improves the blastocyst formation rate and the expression level of IFN-τ in early-cleaving embryos.
Collapse
Affiliation(s)
- Satoshi Akagi
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | |
Collapse
|
4
|
Savy V, Alberio V, Vans Landschoot G, Moro LN, Olea FD, Rodríguez-Álvarez L, Salamone DF. Effect of Embryo Aggregation on In Vitro Development of Adipose-Derived Mesenchymal Stem Cell-Derived Bovine Clones. Cell Reprogram 2021; 23:277-289. [PMID: 34648384 DOI: 10.1089/cell.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a method with unique ability to reprogram the epigenome of a fully differentiated cell. However, its efficiency remains extremely low. In this work, we assessed and combined two simple strategies to improve the SCNT efficiency in the bovine. These are the use of less-differentiated donor cells to facilitate nuclear reprogramming and the embryo aggregation (EA) strategy that is thought to compensate for aberrant epigenome reprogramming. We carefully assessed the optimal time of EA by using in vitro-fertilized (IVF) embryos and evaluated whether the use of adipose-derived mesenchymal stem cells (ASCs) as donor for SCNT together with EA improves the blastocyst rates and quality. Based on our results, we determined that the EA improves the preimplantation embryo development per well of IVF and SCNT embryos. We also demonstrated that day 0 (D0) is the optimal aggregation time that leads to a single blastocyst with uniform distribution of the original blastomeres. This was confirmed in bovine IVF embryos and then, the optimal condition was translated to SCNT embryos. Notably, the relative expression of the trophectoderm (TE) marker KRT18 was significantly different between aggregated and nonaggregated ASC-derived embryos. In the bovine, no effect of the donor cell is observed on the developmental rate, or the embryo quality. Therefore, no synergistic effect of the use of both strategies is observed. Our results suggest that EA at D0 is a simple and accessible strategy that improves the blastocyst rate per well in bovine SCNT and IVF embryos and influence the expression of a TE-related marker. The aggregation of two ASC-derived embryos seems to positively affect the embryo quality, which may improve the postimplantation development.
Collapse
Affiliation(s)
- Virginia Savy
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Virgilia Alberio
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldina Vans Landschoot
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Fernanda Daniela Olea
- Laboratorio de Medicina Regenerativa Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Favaloro, Buenos Aires, Argentina
| | - Lleretny Rodríguez-Álvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Daniel Felipe Salamone
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Yu B, van Tol HTA, Stout TAE, Roelen BAJ. Reverse transcription priming methods affect normalisation choices for gene expression levels in oocytes and early embryos. Mol Hum Reprod 2021; 27:6307270. [PMID: 34152407 PMCID: PMC8314208 DOI: 10.1093/molehr/gaab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/05/2021] [Indexed: 11/14/2022] Open
Abstract
Mammalian oocytes and embryos rely exclusively on maternal mRNAs to accomplish early developmental processes. Since oocytes and early embryos are transcriptionally silent after meiotic resumption, most of the synthesised maternal mRNA does not undergo immediate translation but is instead stored in the oocyte. Quantitative RT-PCR is commonly used to quantify mRNA levels, and correct quantification relies on reverse transcription and the choice of reference genes. Different methods for reverse transcription may affect gene expression determination in oocytes. In this study, we examined the suitability of either random or oligo(dT) primers for reverse transcription to be used for quantitative RT-PCR. We further looked for changes in poly(A) length of the maternal mRNAs during oocyte maturation. Our data indicate that depending on the method of reverse transcription, the optimal combination of reference genes for normalisation differed. Surprisingly, we observed a shortening of the poly(A) tail lengths of maternal mRNA as oocytes progressed from germinal vesicle to metaphase II. Overall, our findings suggest dynamic maternal regulation of mRNA structure and gene expression during oocyte maturation and early embryo development.
Collapse
Affiliation(s)
- Bo Yu
- Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Helena T A van Tol
- Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tom A E Stout
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A J Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Correspondence address. Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands. E-mail: http://orcid.org/0000-0001-9512-4708
| |
Collapse
|
6
|
Toorani T, Mackie PM, Mastromonaco GF. Validation of reference genes for use in untreated bovine fibroblasts. Sci Rep 2021; 11:10253. [PMID: 33986374 PMCID: PMC8119449 DOI: 10.1038/s41598-021-89657-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Proper normalization of RT-qPCR data is pivotal to the interpretation of results and accuracy of scientific conclusions. Though different approaches may be taken, normalization against multiple reference genes is now standard practice. Genes traditionally used and deemed constitutively expressed have demonstrated variability in expression under different experimental conditions, necessitating the proper validation of reference genes prior to utilization. Considering the wide use of fibroblasts in research and scientific applications, it is imperative that suitable reference genes for fibroblasts of different animal origins and conditions be elucidated. Previous studies on bovine fibroblasts have tested limited genes and/or samples. Herein, we present an extensive study investigating the expression stability of 16 candidate reference genes across 7 untreated bovine fibroblast cell lines subjected to controlled conditions. Data were analysed using various statistical tools and algorithms, including geNorm, NormFinder, BestKeeper, and RefFinder. A combined use of GUSB and RPL13A was determined to be the best approach for data normalization in untreated bovine fibroblasts.
Collapse
Affiliation(s)
- T Toorani
- Reproductive Sciences, Toronto Zoo, Scarborough, ON, M1B 5K7, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - P M Mackie
- Reproductive Sciences, Toronto Zoo, Scarborough, ON, M1B 5K7, Canada
| | - G F Mastromonaco
- Reproductive Sciences, Toronto Zoo, Scarborough, ON, M1B 5K7, Canada.
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
7
|
Sharma J, Madan P. Characterisation of the Hippo signalling pathway during bovine preimplantation embryo development. Reprod Fertil Dev 2021; 32:392-401. [PMID: 31718770 DOI: 10.1071/rd18320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Blastocyst formation is an important milestone during preimplantation embryo development. During murine preimplantation embryogenesis, the Hippo signalling pathway is known to play a significant role in lineage segregation and henceforth the formation of blastocysts. However, the role of this cell signalling pathway during bovine embryogenesis remains unknown. Thus, the aim of the present study was to characterise the Hippo signalling pathway during bovine preimplantation embryo development. mRNA transcripts of Hippo signalling pathway constituents (i.e. crumbs cell polarity complex component 3 (CRB3), mammalian sterile 20-like 1 (MST1), mammalian sterile 20-like 2 (MST2), Yes associated protein 1 (YAP1), transcriptional coactivator with PDZ-binding motif (TAZ)) were observed during all stages of bovine preimplantation embryo development. To evaluate the localisation of Hippo pathway components, bovine embryos at timed stages of development were stained using specific antibodies and observed under a laser confocal microscope. Although MST1/2 proteins were in the cytoplasm during various stages of bovine embryonic development, TAZ and phosphorylated (p-) YAP were detected in the nucleus during the blastocyst stages. Localisation of TAZ and p-YAP proteins was distinct in the bovine compared with mouse model, suggesting that the Hippo signalling pathway is regulated differently in early bovine embryos.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; and Corresponding author.
| |
Collapse
|
8
|
Jiang T, Dai S, Yi Y, Liu Y, Zhang S, Luo M, Wang H, Xu D. The combination of hprt and gapdh is the best compound reference genes in the fetal rat hippocampus. Dev Neurobiol 2020; 80:229-238. [PMID: 32875725 DOI: 10.1002/dneu.22779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/11/2020] [Accepted: 08/24/2020] [Indexed: 11/06/2022]
Abstract
Hippocampus, as an important organ of central memory storage and spatial orientation, has been studied increasingly in recent years. The expression of reference genes in the hippocampus of adult rats, which are commonly used in the quantitative real-time polymerase chain reaction (qRT-PCR), is unstable in the fetal hippocampus and may not be suitable for the fetal period. Therefore, this study intends to screen and determine the optimal compound reference genes in the fetal rat hippocampus. Based on the literature, we selected five housekeeping genes (HKGs), including glyceraldehyde 3-phosphate dehydrogenase (gapdh), actin beta (β-actin), hypoxanthine phosphoribosyltransferase (hprt), 18s ribosomal RNA (18s rRNA), and cyclophilin B (cypB). We analyzed the expression of them under physiological conditions in the fetal rat hippocampus using BestKeeper, GeNorm, and NormFinder, to select the most stable compound reference genes. Furthermore, to verify the stability of the compound reference genes, we analyzed the expression of reference genes in the fetal rat hippocampus under the pathological model of prenatal dexamethasone exposure (PDE). Finally, we evaluated the accuracy of compound reference genes through detecting the expression of fetal rat hippocampal brain-derived neurotrophic factor (BDNF) under PDE model. This study determined that the combination of gapdh and hprt was the most stable and suitable compound reference genes in the fetal rat hippocampus. There was no significant difference between male and female fetal rats. We provided the support of accurate and reliable reference genes for the further study of diseases related to the fetal hippocampus.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Shiyun Dai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yiwen Yi
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
9
|
Morenikeji OB, Ajayi OO, Peters SO, Mujibi FD, De Donato M, Thomas BN, Imumorin IG. RNA-seq profiling of skin in temperate and tropical cattle. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:141-158. [PMID: 32292922 PMCID: PMC7142279 DOI: 10.5187/jast.2020.62.2.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 11/20/2022]
Abstract
Skin is a major thermoregulatory organ in the body controlling homeothermy, a critical function for climate adaptation. We compared genes expressed between tropical- and temperate-adapted cattle to better understand genes involved in climate adaptation and hence thermoregulation. We profiled the skin of representative tropical and temperate cattle using RNA-seq. A total of 214,754,759 reads were generated and assembled into 72,993,478 reads and were mapped to unique regions in the bovine genome. Gene coverage of unique regions of the reference genome showed that of 24,616 genes, only 13,130 genes (53.34%) displayed more than one count per million reads for at least two libraries and were considered suitable for downstream analyses. Our results revealed that of 255 genes expressed differentially, 98 genes were upregulated in tropically-adapted White Fulani (WF; Bos indicus) and 157 genes were down regulated in WF compared to Angus, AG (Bos taurus). Fifteen pathways were identified from the differential gene sets through gene ontology and pathway analyses. These include the significantly enriched melanin metabolic process, proteinaceous extracellular matrix, inflammatory response, defense response, calcium ion binding and response to wounding. Quantitative PCR was used to validate six representative genes which are associated with skin thermoregulation and epithelia dysfunction (mean correlation 0.92; p < 0.001). Our results contribute to identifying genes and understanding molecular mechanisms of skin thermoregulation that may influence strategic genomic selection in cattle to withstand climate adaptation, microbial invasion and mechanical damage.
Collapse
Affiliation(s)
- Olanrewaju B Morenikeji
- Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, USA.,Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Oyeyemi O Ajayi
- Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.,Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149, USA
| | | | - Marcos De Donato
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Queretaro 76130, Mexico
| | - Bolaji N Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.,African Institute of Bioscience Research and Training, Ibadan, Nigeria.,Department of Biological Sciences, First Technical University, Ibadan, Nigeria.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Takahashi K, Ross PJ, Sawai K. The necessity of ZSCAN4 for preimplantation development and gene expression of bovine embryos. J Reprod Dev 2019; 65:319-326. [PMID: 31019155 PMCID: PMC6708851 DOI: 10.1262/jrd.2019-039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Zinc finger and SCAN domain containing 4 (Zscan4) is a gene that is specifically expressed during zygotic genome activation (ZGA) in mouse preimplantation embryos, and a
reduction of Zscan4 transcripts leads to developmental failure. In mouse embryonic stem cells (ESCs), Zscan4 is expressed transiently in as little as 1–5%
of the cell population. Zscan4 has also been shown to enhance the efficiency of mouse induced pluripotent stem cells (iPSCs) generation and their quality. Although ZSCAN4
plays important roles in murine embryos and stem cells, its expression and role in bovine embryos is unknown. This study examines ZSCAN4 transcripts in bovine embryos at
various developmental stages and attempts to elucidate the functions of ZSCAN4 during bovine preimplantation development. ZSCAN4 transcripts were found to be upregulated at
the 8- and 16-cell stages. We next attempted ZSCAN4 downregulation in bovine early embryos by RNA interference and evaluated developmental competency and transcripts levels
of genes involved in ZGA and iPSCs generation. Although the bovine embryos injected with ZSCAN4-siRNA could develop to the 8-cell stage, very few were developing beyond the
16-cell stage. PIWIL2 expression was reduced in ZSCAN4 downregulated embryos. It is possible that ZSCAN4 downregulated embryos fail to
regulate gene expression during ZGA. Our results indicate that ZSCAN4 is an important factor for the preimplantation development of bovine embryos.
Collapse
Affiliation(s)
- Kazuki Takahashi
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate 020-8550, Japan
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, CA 95616, U. S. A
| | - Ken Sawai
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate 020-8550, Japan.,Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| |
Collapse
|
11
|
Hu B, Zheng L, Long C, Song M, Li T, Yang L, Zuo Y. EmExplorer: a database for exploring time activation of gene expression in mammalian embryos. Open Biol 2019; 9:190054. [PMID: 31164042 PMCID: PMC6597754 DOI: 10.1098/rsob.190054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding early development offers a striking opportunity to investigate genetic disease, stem cell and assisted reproductive technology. Recent advances in high-throughput sequencing technology have led to the rising influx of omics data, which have rapidly boosted our understanding of mammalian developmental mechanisms. Here, we review the database EmExplorer (a database for exploring time activation of gene expression in mammalian embryos), which systematically organizes the genes from development-related pathways, and which we have already established and continue to update it. The current version of EmExplorer incorporates over 26 000 genes obtained from 306 functional pathways in five species. The function annotations of development-related genes were also integrated into EmExplorer. To facilitate data extraction, the database also contains the following information. (i) The dynamic expression values for each development stage are matched to the corresponding genes. (ii) A two-layer search tool which supports multi-option searching, such as by official symbol, pathway name and function annotation. The returned entries can directly link to the analysis results for the corresponding gene or pathway in the analysis module. (iii) The analysis module provides different gene comparisons at the multi-species level and functional pathway level, which shows the species specificity and stage specificity at the gene or pathway level. (iv) The analysis based on the hypergeometric distribution test reveals the enrichment of gene functions at a particular stage of one organism's pathway. (v) The browser is designed for users with ambiguous searching goals and greatly helps new users to get a general idea of the contents of the database. (vi) The experimentally validated pathways are manually curated and shown on the home page. EmExplorer will be helpful for elucidating early developmental mechanisms and exploring time activation genes. EmExplorer is freely available at http://bioinfor.imu.edu.cn/emexplorer.
Collapse
Affiliation(s)
- Bosu Hu
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Lei Zheng
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Chunshen Long
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Mingmin Song
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Tao Li
- 2 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018 , People's Republic of China
| | - Lei Yang
- 3 College of Bioinformatics Science and Technology, Harbin Medical University , Harbin 150081 , People's Republic of China
| | - Yongchun Zuo
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| |
Collapse
|
12
|
Sood TJ, Lagah SV, Sharma A, Singla SK, Mukesh M, Chauhan MS, Manik R, Palta P. Selection of Suitable Internal Control Genes for Accurate Normalization of Real-Time Quantitative PCR Data of Buffalo (Bubalus bubalis) Blastocysts Produced by SCNT and IVF. Cell Reprogram 2017; 19:302-310. [PMID: 28880574 DOI: 10.1089/cell.2017.0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We evaluated the suitability of 10 candidate internal control genes (ICGs), belonging to different functional classes, namely ACTB, EEF1A1, GAPDH, HPRT1, HMBS, RPS15, RPS18, RPS23, SDHA, and UBC for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of blastocyst-stage buffalo embryos produced by hand-made cloning and in vitro fertilization (IVF). Total RNA was isolated from three pools, each of cloned and IVF blastocysts (n = 50/pool) for cDNA synthesis. Two different statistical algorithms geNorm and NormFinder were used for evaluating the stability of these genes. Based on gene stability measure (M value) and pairwise variation (V value), calculated by geNorm analysis, the most stable ICGs were RPS15, HPRT1, and ACTB for cloned blastocysts, HMBS, UBC, and HPRT1 for IVF blastocysts and RPS15, GAPDH, and HPRT1 for both the embryo types analyzed together. RPS18 was the least stable gene for both cloned and IVF blastocysts. Following NormFinder analysis, the order of stability was RPS15 = HPRT1>GAPDH for cloned blastocysts, HMBS = UBC>RPS23 for IVF blastocysts, and HPRT1>GAPDH>RPS15 for cloned and IVF blastocysts together. These results suggest that despite overlapping of the three most stable ICGs between cloned and IVF blastocysts, the panel of ICGs selected for normalization of qPCR data of cloned and IVF blastocyst-stage embryos should be different.
Collapse
Affiliation(s)
- Tanushri Jerath Sood
- 1 Animal Biotechnology Center, ICAR-National Dairy Research Institute , Karnal, India
| | - Swati Viviyan Lagah
- 1 Animal Biotechnology Center, ICAR-National Dairy Research Institute , Karnal, India
| | - Ankita Sharma
- 2 ICAR-National Bureau of Animal Genetic Resources , Karnal, India
| | - Suresh Kumar Singla
- 1 Animal Biotechnology Center, ICAR-National Dairy Research Institute , Karnal, India
| | - Manishi Mukesh
- 2 ICAR-National Bureau of Animal Genetic Resources , Karnal, India
| | | | - Radheysham Manik
- 1 Animal Biotechnology Center, ICAR-National Dairy Research Institute , Karnal, India
| | - Prabhat Palta
- 1 Animal Biotechnology Center, ICAR-National Dairy Research Institute , Karnal, India
| |
Collapse
|
13
|
Salehi R, Tsoi SCM, Colazo MG, Ambrose DJ, Robert C, Dyck MK. Transcriptome Profiling of In-Vivo Produced Bovine Pre-implantation Embryos Using Two-color Microarray Platform. J Vis Exp 2017:53754. [PMID: 28190024 PMCID: PMC5352306 DOI: 10.3791/53754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Early embryonic loss is a large contributor to infertility in cattle. Moreover, bovine becomes an interesting model to study human preimplantation embryo development due to their similar developmental process. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. Microarray technology allows quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. One of the main decisions that have to be made when planning a microarray experiment is whether to use a one- or two-color approach. Two-color design increases technical replication, minimizes variability, improves sensitivity and accuracy as well as allows having loop designs, defining the common reference samples. Although microarray is a powerful biological tool, there are potential pitfalls that can attenuate its power. Hence, in this technical paper we demonstrate an optimized protocol for RNA extraction, amplification, labeling, hybridization of the labeled amplified RNA to the array, array scanning and data analysis using the two-color analysis strategy.
Collapse
Affiliation(s)
- Reza Salehi
- Department of Agricultural, Food and Nutritional Science, University of Alberta
| | - Stephen C M Tsoi
- Department of Agricultural, Food and Nutritional Science, University of Alberta
| | | | - Divakar J Ambrose
- Department of Agricultural, Food and Nutritional Science, University of Alberta; Livestock Research Branch, Alberta Agriculture and Forestry
| | - Claude Robert
- Laboratory of Functional Genomics of Early Embryonic Development, Université Laval
| | - Michael K Dyck
- Department of Agricultural, Food and Nutritional Science, University of Alberta;
| |
Collapse
|
14
|
Goissis MD, Cibelli JB. Functional characterization of CDX2 during bovine preimplantation development in vitro. Mol Reprod Dev 2014; 81:962-70. [PMID: 25251051 DOI: 10.1002/mrd.22415] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/20/2014] [Indexed: 01/26/2023]
Abstract
Placental defects are common in bovine embryos produced using assisted reproductive techniques. A proper understanding of the events leading to inner cell mass (ICM) and trophectoderm (TE) specification could help identify the origins of such developmental failures. We focused on caudal-type homeobox transcription factor 2 (CDX2) since it has a specific role during TE differentiation in mouse embryos. Of all the preimplantation stages analyzed, CDX2 protein was present only at the blastocyst stage. To further understand the roles of CDX2 during bovine development, we depleted CDX2 mRNA; despite a significant loss of detectable protein, embryos were able to form blastocysts at the same rate as controls. Embryos lacking CDX2 did not show abnormalities in the number of TE, ICM, or total cells in the blastocyst. Expression of the developmentally important genes SOX2, POU5F1, and NANOG, or TE markers such as IFN-T and KRT18 were not affected by the reduction in CDX2 levels, nor was the localization of SOX2 and POU5F1 protein. Using a functional barrier assay, we observed that the TE epithelial layer of embryos lacking CDX2 had lost its integrity. Our results thus indicate that CDX2 is not required for TE formation during bovine development; nevertheless, it is necessary for maintaining TE integrity.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Science, Michigan State University, East Lansing, Michigan; Capes Foundation, Ministry of Education, Brasília, Brazil
| | | |
Collapse
|
15
|
Su J, Wang Y, Li W, Gao M, Ma Y, Hua S, Quan F, Zhang Y. Effects of 3-hydroxyflavone on the cellular and molecular characteristics of bovine embryos produced by somatic-cell nuclear transfer. Mol Reprod Dev 2014; 81:257-69. [DOI: 10.1002/mrd.22293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yongsheng Wang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Wenzhe Li
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Mingqing Gao
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yefei Ma
- Department of Gynecology and Obstetrics; Tangdu Hospital; The Fourth Military Medical University; Xi'an Shaanxi Province PR China
| | - Song Hua
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Fusheng Quan
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yong Zhang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| |
Collapse
|
16
|
Chitwood JL, Rincon G, Kaiser GG, Medrano JF, Ross PJ. RNA-seq analysis of single bovine blastocysts. BMC Genomics 2013; 14:350. [PMID: 23705625 PMCID: PMC3668197 DOI: 10.1186/1471-2164-14-350] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/14/2013] [Indexed: 11/22/2022] Open
Abstract
Background Use of RNA-Seq presents unique benefits in terms of gene expression analysis because of its wide dynamic range and ability to identify functional sequence variants. This technology provides the opportunity to assay the developing embryo, but the paucity of biological material available from individual embryos has made this a challenging prospect. Results We report here the first application of RNA-Seq for the analysis of individual blastocyst gene expression, SNP detection, and characterization of allele specific expression (ASE). RNA was extracted from single bovine blastocysts (n = 5), amplified, and analyzed using high-throughput sequencing. Approximately 38 million sequencing reads were generated per embryo and 9,489 known bovine genes were found to be expressed, with a high correlation of expression levels between samples (r > 0.97). Transcriptomic data was analyzed to identify SNP in expressed genes, and individual SNP were examined to characterize allele specific expression. Expressed biallelic SNP variants with allelic imbalances were observed in 473 SNP, where one allele represented between 65-95% of a variant’s transcripts. Conclusions This study represents the first application of RNA-seq technology in single bovine embryos allowing a representation of the embryonic transcriptome and the analysis of transcript sequence variation to describe specific allele expression.
Collapse
Affiliation(s)
- James L Chitwood
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | | | | | | |
Collapse
|
17
|
Stability of reference genes for normalization of reverse transcription quantitative real-time PCR (RT-qPCR) data in bovine blastocysts produced by IVF, ICSI and SCNT. ZYGOTE 2013; 22:505-12. [DOI: 10.1017/s0967199413000099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryReverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a sensitive and accurate tool for quantitative estimation of gene transcription levels in preimplantation embryos. To control for possible experimental variations, gene expression data must be normalized using internal control genes commonly known as reference genes. However, the stability of reference genes can vary depending on the state of development and/or experimental conditions; hence the assessment of their stability is essential before initiating a gene expression analysis. In the present study, we used RT-qPCR to measure the transcript levels of 10 commonly used reference genes and analyzed their expression stability in bovine blastocysts produced by in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT). Using the geNorm program, we found the best combination of genes to normalize gene expression data in bovine embryos at the blastocyst stage produced by IVF (HMBS, SF3A1, and HPRT1), ICSI (H2A, HMBS, and GAPDH), SCNT (ACTB, SF3A1, and SDHA) and/or between blastocysts produced by these methods (GAPDH, HMBS and EEF1A2). We also demonstrated that not only the culture conditions may affect the expression patterns in bovine blastocysts but also the choice of embryo production method may have an important effect.
Collapse
|
18
|
Esteves TC, Psathaki OE, Pfeiffer MJ, Balbach ST, Zeuschner D, Shitara H, Yonekawa H, Siatkowski M, Fuellen G, Boiani M. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming. PLoS One 2012; 7:e36850. [PMID: 22693623 PMCID: PMC3367913 DOI: 10.1371/journal.pone.0036850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/14/2012] [Indexed: 12/20/2022] Open
Abstract
While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.
Collapse
Affiliation(s)
- Telma C. Esteves
- Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | | | - Dagmar Zeuschner
- Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hiromichi Yonekawa
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Marcin Siatkowski
- German Center for Neurodegenerative Disorders, Rostock, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany
| | - Michele Boiani
- Max-Planck Institute for Molecular Biomedicine, Münster, Germany
- * E-mail:
| |
Collapse
|