1
|
Lan Y, Yan D, Li X, Zhou C, Bai Y, Dong X. Muscle growth differences in Lijiang pigs revealed by ATAC-seq multi-omics. Front Vet Sci 2024; 11:1431248. [PMID: 39253524 PMCID: PMC11381499 DOI: 10.3389/fvets.2024.1431248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
As one of the largest tissues in the animal body, skeletal muscle plays a pivotal role in the production and quality of pork. Consequently, it is of paramount importance to investigate the growth and developmental processes of skeletal muscle. Lijiang pigs, which naturally have two subtypes, fast-growing and slow-growing, provide an ideal model for such studies by eliminating breed-related influences. In this study, we selected three fast-growing and three slow-growing 6-month-old Lijiang pigs as subjects. We utilized assay for transposase-accessible chromatin with sequencing (ATAC-seq) combined with genomics, RNA sequencing, and proteomics to screen for differentially expressed genes and transcription factors linked to increased longissimus dorsi muscle volume in Lijiang pigs. We identified 126 genes through ATAC-seq, including PPARA, TNRC6B, NEDD1, and FKBP5, that exhibited differential expression patterns during muscle growth. Additionally, we identified 59 transcription factors, including Foxh1, JunB, Mef2 family members (Mef2a/b/c/d), NeuroD1, and TEAD4. By examining open chromatin regions (OCRs) with significant genetic differentiation, genes such as SAV1, CACNA1H, PRKCG, and FGFR4 were found. Integrating ATAC-seq with transcriptomics and transcriptomics with proteomics, we identified differences in open chromatin regions, transcription, and protein levels of FKBP5 and SCARB2 genes in fast-growing and slow-growing Lijiang pigs. Utilizing multi-omics analysis with R packages, we jointed ATAC-seq, transcriptome, and proteome datasets, identifying enriched pathways related to glycogen metabolism and skeletal muscle cell differentiation. We pinpointed genes such as MYF6 and HABP2 that exhibit strong correlations across these diverse data types. This study provides a multi-faceted understanding of the molecular mechanisms that lead to differences in pig muscle fiber growth.
Collapse
Affiliation(s)
- Yi Lan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinpeng Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunlu Zhou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xinxing Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Chen F, Shi D, Zou L, Yang X, Qiao S, Zhang R, Yang S, Deng Y. Two Small Molecule Inhibitors Promote Reprogramming of Guangxi Bama Mini-Pig Mesenchymal Stem Cells Into Naive-Like State Induced Pluripotent Stem Cells. Cell Reprogram 2021; 23:158-167. [PMID: 33956517 DOI: 10.1089/cell.2020.0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Past researches have shown that pluripotency maintenance of naive and primed-state pluripotent stem cells (PSCs) depends on different signaling pathways, and naive-state PSCs possess the ability to produce chimeras when they are introduced into a blastocyst. Considering porcine is an attractive model for preclinical studies, many researches about pig induced pluripotent stem cells (piPSCs) have been reported. Some cytokines and small molecule compounds could transform primed piPSCs into naive state. However, there are no suitable culture conditions for generation of naive-state piPSCs with high efficiency; other small molecule compounds need further exploration. In this study, we investigated whether p38 MAPK and JNK signal pathway inhibitor SB203580 and SP600125 could be of benefit for acquiring naive-state piPSCs. By comparing reprogramming efficiencies under conditions of different donor cells and culture environment, we found that porcine bone marrow mesenchymal stem cells (PBMSCs) have higher efficiency on piPSC induction, and the culture condition of CHIR99021+PD0325901(2i)+Lif+bFGF is more suitable for subculturing of piPSCs. Our results also indicate that SB203580 and SP600125 could promote reprogramming of PBMSCs into naive-like state piPSCs. These results provide guidance for choosing donor cells, culture conditions, and research of different state iPSCs during the process of reprogramming pig somatic cells.
Collapse
Affiliation(s)
- Feng Chen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Lingxiu Zou
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Xiaoling Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Shuye Qiao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Ruimen Zhang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Sufang Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China.,International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, P.R. China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| |
Collapse
|
3
|
Bukowska J, Szóstek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcińska S, Gawrońska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Rev Rep 2020; 17:719-738. [PMID: 33025392 PMCID: PMC8166671 DOI: 10.1007/s12015-020-10049-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | | | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
4
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:5386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
5
|
Saad Eldien HM, Abdel-Aziz HO, Sayed D, Mubarak W, Hareedy HHG, Mansor SG, Yoshida T, Fathy M. Periostin expression and characters of human adipose tissue-derived mesenchymal stromal cells were aberrantly affected by in vitro cultivation. Stem Cell Investig 2019; 6:33. [PMID: 31620480 DOI: 10.21037/sci.2019.08.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
Abstract
Background Human adipose tissue-derived mesenchymal stromal cells (AD-MSCs) have been under focus in regenerative medicine since their discovery as a suitable source of MSCs. AD-MSCs are heterogeneous cells and exhibit variations in population doubling time, morphology and proliferative capacity. This study investigated if human AD-MSCs are developing, during in vitro long-term cultivation, in an unwanted or aberrant way. Methods This study monitored AD-MSCs during their in vitro culture till the tenth passage investigating proliferation kinetics, DNA index and surface markers expression. Also, periostin gene expression was examined. Results The proliferation capacity and colony forming unit were decreased after passage 6 and the population doubling time was increased. Flow cytometric analysis revealed that newly cultivated population strongly expressed MSCs markers, furthermore, reduction of CD105 expression appeared in passage 5 onwards, the later was associated with significant increase in expression of CD34 (a hematopoietic cell marker). Also, reduction of CD73 and CD90 expression was observed from passage 8. Furthermore, during the first six passages, periostin expression was significantly unchanged, with significant upregulation in late passages. Conclusions Long-term cultivation of human AD-MSCs changed their characters in an aberrant way and the first four passages might be the most appropriate passages for therapy. More investigation and understanding of these variations are needed to help in standardizing the expansion of MSCs-based therapies.
Collapse
Affiliation(s)
- Heba M Saad Eldien
- Department of Anatomy, College of Medicine, Jouf University, Jouf, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Douaa Sayed
- Department of Clinical Pathology, South Egypt Cancer Institutee, Assiut University, Assiut, Egypt
| | - Wafaa Mubarak
- Department of Anatomy, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hemmat H G Hareedy
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Basic Medical Science, Majma'ah University, Saudi Arabia
| | - Shima G Mansor
- Department of Clinical Pathology, South Egypt Cancer Institutee, Assiut University, Assiut, Egypt
| | - Toshiko Yoshida
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Moustafa Fathy
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
6
|
Lee S, Moon S, Oh JY, Seo EH, Kim YH, Jun E, Shim IK, Kim SC. Enhanced insulin production and reprogramming efficiency of mesenchymal stem cells derived from porcine pancreas using suitable induction medium. Xenotransplantation 2019; 26:e12451. [PMID: 30252163 DOI: 10.1111/xen.12451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/23/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Genetic reprogramming is a powerful method for altering cell properties and inducing differentiation. However, even if the same gene is reprogrammed, the results vary among cells. Therefore, a better possible strategy involves treating cells with factors that further stimulate differentiation while using stem cells with the same tissue origin. This study aimed to increase induction efficiency and insulin production in reprogrammed cells using a combination of factors that promote cell differentiation. METHODS Porcine pancreatic cells were cultured to obtain mesenchymal stem cells expressing pancreatic cell-specific markers through sequential passages. The characteristics of these cells were identified, and the M3 gene (Pdx1, Ngn3, MafA) was reprogrammed to induce differentiation into insulin-producing cells. Additionally, the differentiation efficiency of insulin-producing cells was compared by treating reprogrammed cells with a differentiation-promoting factor. RESULTS Mesenchymal stem cells isolated from porcine pancreatic tissues expressed exocrine cell markers, including amylase and cytokeratin 18, and most cells continuously expressed the beta cell transcription factors Ngn3 and NeuroD. Reprogramming of the M3 gene resulted in differentiation into insulin-producing cells. Moreover, significantly increased insulin and glucagon expressions were observed in the suitable induction medium, and the characteristic beta cell transcription factors Pdx1, Ngn3, and MafA were expressed at levels as high as those in pancreatic islet cells. CONCLUSIONS Differentiation into insulin-producing cells represents an alternative therapy for insufficient pancreatic islet cells when treating diabetes. Therefore, cells with the characteristics of the target cell should be used to improve differentiation efficiency by creating an environment that promotes reprogramming and differentiation.
Collapse
Affiliation(s)
- Song Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soobin Moon
- Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ju Yun Oh
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Ha Seo
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Hee Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsung Jun
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Kyoung Shim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep 2018; 8:1616. [PMID: 29371676 PMCID: PMC5785510 DOI: 10.1038/s41598-018-20006-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
This comparative study aims to identify a biocompatible and effective crosslinker for preparing gelatin sponges. Glutaraldehyde (GTA), genipin (GP), 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC), and microbial transglutaminase (mTG) were used as crosslinking agents. The physical properties of the prepared samples were characterized, and material degradation was studied in vitro with various proteases and in vivo through subcutaneous implantation of the sponges in rats. Adipose-derived stromal stem cells (ADSCs) were cultured and inoculated onto the scaffolds to compare the cellular biocompatibility of the sponges. Cellular seeding efficiency and digestion time of the sponges were also evaluated. Cellular viability and proliferation in scaffolds were analyzed by fluorescence staining and MTT assay. All the samples exhibited high porosity, good swelling ratio, and hydrolysis properties; however, material strength, hydrolysis, and enzymolytic properties varied among the samples. GTA–sponge and GP–sponge possessed high compressive moduli, and EDC–sponge exhibited fast degradation performance. GTA and GP sponge implants exerted strong in vivo rejections, and the former showed poor cell growth. mTG–sponge exhibited the optimal comprehensive performance, with good porosity, compressive modulus, anti-degradation ability, and good biocompatibility. Hence, mTG–sponge can be used as a scaffold material for tissue engineering applications.
Collapse
|
8
|
Long H, Yang G, Ma K, Xiao Z, Ren X. [Effect of different electrical stimulation waves on orientation and alignment of adipose derived mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:853-861. [PMID: 29798532 PMCID: PMC8498154 DOI: 10.7507/1002-1892.201702027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Indexed: 02/05/2023]
Abstract
Objective To investigate the effect of different electrical stimulation waves on orientation and alignment of adipose derived mesenchymal stem cells (ADSCs). Methods ADSCs were isolated from 5-week-old Sprague Dawley rats (weight, 100-150 g) and cultivated. The cells at passages 3-5 were inoculated to prepare cell climbing slices, subsequently was exposed to direct-current electrical stimulations (ES) at electric field strengths of 1, 2, 3, 4, 5, and 6 V/cm on a homemade electric field bioreactor (groups A1, A2, A3, A4, A5, and A6); at electric field strength of 6 V/cm, at 50% duty cycle, and at frequency of 1 and 2 Hz (groups B1 and B2) of square wave ES; at electric field strength of 6 V/cm, at pulse width of 2 ms, and at frequency of 1 and 2 Hz (groups C1 and C2) of biphasic pulse wave ES; and no ES was given as a control (group D). The changes of cellular morphology affected by applied ES were evaluated by time-lapse micropho-tography via inverted microscope. The cell alignment was evaluated via average orientation factor ( OF). The cytoske-leton of electric field treated ADSCs was characterized by rhodamine-phalloidin staining. The cell survival rates were assessed via cell live/dead staining and intracellular calcium activities were detected by calcium ion fluorescent staining. Results The response of ADSCs to ES was related to the direct-current electric field intensity. The higher the direct-current electric field intensity was, the more cells aligned perpendicular to the direction of electric field. At each time point, there was no obvious cell alignment in groups B1, B2 and C1, C2. The average OF of groups A5 and A6 were significantly higher than that of group D ( P<0.05), but no significant difference was found between other groups and group D ( P>0.05). The cytoskeleton staining showed that the cells of groups A5 and A6 exhibited a compact fascicular structure of cytoskeleton, and tended to be perpendicular to the direction of the electric field vector. The cellular survival rate of groups A4, A5, and A6 were significantly lower than that of group D ( P<0.05), but no significant difference was found between other groups and group D ( P>0.05). Calcium fluorescence staining showed that the fluorescence intensity of calcium ions in groups A4, A5, and A6 was slightly higher than that in group D, and no significant difference was found between other groups and group D. Conclusion The direct-current electric field stimulations with physiological electric field strength (5 V/cm and 6 V/cm) can induce the alignment of ADSCs, but no cell alignment is found under conditions of less than 5 V/cm direct-current electric field, square wave, and biphasic pulse wave stimulation. The cellular viability is negatively correlated with the electric field intensity.
Collapse
Affiliation(s)
- Haiyan Long
- Center of Engineering-Training, Chengdu Aeronautic Polytechnic, Chengdu Sichuan, 610100, P.R.China
| | - Gang Yang
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu Sichuan, 610065,
| | - Kunlong Ma
- Department of Orthopaedics, Yongchuan Hospital, Chongqing Medical University, Yongchuan Chongqing, 402160, P.R.China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xiaomei Ren
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu Sichuan, 610065, P.R.China
| |
Collapse
|
9
|
Buccal Fat Pad as a Potential Source of Stem Cells for Bone Regeneration: A Literature Review. Stem Cells Int 2017; 2017:8354640. [PMID: 28757880 PMCID: PMC5516750 DOI: 10.1155/2017/8354640] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissues hold great promise in bone tissue engineering since they are available in large quantities as a waste material. The buccal fat pad (BFP) is a specialized adipose tissue that is easy to harvest and contains a rich blood supply, and its harvesting causes low complications for patients. This review focuses on the characteristics and osteogenic capability of stem cells derived from BFP as a valuable cell source for bone tissue engineering. An electronic search was performed on all in vitro and in vivo studies that used stem cells from BFP for the purpose of bone tissue engineering from 2010 until 2016. This review was organized according to the PRISMA statement. Adipose-derived stem cells derived from BFP (BFPSCs) were compared with adipose tissues from other parts of the body (AdSCs). Moreover, the osteogenic capability of dedifferentiated fat cells (DFAT) derived from BFP (BFP-DFAT) has been reported in comparison with BFPSCs. BFP is an easily accessible source of stem cells that can be obtained via the oral cavity without injury to the external body surface. Comparing BFPSCs with AdSCs indicated similar cell yield, morphology, and multilineage differentiation. However, BFPSCs proliferate faster and are more prone to producing colonies than AdSCs.
Collapse
|
10
|
Arrizabalaga JH, Nollert MU. Properties of porcine adipose-derived stem cells and their applications in preclinical models. Adipocyte 2017; 6:217-223. [PMID: 28410000 DOI: 10.1080/21623945.2017.1312040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells represent a reliable adult stem cell source thanks to their abundance, straightforward isolation, and broad differentiation abilities. Consequently, human adipose-derived stem cells (hASCs) have been used in vitro for several innovative cellular therapy and regenerative medicine applications. However, the translation of a novel technology from the laboratory to the clinic requires first to evaluate its safety, feasibility, and potential efficacy through preclinical studies in animals. The anatomy and physiology of pigs and humans are very similar, establishing pigs as an attractive and popular large animal model for preclinical studies. Knowledge of the properties of porcine adipose-derived stem cells (pASCs) used in preclinical studies is critical for their success. While hASCs have been extensively studied this past decade, only a handful of reports relate to pASCs. The aim of this concise review is to summarize the current findings about the isolation of pASCs, their culture, proliferation, and immunophenotype. The differentiation abilities of pASCs and their applications in porcine preclinical models will also be reported.
Collapse
Affiliation(s)
| | - Matthias U. Nollert
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
- School of Chemical, Biological & Materials Engineering, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
11
|
Liu SY, He YB, Deng SY, Zhu WT, Xu SY, Ni GX. Exercise affects biological characteristics of mesenchymal stromal cells derived from bone marrow and adipose tissue. INTERNATIONAL ORTHOPAEDICS 2017; 41:1199-1209. [PMID: 28364139 DOI: 10.1007/s00264-017-3441-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
Both bone marrow mesenchymal stromal cells (BMSCs) and adipose-derived mesenchymal stromal cells (ADSCs) are good sources for tissue engineering. To maximize therapeutic efficacy of MSCs, an appropriate source of MSCs should be selected according to their own inherent characteristics for future clinical application. Hence, this study was conducted to compare proliferative, differential and antiapoptosis abilities of both MSCs derived from exercised and sedentary rats under normal and hypoxia/serum deprivation conditions (H/SD). Our results showed that exercise may enhance proliferative ability and decrease adipogenic ability of BMSCs and ADSCs. However, positive effect of exercise on osteogenesis was only observed for BMSCs in either environment. Little effect was observed on the antiapoptotic ability of both MSC types. It was also suggested that biological characteristics of both types were partly changed. It is therefore believed that BMSCs derived from exercised rat on early passage may be a good cell source for bone tissue engineering.
Collapse
Affiliation(s)
- Sheng-Yao Liu
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Yong-Bin He
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Song-Yun Deng
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Wen-Ting Zhu
- Biomaterial Research Center, School of pharmaceutical sciences, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Shao-Yong Xu
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Guo-Xin Ni
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China.
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
12
|
Yang G, Long H, Ren X, Ma K, Xiao Z, Wang Y, Guo Y. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field. Dev Growth Differ 2017; 59:70-82. [PMID: 28185267 DOI: 10.1111/dgd.12340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 02/05/2023]
Abstract
Cell alignment and motility play a critical role in a variety of cell behaviors, including cytoskeleton reorganization, membrane-protein relocation, nuclear gene expression, and extracellular matrix remodeling. Direct current electric field (EF) in vitro can direct many types of cells to align vertically to EF vector. In this work, we investigated the effects of EF stimulation on rat adipose-tissue-derived stromal cells (ADSCs) in 2D-culture on plastic culture dishes and in 3D-culture on various scaffold materials, including collagen hydrogels, chitosan hydrogels and poly(L-lactic acid)/gelatin electrospinning fibers. Rat ADSCs were exposed to various physiological-strength EFs in a homemade EF-bioreactor. Changes of morphology and movements of cells affected by applied EFs were evaluated by time-lapse microphotography, and cell survival rates and intracellular calcium oscillations were also detected. Results showed that EF facilitated ADSC morphological changes, under 6 V/cm EF strength, and that ADSCs in 2D-culture aligned vertically to EF vector and kept a good cell survival rate. In 3D-culture, cell galvanotaxis responses were subject to the synergistic effect of applied EF and scaffold materials. Fast cell movement and intracellular calcium activities were observed in the cells of 3D-culture. We believe our research will provide some experimental references for the future study in cell galvanotaxis behaviors.
Collapse
Affiliation(s)
- Gang Yang
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, 610065, China
| | - Haiyan Long
- Center of Engineering-Training, Chengdu Aeronautic Polytechnic, Chengdu, 610100, China
| | - Xiaomei Ren
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, 610065, China
| | - Kunlong Ma
- Department of Orthopaedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Wang
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, 610065, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
13
|
El Atat O, Antonios D, Hilal G, Hokayem N, Abou-Ghoch J, Hashim H, Serhal R, Hebbo C, Moussa M, Alaaeddine N. An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells. PLoS One 2016; 11:e0162332. [PMID: 27632538 PMCID: PMC5024991 DOI: 10.1371/journal.pone.0162332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
The use of adipose-derived stem cells (ADSC) in regenerative medicine is rising due to their plasticity, capacity of differentiation and paracrine and trophic effects. Despite the large number of cells obtained from adipose tissue, it is usually not enough for therapeutic purposes for many diseases or cosmetic procedures. Thus, there is the need for culturing and expanding cells in-vitro for several weeks remain. Our aim is to investigate if long- term proliferation with minimal passaging will affect the stemness, paracrine secretions and carcinogenesis markers of ADSC. The immunophenotypic properties and aldehyde dehydrogenase (ALDH) activity of the initial stromal vascular fraction (SVF) and serially passaged ADSC were observed by flow cytometry. In parallel, the telomerase activity and the relative expression of oncogenes and tumor suppressor genes were assessed by q-PCR. We also assessed the cytokine secretion profile of passaged ADSC by an ELISA. The expanded ADSC retain their morphological and phenotypical characteristics. These cells maintained in culture for up to 12 weeks until P4, possessed stable telomerase and ALDH activity, without having a TP53 mutation. Furthermore, the relative expression levels of TP53, RB, and MDM2 were not affected while the relative expression of c-Myc decreased significantly. Finally, the levels of the secretions of PGE2, STC1, and TIMP2 were not affected but the levels of IL-6, VEGF, and TIMP 1 significantly decreased at P2. Our results suggest that the expansion of passaged ADSC does not affect the differentiation capacity of stem cells and does not confer a cancerous state or capacity in vitro to the cells.
Collapse
Affiliation(s)
- Oula El Atat
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Diane Antonios
- Toxicology Laboratory, Faculty of Pharmacy, St. Joseph University, Beirut, Lebanon
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Nabil Hokayem
- Department of Plastic& Reconstructive Surgery, Hotel Dieu de France, and Faculty of Medicine St Joseph University, Beirut, Lebanon
| | - Joelle Abou-Ghoch
- Medical Genetics Unit, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Hussein Hashim
- Department of Plastic& Reconstructive Surgery, Fuad Khoury Hospital, Beirut, Lebanon
| | - Rim Serhal
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Clara Hebbo
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Mayssam Moussa
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Nada Alaaeddine
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
14
|
Lee YM, Kim TH, Lee JH, Lee WJ, Jeon RH, Jang SJ, Ock SA, Lee SL, Park BW, Rho GJ. Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells in vitro and ovarian follicular formation in vivo. J Ovarian Res 2016; 9:24. [PMID: 27067537 PMCID: PMC4828771 DOI: 10.1186/s13048-016-0233-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Background Recent findings have revealed that the female gonad may have regenerative activity with having germ line stem cells in juveniles and adults. Application of these germ line stem cells could be an alternative therapy for reproductive disorders in regenerative medicine. Methods To enhance the potency of differentiation into oocyte-like cells (OLCs) and folliculogenesis, we overexpressed Oct4 in ovarian stem/stromal cell (OvSCs) and examined the cellular properties related to stemness and self-renewal ability and finally demonstrated the ability of in vitro differentiation and folliculogenesis. Results Ovarian cortex included putative stem cells in terms of AP activity, cell cycle status, cell proliferation, expression of mesenchymal lineage surface markers and pluripotent transcriptional markers. Further, Oct4 transfected OvSCs (Oct4-OvSCs) were enhanced their AP activity and cell proliferation compared to OvSCs. The potential on in vitro differentiation into OLCs and in vivo folliculogenesis was also evaluated in OvSCs and Oct4-OvSCs, respectively. Oct4-OvSCs possessed higher oogenesis potential in vitro than OvSCs, in terms of expression of germ cell markers by RT-PCR and the number of OLCs. When OvSCs and Oct4-OvSCs were xeno-transplanted into infertile mice ovaries, the OvSCs transplantation induced new primary follicle formation and hormonal levels of estradiol and FSH remained similar to that of normal mice. However, Oct4-OvSCs possessed higher ability for folliculogenesis based on inducing developing follicles with thecal layer and granulosa cells and more similar estradiol level to normal mice. Conclusions These findings demonstrated that putative stem cells were present in ovarian cortex and exhibited differentiation ability into OLCs and folliculogenesis in vivo, and Oct4-overexpression enhanced these ability, suggesting their cellular models based on gene therapy in understanding the mechanisms of oogenesis and folliculogenesis, and finally in view of reproductive cell therapy.
Collapse
Affiliation(s)
- Yeon-Mi Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Tae-Ho Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Jeong-Hyeon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Ryoung-Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, 441-706, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea. .,Research Institute of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
15
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
16
|
Subbarao RB, Ullah I, Kim EJ, Jang SJ, Lee WJ, Jeon RH, Kang D, Lee SL, Park BW, Rho GJ. Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci 2015; 16:10934-51. [PMID: 26006231 PMCID: PMC4463684 DOI: 10.3390/ijms160510934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Endometrial stromal cells (EMSCs) obtained from porcine uterus (n = 6) were positive for mesenchymal stem cell markers (CD29, CD44 and CD90), and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2) and osteocyte specific genes (ON, BG, RUNX2) in differentiated EMSCs showed significant (p < 0.05) increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito), at holding potential of -80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Ryoung Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
17
|
Murata D, Tokunaga S, Tamura T, Kawaguchi H, Miyoshi N, Fujiki M, Nakayama K, Misumi K. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells. J Orthop Surg Res 2015; 10:35. [PMID: 25890366 PMCID: PMC4389925 DOI: 10.1186/s13018-015-0173-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/25/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a major joint disease in humans and many other animals. Consequently, medical countermeasures for OA have been investigated diligently. This study was designed to examine the regeneration of articular cartilage and subchondral bone using three-dimensional (3D) constructs of adipose tissue-derived mesenchymal stem cells (AT-MSCs). METHODS AT-MSCs were isolated and expanded until required for genetical and immunological analysis and construct creation. A construct consisting of about 760 spheroids that each contained 5.0 × 10(4) autologous AT-MSCs was implanted into an osteochondral defect (diameter: 4 mm; depth: 6 mm) created in the femoral trochlear groove of two adult microminipigs. After implantation, the defects were monitored by computed tomography every month for 6 months in animal no. 1 and 12 months in animal no. 2. RESULTS AT-MSCs were confirmed to express the premature genes and to be positive for CD90 and CD105 and negative for CD34 and CD45. Under specific nutrient conditions, the AT-MSCs differentiated into osteogenic, chondrogenic, and adipogenic lineages, as evidenced by the expressions of related marker genes and the production of appropriate matrix molecules. A radiopaque area emerged from the boundary between the bone and the implant and increased more steadily upward and inward for the implants in both animal no. 1 and animal no. 2. The histopathology of the implants after 6 months revealed active endochondral ossification underneath the plump fibrocartilage in animal no. 1. The histopathology after 12 months in animal no. 2 showed not only that the diminishing fibrocartilage was as thick as the surrounding normal cartilage but also that massive subchondral bone was present. CONCLUSIONS The present results suggest that implantation of a scaffold-free 3D construct of AT-MSCs into an osteochondral defect may induce regeneration of the original structure of the cartilage and subchondral bone over the course of 1 year, although more experimental cases are needed.
Collapse
Affiliation(s)
- Daiki Murata
- Veterinary Surgery, Department of Veterinary Clinical Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 21-24 Korimoto 1-chome, Kagoshima, 890-0065, Japan.
| | - Satoshi Tokunaga
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 21-24 Korimoto 1-chome, Kagoshima, 890-0065, Japan.
| | - Tadashi Tamura
- Cyfuse Biomedical K.K., 1-1 Maidashi 3-chome, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiroaki Kawaguchi
- Veterinary Pathology, Department of Pathological and Preventive Sciences, Joint Faculty of Veterinary Medicine, Kagoshima University, 21-24 Korimoto 1-chome, Kagoshima, 890-0065, Japan.
| | - Noriaki Miyoshi
- Veterinary Pathology, Department of Pathological and Preventive Sciences, Joint Faculty of Veterinary Medicine, Kagoshima University, 21-24 Korimoto 1-chome, Kagoshima, 890-0065, Japan.
| | - Makoto Fujiki
- Veterinary Surgery, Department of Veterinary Clinical Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 21-24 Korimoto 1-chome, Kagoshima, 890-0065, Japan.
| | - Koichi Nakayama
- Department of Advanced Technology Fusion, Graduate School of Science and Engineering, Saga University, Honjyo 1-chome, Honjyo-cho, Saga, 840-8502, Japan.
| | - Kazuhiro Misumi
- Veterinary Surgery, Department of Veterinary Clinical Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 21-24 Korimoto 1-chome, Kagoshima, 890-0065, Japan.
| |
Collapse
|
18
|
Niada S, Ferreira LM, Arrigoni E, Addis A, Campagnol M, Broccaioli E, Brini AT. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res Ther 2014; 4:148. [PMID: 24330736 PMCID: PMC4054958 DOI: 10.1186/scrt359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/13/2023] Open
Abstract
Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Methods ASCs were isolated from interscapular subcutaneous adipose tissue (ScI) and buccal fat pads of six swine. Cells were characterized for their stemness and multipotent features. Moreover, their osteogenic ability when cultured on titanium disks and silicon carbide-plasma-enhanced chemical vapor-deposition fragments, and their growth in the presence of autologous and heterologous serum were also assessed. Results Independent of the harvesting site, no differences in proliferation, viability, and clonogenicity were observed among all the pASC populations. Furthermore, when induced toward osteogenic differentiation, both ScI- and BFP-pASCs showed an increase of collagen and calcified extracellular matrix (ECM) production, alkaline phosphatase activity, and osteonectin expression, indicating their ability to differentiate toward osteoblast-like cells. In addition, they differentiated toward adipocyte-like cells, and chondrogenic induced pASCs were able to increase glycosaminoglycans (GAGs) production over time. When cells were osteoinduced on synthetic biomaterials, they significantly increased the amount of calcified ECM compared with control cells; moreover, titanium showed the osteoinductive effect on pASCs, also without chemical stimuli. Finally, these cells grew nicely in 10% FBS, and no benefits were produced by substitution with swine serum. Conclusions Swine buccal fat pad contains progenitor cells with mesenchymal features, and they also osteo-differentiate nicely in association with synthetic supports. We suggest that porcine BFP-ASCs may be applied in preclinical studies of periodontal and bone-defect regeneration.
Collapse
|
19
|
Fan A, Ma K, An X, Ding Y, An P, Song G, Tang L, Zhang S, Zhang P, Tan W, Tang B, Zhang X, Li Z. Effects of TET1 knockdown on gene expression and DNA methylation in porcine induced pluripotent stem cells. Reproduction 2013; 146:569-79. [PMID: 24051058 DOI: 10.1530/rep-13-0212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TET1 is implicated in maintaining the pluripotency of embryonic stem cells. However, its precise effects on induced pluripotent stem cells (iPSCs), and particularly on porcine iPSCs (piPSCs), are not well defined. To investigate the role of TET1 in the pluripotency and differentiation of piPSCs, piPSCs were induced from porcine embryonic fibroblasts by overexpression of POU5F1 (OCT4), SOX2, KLF4, and MYC (C-MYC). siRNAs targeting to TET1 were used to transiently knockdown the expression of TET1 in piPSCs. Morphological abnormalities and loss of the undifferentiated state of piPSCs were observed in the piPSCs after the downregulation of TET1. The effects of TET1 knockdown on the expression of key stem cell factors and differentiation markers were analyzed to gain insights into the molecular mechanisms underlying the phenomenon. The results revealed that knockdown of TET1 resulted in the downregulated expression of pluripotency-related genes, such as LEFTY2, KLF2, and SOX2, and the upregulated expression of differentiation-related genes including PITX2, HAND1, GATA6, and LEF1. However, POU5F1, MYC, KLF4, and NANOG were actually not downregulated. Further analysis showed that the methylation levels of the promoters for POU5F1 and MYC increased significantly after TET1 downregulation, whereas there were no obvious changes in the promoters of SOX2, KLF4, and NANOG. The methylation of the whole genome increased, while hydroxymethylation slightly declined. Taken together, these results suggest that TET1 may play important roles in the self-renewal of piPSCs and the maintenance of their characteristics by regulating the expression of genes and the DNA methylation.
Collapse
Affiliation(s)
- Anran Fan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Veterinary Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cebrian-Serrano A, Stout T, Dinnyes A. Veterinary applications of induced pluripotent stem cells: regenerative medicine and models for disease? Vet J 2013; 198:34-42. [PMID: 24129109 DOI: 10.1016/j.tvjl.2013.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/24/2013] [Accepted: 03/26/2013] [Indexed: 01/12/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can now be derived from a tissue biopsy and represent a promising new platform for disease modelling, drug and toxicity testing, biomarker development and cell-based therapies for regenerative medicine. In regenerative medicine, large animals may represent the best models for man, and thereby provide invaluable systems in which to test the safety and the potential of iPSCs. Hence, testing iPSCs in veterinary species may serve a double function, namely, developing therapeutic products for regenerative medicine in veterinary patients while providing valuable background information for human clinical trials. The production of iPSCs from livestock or wild species is attractive because it could improve efficiency and reduce costs in various fields, such as transgenic animal generation and drug development, preservation of biological diversity, and because it also offers an alternative to xenotransplantation for in vivo generation of organs. Although the technology of cellular reprogramming using the so-called 'Yamanaka factors' is in its peak expectation phase and many concerns still need to be addressed, the rapid technical progress suggests that iPSCs could contribute significantly to novel therapies in veterinary and biomedical practice in the near future. This review provides an overview of the potential applications of iPSCs in veterinary medicine.
Collapse
|
21
|
Opiela J, Samiec M, Bochenek M, Lipiński D, Romanek J, Wilczek P. DNA Aneuploidy in Porcine Bone Marrow–Derived Mesenchymal Stem Cells Undergoing Osteogenic and AdipogenicIn VitroDifferentiation. Cell Reprogram 2013; 15:425-34. [DOI: 10.1089/cell.2012.0099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jolanta Opiela
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Marcin Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Michał Bochenek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Daniel Lipiński
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, 60-632 Poznan, Poland
| | - Joanna Romanek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Piotr Wilczek
- Foundation of Cardiac Surgery Development, 41-800 Zabrze, Poland
| |
Collapse
|
22
|
Lee YM, Kumar BM, Lee JH, Lee WJ, Kim TH, Lee SL, Ock SA, Jeon BG, Park BW, Rho GJ. Characterisation and differentiation of porcine ovarian theca-derived multipotent stem cells. Vet J 2013; 197:761-8. [PMID: 23702282 DOI: 10.1016/j.tvjl.2013.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/29/2023]
Abstract
In this study, the cellular properties and in vitro differentiation capacity of porcine ovarian theca-derived multipotent stem cells (TSCs) were examined. Isolated TSCs were expanded into a homogeneous population that had a typical fibroblast-shaped morphology and was positive for alkaline phosphatase activity. Cell cycle analysis indicated that TSCs had high proliferative potential. Flow cytometry analysis demonstrated expression of mesenchymal cell surface markers (CD29, CD44 and CD90) on TSCs. Among three pluripotent markers tested (OCT4, NANOG and SOX2), only SOX2 was expressed in TSCs at protein and mRNA levels. Cytochemical staining demonstrated that TSCs differentiated in vitro into osteocytes and adipocytes. Lineage specific transcripts expressed by differentiated osteocytes including osteonectin, osteocalcin and RUNX2. Lineage specific transcripts expressed by differentiated adipocytes included adipocyte fatty acid binding protein-2 (aP2) and peroxisome proliferator-activated receptor-γ2. Following induction in oogenesis media, TSCs exhibited sequential changes in morphology, resembling oocyte-like cells (OLCs), and expressed transcription factors (OCT4, NANOG and SOX2), oocyte-specific marker genes (GDF9B, C-MOS, DAZL, VASA, ZPC, SCP3 and STELLA) and the folliculogenesis marker follicular stimulating hormone receptor. These results indicated that TSCs derived from ovarian follicles are capable of differentiating into mesenchymal lineages and OLCs.
Collapse
Affiliation(s)
- Yeon-Mi Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue. These stem cells, now known as adipose-derived stem cells or ADSCs, have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. As of today, thousands of research and clinical articles have been published using ASCs, describing their possible pluripotency in vitro, their uses in regenerative animal models, and their application to the clinic. This paper outlines the progress made in the ASC field since their initial description in 2001, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo, their use in mediating inflammation and vascularization during tissue regeneration, and their potential for reprogramming into induced pluripotent cells.
Collapse
|