1
|
Levesque S, Cosentino A, Verma A, Genovese P, Bauer DE. Enhancing prime editing in hematopoietic stem and progenitor cells by modulating nucleotide metabolism. Nat Biotechnol 2025; 43:534-538. [PMID: 38806736 DOI: 10.1038/s41587-024-02266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Therapeutic prime editing of hematopoietic stem and progenitor cells (HSPCs) holds great potential to remedy blood disorders. Quiescent cells have low nucleotide levels and resist retroviral infection, and it is possible that nucleotide metabolism could limit reverse transcription-mediated prime editing in HSPCs. We demonstrate that deoxynucleoside supplementation and Vpx-mediated degradation of SAMHD1 improve prime editing efficiency in HSPCs, especially when coupled with editing approaches that evade mismatch repair.
Collapse
Affiliation(s)
- Sébastien Levesque
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Andrea Cosentino
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Milano-Bicocca University, Milan, Italy
| | - Archana Verma
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Pietro Genovese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Lu SC, Lee YY, Andres FG, Moyer DA, Barry MA. FastAd: A versatile toolkit for rapid generation of single adenoviruses or diverse adenoviral vector libraries. Mol Ther Methods Clin Dev 2024; 32:101356. [PMID: 39559559 PMCID: PMC11570478 DOI: 10.1016/j.omtm.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
Adenoviruses (Ads) are potent gene delivery vectors for in vitro and in vivo applications. However, current methods for their construction are time-consuming and inefficient, limiting their rapid production and utility in generating complex genetic libraries. Here, we introduce FastAd, a rapid and easy-to-use technology for inserting recombinant "donor" DNA directly into infectious "receiver" Ads in mammalian cells by the concerted action of two efficient recombinases: Cre and Bxb1. Subsequently, the resulting mixed recombinant Ad population is subjected to negative selections by flippase recombinase to remove viruses that missed the initial recombination. With this approach, recombinant Ad production time is reduced from 2 months to 10 days or less. FastAd can be applied for inserting complex genetic DNA libraries into Ad genomes, as demonstrated by the generation of barcode libraries with over 3 million unique clones from a T25 flask-scale transfection of 3 million cells. Furthermore, we leveraged FastAd to construct an Ad library containing a comprehensive genome-wide CRISPR-Cas9 guide RNA library and demonstrated its effectiveness in uncovering novel virus-host interactions. In summary, FastAd enables the rapid generation of single Ad vectors or complex genetic libraries, facilitating not only novel applications of Ad vectors but also research in foundamental virology.
Collapse
Affiliation(s)
- Shao-Chia Lu
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yi-Yuan Lee
- Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - Felix G.M. Andres
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel A. Moyer
- Immunology Track, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael A. Barry
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Zhou X, Gao J, Luo L, Huang C, Wu J, Wang X. Comprehensive evaluation and prediction of editing outcomes for near-PAMless adenine and cytosine base editors. Commun Biol 2024; 7:1389. [PMID: 39455714 PMCID: PMC11511846 DOI: 10.1038/s42003-024-07078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Base editors enable the direct conversion of target bases without inducing double-strand breaks, showing great potential for disease modeling and gene therapy. Yet, their applicability has been constrained by the necessity for specific protospacer adjacent motif (PAM). We generate four versions of near-PAMless base editors and systematically evaluate their editing patterns and efficiencies using an sgRNA-target library of 45,747 sequences. Near-PAMless base editors significantly expanded the targeting scope, with both PAM and target flanking sequences as determinants for editing outcomes. We develop BEguider, a deep learning model, to accurately predict editing results for near-PAMless base editors. We also provide experimentally measured editing outcomes of 20,541 ClinVar sites, demonstrating that variants previously inaccessible by NGG PAM base editors can now be precisely generated or corrected. We make our predictive tool and data available online to facilitate development and application of near-PAMless base editors in both research and clinical settings.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory Medicine, Wenzhou Central Hospital, Wenzhou, China
| | - Liheng Luo
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changcai Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiayu Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Goell J, Li J, Mahata B, Ma AJ, Kim S, Shah S, Shah S, Contreras M, Misra S, Reed D, Bedford GC, Escobar M, Hilton IB. Tailoring a CRISPR/Cas-based Epigenome Editor for Programmable Chromatin Acylation and Decreased Cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.611000. [PMID: 39345554 PMCID: PMC11429961 DOI: 10.1101/2024.09.22.611000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineering histone acylation states can inform mechanistic epigenetics and catalyze therapeutic epigenome editing opportunities. Here, we developed engineered lysine acyltransferases that enable the programmable deposition of acetylation and longer-chain acylations. We show that targeting an engineered lysine crotonyltransferase results in weak levels of endogenous enhancer activation yet retains potency when targeted to promoters. We further identify a single mutation within the catalytic core of human p300 that preserves enzymatic activity while substantially reducing cytotoxicity, enabling improved viral delivery. We leveraged these capabilities to perform single-cell CRISPR activation screening and map enhancers to the genes they regulate in situ. We also discover acylation-specific interactions and find that recruitment of p300, regardless of catalytic activity, to prime editing sites can improve editing efficiency. These new programmable epigenome editing tools and insights expand our ability to understand the mechanistic role of lysine acylation in epigenetic and cellular processes and perform functional genomic screens.
Collapse
Affiliation(s)
- Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Alex J Ma
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Spencer Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Shriya Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Contreras
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Suchir Misra
- Department of Biosciences, Rice University, Houston, TX 77030, USA
| | - Daniel Reed
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Guy C Bedford
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Mario Escobar
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Biosciences, Rice University, Houston, TX 77030, USA
| |
Collapse
|
5
|
Evans MM, Liu S, Krautner JS, Seguin CG, Leung R, Ronald JA. Evaluation of DNA minicircles for delivery of adenine and cytosine base editors using activatable gene on "GO" reporter imaging systems. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102248. [PMID: 39040503 PMCID: PMC11260848 DOI: 10.1016/j.omtn.2024.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
Over 30,000 point mutations are associated with debilitating diseases, including many cancer types, underscoring a critical need for targeted genomic solutions. CRISPR base editors, like adenine base editors (ABEs) and cytosine base editors (CBEs), enable precise modifications by converting adenine to guanine and cytosine to thymine, respectively. Challenges in efficiency and safety concerns regarding viral vectors used in delivery limit the scope of base editing. This study introduces non-viral minicircles, bacterial-backbone-free plasmids, as a delivery vehicle for ABEs and CBEs. The research uses cells engineered with the "Gene On" (GO) reporter gene systems for tracking minicircle-delivered ABEs, CBEs, or Cas9 nickase (control), using green fluorescent protein (GFPGO), bioluminescence reporter firefly luciferase (LUCGO), or a highly sensitive Akaluciferase (AkalucGO) designed in this study. The results show that transfection of minicircles expressing CBE or ABE resulted in significantly higher GFP expression and luminescence signals over controls, with minicircles demonstrating the most substantial editing. This study presents minicircles as a new strategy for base editor delivery and develops an enhanced bioluminescence imaging reporter system for tracking ABE activity. Future studies aim to evaluate the use of minicircles in preclinical cancer models, facilitating potential clinical applications.
Collapse
Affiliation(s)
- Melissa M. Evans
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Shirley Liu
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Joshua S. Krautner
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Caroline G. Seguin
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Rajan Leung
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - John A. Ronald
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
6
|
Wu Y, Li Y, Liu Y, Xiu X, Liu J, Zhang L, Li J, Du G, Lv X, Chen J, Ledesma-Amaro R, Liu L. Multiplexed in-situ mutagenesis driven by a dCas12a-based dual-function base editor. Nucleic Acids Res 2024; 52:4739-4755. [PMID: 38567723 PMCID: PMC11077070 DOI: 10.1093/nar/gkae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/09/2024] Open
Abstract
Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Nurmi K, Silventoinen K, Keskitalo S, Rajamäki K, Kouri VP, Kinnunen M, Jalil S, Maldonado R, Wartiovaara K, Nievas EI, Denita-Juárez SP, Duncan CJA, Kuismin O, Saarela J, Romo I, Martelius T, Parantainen J, Beklen A, Bilicka M, Matikainen S, Nordström DC, Kaustio M, Wartiovaara-Kautto U, Kilpivaara O, Klein C, Hauck F, Jahkola T, Hautala T, Varjosalo M, Barreto G, Seppänen MRJ, Eklund KK. Truncating NFKB1 variants cause combined NLRP3 inflammasome activation and type I interferon signaling and predispose to necrotizing fasciitis. Cell Rep Med 2024; 5:101503. [PMID: 38593810 PMCID: PMC11031424 DOI: 10.1016/j.xcrm.2024.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1β secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-β (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1β and/or IFN-I signaling could represent a therapeutic approach for these patients.
Collapse
Affiliation(s)
- Katariina Nurmi
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Kristiina Silventoinen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Salla Keskitalo
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, RPU, UH, 00014 Helsinki, Finland
| | - Vesa-Petteri Kouri
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Matias Kinnunen
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Sami Jalil
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | - Rocio Maldonado
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | - Kirmo Wartiovaara
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | | | | | - Christopher J A Duncan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 4HH, UK
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital (OUH), 90014 Oulu, Finland; PEDEGO Research Unit and Medical Research Center Oulu, OUH and University of Oulu (OU), 90014 Oulu, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, HiLIFE, UH, 00014 Helsinki, Finland; Centre for Molecular Medicine Norway, University of Oslo, 0313 Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Inka Romo
- Inflammation Center, Department of Infectious Disease, HUH, 00029 Helsinki, Finland
| | - Timi Martelius
- Inflammation Center, Department of Infectious Disease, HUH, 00029 Helsinki, Finland
| | - Jukka Parantainen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Arzu Beklen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Marcelina Bilicka
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Sampsa Matikainen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Dan C Nordström
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Internal Medicine and Rehabilitation, HUH and UH, 00029 Helsinki, Finland
| | - Meri Kaustio
- Institute for Molecular Medicine Finland, HiLIFE, UH, 00014 Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Department of Hematology, HUH, Comprehensive Cancer Center, UH, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, RPU, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, RPU, Faculty of Medicine, UH, 00014 Helsinki, Finland; Department of Medical and Clinical Genetics/Medicum, Faculty of Medicine, UH, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, UH, 00014 Helsinki, Finland; HUS Diagnostic Center, HUSLAB Laboratory of Genetics, HUH, 00029 Helsinki, Finland
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Tiina Jahkola
- Department of Plastic Surgery, HUH, 00029 Helsinki, Finland
| | - Timo Hautala
- Research Unit of Internal Medicine and Biomedicine, OU, and Infectious Diseases Clinic, OUH, 90014 Oulu, Finland
| | - Markku Varjosalo
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, HUH and UH, 00029 Helsinki, Finland; Rare Disease Center, Children and Adolescents, HUH and UH, 00029 Helsinki, Finland.
| | - Kari K Eklund
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Rheumatology, HUH and UH, 00029 Helsinki, Finland; Orton Orthopaedic Hospital, 00280 Helsinki, Finland.
| |
Collapse
|
8
|
Weber R, Vasella F, Klimko A, Silginer M, Lamfers M, Neidert MC, Regli L, Schwank G, Weller M. Targeting the IDH1 R132H mutation in gliomas by CRISPR/Cas precision base editing. Neurooncol Adv 2024; 6:vdae182. [PMID: 39605316 PMCID: PMC11600340 DOI: 10.1093/noajnl/vdae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Background Gliomas, the most frequent malignant primary brain tumors, lack curative treatments. Understanding glioma-specific molecular alterations is crucial to develop novel therapies. Among them, the biological consequences of the isocitrate dehydrogenase 1 gene mutation (IDH1 R132H) remain inconclusive despite its early occurrence and widespread expression. Methods We thus employed CRISPR/Cas adenine base editors, which allow precise base pair alterations with minimal undesirable effects, to correct the IDH1 R132H mutation. Results Successful correction of the IDH1 R132H mutation in primary patient-derived cell models led to reduced IDH1 R132H protein levels and decreased production of 2-hydroxyglutarate, but increased proliferation. A dual adeno-associated virus split intein system was used to successfully deliver the base editor in vitro and in vivo. Conclusions Taken together, our study provides a strategy for a precise genetic intervention to target the IDH1 R132H mutation, enabling the development of accurate models to study its impact on glioma biology and serving as a framework for an in vivo gene therapy.
Collapse
Affiliation(s)
- Remi Weber
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Artsiom Klimko
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martine Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gerald Schwank
- Laboratory of Translational Genome Editing, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Xia K, Wang F, Tan Z, Zhang S, Lai X, Ou W, Yang C, Chen H, Peng H, Luo P, Hu A, Tu X, Wang T, Ke Q, Deng C, Xiang AP. Precise Correction of Lhcgr Mutation in Stem Leydig Cells by Prime Editing Rescues Hereditary Primary Hypogonadism in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300993. [PMID: 37697644 PMCID: PMC10582410 DOI: 10.1002/advs.202300993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Hereditary primary hypogonadism (HPH), caused by gene mutation related to testosterone synthesis in Leydig cells, usually impairs male sexual development and spermatogenesis. Genetically corrected stem Leydig cells (SLCs) transplantation may provide a new approach for treating HPH. Here, a novel nonsense-point-mutation mouse model (LhcgrW495X ) is first generated based on a gene mutation relative to HPH patients. To verify the efficacy and feasibility of SLCs transplantation in treating HPH, wild-type SLCs are transplanted into LhcgrW495X mice, in which SLCs obviously rescue HPH phenotypes. Through comparing several editing strategies, optimized PE2 protein (PEmax) system is identified as an efficient and precise approach to correct the pathogenic point mutation in Lhcgr. Furthermore, delivering intein-split PEmax system via lentivirus successfully corrects the mutation in SLCs from LhcgrW495X mice ex vivo. Gene-corrected SLCs from LhcgrW495X mice exert ability to differentiate into functional Leydig cells in vitro. Notably, the transplantation of gene-corrected SLCs effectively regenerates Leydig cells, recovers testosterone production, restarts sexual development, rescues spermatogenesis, and produces fertile offspring in LhcgrW495X mice. Altogether, these results suggest that PE-based gene editing in SLCs ex vivo is a promising strategy for HPH therapy and is potentially leveraged to address more hereditary diseases in reproductive system.
Collapse
Affiliation(s)
- Kai Xia
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Fulin Wang
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Zhipeng Tan
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xingqiang Lai
- Cardiovascular DepartmentThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology Zhong Shan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouGuangdong510000China
| | - Cuifeng Yang
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Hao Peng
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Peng Luo
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Anqi Hu
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiang'an Tu
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Chunhua Deng
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| |
Collapse
|
10
|
Doll RM, Boutros M, Port F. A temperature-tolerant CRISPR base editor mediates highly efficient and precise gene editing in Drosophila. SCIENCE ADVANCES 2023; 9:eadj1568. [PMID: 37647411 PMCID: PMC10468138 DOI: 10.1126/sciadv.adj1568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
CRISPR nucleases generate a broad spectrum of mutations that includes undesired editing outcomes. Here, we develop optimized C-to-T base editing systems for the generation of precise loss- or gain-of-function alleles in Drosophila and identify temperature as a crucial parameter for efficiency. We find that a variant of the widely used APOBEC1 deaminase has attenuated activity at 18° to 29°C and shows considerable dose-dependent toxicity. In contrast, the temperature-tolerant evoCDA1 domain mediates editing of typically more than 90% of alleles and is substantially better tolerated. Furthermore, formation of undesired mutations is exceptionally rare in Drosophila compared to other species. The predictable editing outcome, high efficiency, and product purity enables near homogeneous induction of STOP codons or alleles encoding protein variants in vivo. Last, we demonstrate how optimized expression enables conditional base editing in marked cell populations. This work substantially facilitates creation of precise alleles in Drosophila and provides key design parameters for developing efficient base editing systems in other ectothermic species.
Collapse
Affiliation(s)
- Roman M. Doll
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and BioQuant & Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and BioQuant & Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Fillip Port
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and BioQuant & Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Wang P, Li H, Zhu M, Han RY, Guo S, Han R. Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skipping. Mol Ther Methods Clin Dev 2023; 28:40-50. [PMID: 36588820 PMCID: PMC9792405 DOI: 10.1016/j.omtm.2022.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. Previously, we showed that adenine base editing (ABE) can efficiently correct a nonsense point mutation in a DMD mouse model. Here, we explored the feasibility of base-editing-mediated exon skipping as a therapeutic strategy for DMD using cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs). We first generated a DMD hiPSC line with a large deletion spanning exon 48 through 54 (ΔE48-54) using CRISPR-Cas9 gene editing. Dystrophin expression was disrupted in DMD hiPSC-derived cardiomyocytes (iCMs) as examined by RT-PCR, western blot, and immunofluorescence staining. Transfection of ABE and a guide RNA (gRNA) targeting the splice acceptor led to efficient conversion of AG to GG (35.9% ± 5.7%) and enabled exon 55 skipping. Complete AG to GG conversion in a single clone restored dystrophin expression (42.5% ± 11% of wild type [WT]) in DMD iCMs. Moreover, we designed gRNAs to target the splice sites of exons 6, 7, 8, 43, 44, 46, and 53 in the mutational hotspots and demonstrated their efficiency to induce exon skipping in iCMs. These results highlight the great promise of ABE-mediated exon skipping as a promising therapeutic approach for DMD.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Haiwen Li
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mandi Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Rena Y. Han
- Olentangy Liberty High School, Powell, OH 43065, USA
| | - Shuliang Guo
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Wu Y, Zhang T. Designing Guide-RNA for Generating Premature Stop Codons for Gene Knockout Using CRISPR-BETS. Methods Mol Biol 2023; 2653:95-105. [PMID: 36995621 DOI: 10.1007/978-1-0716-3131-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cytosine base editors (CBEs) accurately modify target sites by mediating a C to T change (or a G to A change on the opposite strand). This allows us to install premature stop codons for gene knockout. However, highly specific sgRNAs (single-guide RNAs) are necessary for the CRISPR-Cas nuclease to work efficiently. In this study, we introduce a method of designing highly specific gRNA to generate premature stop codons and knock out a gene using CRISPR-BETS software.
Collapse
Affiliation(s)
- Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.
| |
Collapse
|
13
|
Ma L, Xing J, Li Q, Zhang Z, Xu K. Development of a universal antibiotic resistance screening reporter for improving efficiency of cytosine and adenine base editing. J Biol Chem 2022; 298:102103. [PMID: 35671823 PMCID: PMC9287484 DOI: 10.1016/j.jbc.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Base editing has emerged as a revolutionary technology for single nucleotide modifications. The cytosine and adenine base editors (CBEs and ABEs) have demonstrated great potential in clinical and fundamental research. However, screening and isolating target-edited cells remains challenging. In the current study, we developed a universal Adenine and Cytosine Base-Editing Antibiotic Resistance Screening Reporter (ACBE-ARSR) for improving the editing efficiency. To develop the reporter, the CBE-ARSR was first constructed and shown to be capable of enriching cells for those that had undergone CBE editing activity. Then, the ACBE-ARSR was constructed and was further validated in the editing assays by four different CBEs and two versions of ABE at several different genomic loci. Our results demonstrated that ACBE-ARSR, compared to the reporter of transfection (RoT) screening strategy, improved the editing efficiency of CBE and ABE by 4.6- and 1.9-fold on average, respectively. We found the highest CBE and ABE editing efficiencies as enriched by ACBE-ARSR reached 90% and 88.7%. Moreover, we also demonstrated ACBE-ARSR could be employed for enhancing simultaneous multiplexed genome editing. In conclusion, both CBE and ABE activity can be improved significantly using our novel ACBE-ARSR screening strategy, which we believe will facilitate the development of base editors and their application in biomedical and fundamental research studies.
Collapse
Affiliation(s)
- Lixia Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Central Laboratory, Changzhi Medical College, Changzhi, Shanxi, China
| | - Jiani Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiying Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kun Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
Wu Y, He Y, Sretenovic S, Liu S, Cheng Y, Han Y, Liu G, Bao Y, Fang Q, Zheng X, Zhou J, Qi Y, Zhang Y, Zhang T. CRISPR-BETS: a base-editing design tool for generating stop codons. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:499-510. [PMID: 34669232 PMCID: PMC8882796 DOI: 10.1111/pbi.13732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/17/2021] [Indexed: 06/12/2023]
Abstract
Cytosine base editors (CBEs) can install a predefined stop codon at the target site, representing a more predictable and neater method for creating genetic knockouts without altering the genome size. Due to the enhanced predictability of the editing outcomes, it is also more efficient to obtain homozygous mutants in the first generation. With the recent advancement of CBEs on improved editing activity, purify and specificity in plants and animals, base editing has become a more appealing technology for generating knockouts. However, there is a lack of design tools that can aid the adoption of CBEs for achieving such a purpose, especially in plants. Here, we developed a user-friendly design tool named CRISPR-BETS (base editing to stop), which helps with guide RNA (gRNA) design for introducing stop codons in the protein-coding genes of interest. We demonstrated in rice and tomato that CRISPR-BETS is easy-to-use, and its generated gRNAs are highly specific and efficient for generating stop codons and obtaining homozygous knockout lines. While we tailored the tool for the plant research community, CRISPR-BETS can also serve non-plant species.
Collapse
Affiliation(s)
- Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yao He
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Simon Sretenovic
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Shishi Liu
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yanhao Cheng
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Qing Fang
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuelian Zheng
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianping Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Yong Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
15
|
Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. NATURE PLANTS 2021; 7:1166-1187. [PMID: 34518669 DOI: 10.1038/s41477-021-00991-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 05/06/2023]
Abstract
The development of CRISPR-Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications.
Collapse
Affiliation(s)
- Kutubuddin A Molla
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kailash C Bansal
- The Alliance of Bioversity International and the International Centre for Tropical Agriculture, Asia-India, New Delhi, India
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
16
|
Rothgangl T, Dennis MK, Lin PJC, Oka R, Witzigmann D, Villiger L, Qi W, Hruzova M, Kissling L, Lenggenhager D, Borrelli C, Egli S, Frey N, Bakker N, Walker JA, Kadina AP, Victorov DV, Pacesa M, Kreutzer S, Kontarakis Z, Moor A, Jinek M, Weissman D, Stoffel M, van Boxtel R, Holden K, Pardi N, Thöny B, Häberle J, Tam YK, Semple SC, Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021; 39:949-957. [PMID: 34012094 PMCID: PMC8352781 DOI: 10.1038/s41587-021-00933-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023]
Abstract
Most known pathogenic point mutations in humans are C•G to T•A substitutions, which can be directly repaired by adenine base editors (ABEs). In this study, we investigated the efficacy and safety of ABEs in the livers of mice and cynomolgus macaques for the reduction of blood low-density lipoprotein (LDL) levels. Lipid nanoparticle-based delivery of mRNA encoding an ABE and a single-guide RNA targeting PCSK9, a negative regulator of LDL, induced up to 67% editing (on average, 61%) in mice and up to 34% editing (on average, 26%) in macaques. Plasma PCSK9 and LDL levels were stably reduced by 95% and 58% in mice and by 32% and 14% in macaques, respectively. ABE mRNA was cleared rapidly, and no off-target mutations in genomic DNA were found. Re-dosing in macaques did not increase editing, possibly owing to the detected humoral immune response to ABE upon treatment. These findings support further investigation of ABEs to treat patients with monogenic liver diseases.
Collapse
Affiliation(s)
- Tanja Rothgangl
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | - Rurika Oka
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Dominik Witzigmann
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Lukas Villiger
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Martina Hruzova
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lucas Kissling
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Sabina Egli
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Nina Frey
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Noëlle Bakker
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | | | - Martin Pacesa
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Susanne Kreutzer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Laboratory, ETH Zurich, Zurich, Switzerland
| | - Zacharias Kontarakis
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Laboratory, ETH Zurich, Zurich, Switzerland
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Markus Stoffel
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ruben van Boxtel
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beat Thöny
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ying K Tam
- Acuitas Therapeutics Inc., Vancouver, BC, Canada
| | | | - Gerald Schwank
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland.
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Xu L, Zhang C, Li H, Wang P, Gao Y, Mokadam NA, Ma J, Arnold WD, Han R. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun 2021; 12:3719. [PMID: 34140489 PMCID: PMC8211797 DOI: 10.1038/s41467-021-23996-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in base editing have created an exciting opportunity to precisely correct disease-causing mutations. However, the large size of base editors and their inherited off-target activities pose challenges for in vivo base editing. Moreover, the requirement of a protospacer adjacent motif (PAM) nearby the mutation site further limits the targeting feasibility. Here we modify the NG-targeting adenine base editor (iABE-NGA) to overcome these challenges and demonstrate the high efficiency to precisely edit a Duchenne muscular dystrophy (DMD) mutation in adult mice. Systemic delivery of AAV9-iABE-NGA results in dystrophin restoration and functional improvement. At 10 months after AAV9-iABE-NGA treatment, a near complete rescue of dystrophin is measured in mdx4cv mouse hearts with up to 15% rescue in skeletal muscle fibers. The off-target activities remains low and no obvious toxicity is detected. This study highlights the promise of permanent base editing using iABE-NGA for the treatment of monogenic diseases.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cell Line
- Dependovirus
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Gene Editing/methods
- Genetic Therapy/methods
- Genetic Vectors
- Humans
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Mutation
- RNA-Seq
Collapse
Affiliation(s)
- Li Xu
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chen Zhang
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Haiwen Li
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peipei Wang
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yandi Gao
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nahush A Mokadam
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianjie Ma
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Renzhi Han
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
18
|
Huang C, Li G, Wu J, Liang J, Wang X. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biol 2021; 22:80. [PMID: 33691754 PMCID: PMC7945310 DOI: 10.1186/s13059-021-02305-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Millions of nucleotide variants are identified through cancer genome sequencing and it is clinically important to identify the pathogenic variants among them. By introducing base substitutions at guide RNA target regions in the genome, CRISPR-Cas9-based base editors provide the possibility for evaluating a large number of variants in their genomic context. However, the variability in editing efficiency and the complexity of outcome mapping are two existing problems for assigning guide RNA effects to variants in base editing screens. RESULTS To improve the identification of pathogenic variants, we develop a framework to combine base editing screens with sgRNA efficiency and outcome mapping. We apply the method to evaluate more than 9000 variants across all the exons of BRCA1 and BRCA2 genes. Our efficiency-corrected scoring model identifies 910 loss-of-function variants for BRCA1/2, including 151 variants in the noncoding part of the genes such as the 5' untranslated regions. Many of them are identified in cancer patients and are reported as "benign/likely benign" or "variants of uncertain significance" by clinicians. Our data suggest a need to re-evaluate their clinical significance, which may be helpful for risk assessment and treatment of breast and ovarian cancer. CONCLUSIONS Our results suggest that base editing screens with efficiency correction is a powerful strategy to identify pathogenic variants in a high-throughput manner. Applying this strategy to assess variants in both coding and noncoding regions of the genome could have a direct impact on the interpretation of cancer variants.
Collapse
Affiliation(s)
- Changcai Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Guangyu Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiayu Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Junbo Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Seroussi E. Estimating Copy-Number Proportions: The Comeback of Sanger Sequencing. Genes (Basel) 2021; 12:283. [PMID: 33671263 PMCID: PMC7922598 DOI: 10.3390/genes12020283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
Determination of the relative copy numbers of mixed molecular species in nucleic acid samples is often the objective of biological experiments, including Single-Nucleotide Polymorphism (SNP), indel and gene copy-number characterization, and quantification of CRISPR-Cas9 base editing, cytosine methylation, and RNA editing. Standard dye-terminator chromatograms are a widely accessible, cost-effective information source from which copy-number proportions can be inferred. However, the rate of incorporation of dye terminators is dependent on the dye type, the adjacent sequence string, and the secondary structure of the sequenced strand. These variable rates complicate inferences and have driven scientists to resort to complex and costly quantification methods. Because these complex methods introduce their own biases, researchers are rethinking whether rectifying distortions in sequencing trace files and using direct sequencing for quantification will enable comparable accurate assessment. Indeed, recent developments in software tools (e.g., TIDE, ICE, EditR, BEEP and BEAT) indicate that quantification based on direct Sanger sequencing is gaining in scientific acceptance. This commentary reviews the common obstacles in quantification and the latest insights and developments relevant to estimating copy-number proportions based on direct Sanger sequencing, concluding that bidirectional sequencing and sophisticated base calling are the keys to identifying and avoiding sequence distortions.
Collapse
Affiliation(s)
- Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization (ARO), HaMaccabim Road, P.O.B 15159, Rishon LeTsiyon 7528809, Israel
| |
Collapse
|
20
|
Chieca M, Torrini S, Conticello SG. Live-Cell Quantification of APOBEC1-Mediated RNA Editing: A Comparison of RNA Editing Assays. Methods Mol Biol 2021; 2181:69-81. [PMID: 32729075 DOI: 10.1007/978-1-0716-0787-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
APOBEC1 is a member of the AID/APOBECs, a group of deaminases responsible for the editing of C>U in both DNA and RNA. APOBEC1 is physiologically involved in C>U RNA editing: while hundreds of targets have been discovered in mice, in humans the only well-characterized target of APOBEC1 is the apolipoprotein B (ApoB) transcript. APOBEC1 edits a CAA codon into a stop codon, which causes the translation of a truncated form of ApoB. A number of assays have been developed to investigate this process. Early assays, poisoned primer extension and Sanger sequencing, have focused on accuracy and sensitivity but rely on extraction of the RNA from tissues and cells. More recently, the need to visualize the RNA editing process directly in live cells have led to the development of fluorescence-based tools. These assays detect RNA editing through reporters whose editing causes a change in cellular localization or a change in fluorescent properties. Here we review the available assays to quantify RNA editing, and we present the protocol for cytofluorimetric analysis using a double-fluorescent reporter.
Collapse
Affiliation(s)
- Martina Chieca
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Serena Torrini
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy. .,Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
21
|
Wang Y, Liu Y, Zheng P, Sun J, Wang M. Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends Biotechnol 2020; 39:165-180. [PMID: 32680590 DOI: 10.1016/j.tibtech.2020.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Genome engineering is crucial for answering fundamental questions about, and exploring practical applications of, microorganisms. Various microbial genome-engineering tools, including CRISPR/Cas-enhanced homologous recombination (HR), have been developed, with ever-improving simplicity, efficiency, and applicability. Recently, a powerful emerging technology based on CRISPR/Cas-nucleobase deaminase fusions, known as base editing, opened new avenues for microbial genome engineering. Base editing enables nucleotide transition without inducing lethal double-stranded (ds)DNA cleavage, adding foreign donor DNA, or depending on inefficient HR. Here, we review ongoing efforts to develop and apply base editing to engineer industrially and clinically relevant microorganisms. We also summarize bioinformatics tools that would greatly facilitate guide (g)RNA design and sequencing data analysis and discuss the future challenges and prospects associated with this technology.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
22
|
Wang P, Xu L, Gao Y, Han R. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity. Mol Ther 2020; 28:1696-1705. [PMID: 32353322 PMCID: PMC7335737 DOI: 10.1016/j.ymthe.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/12/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Adenine base editor (ABE) is a new generation of genome-editing technology through fusion of Cas9 nickase with an evolved E. coli TadA (TadA∗) and holds great promise as novel genome-editing therapeutics for treating genetic disorders. ABEs can directly convert A-T to G-C in specific genomic DNA targets without introducing double-strand breaks (DSBs). We recently showed that computer program-assisted analysis of Sanger sequencing traces can be used as a low-cost and rapid alternative of deep sequencing to assess base-editing outcomes. Here we developed a rapid fluorescence-based reporter assay (Base Editing ON [BEON]) to quantify ABE efficiency. The assay relies on the restoration of the downstream green fluorescent protein (GFP) in ABE-mediated editing of a stop codon located within the guide RNA (gRNA). We showed that this assay can be used to screen for effective ABE variants, characterize the protospacer adjacent motif (PAM) requirement of a novel NNG-targeting ABE based on ScCas9, and enrich for edited cells. Finally, we demonstrated that the reporter assay allowed us to assess the feasibility of ABE editing to correct point mutations associated with dysferlinopathy. Taken together, the BEON assay would facilitate and simplify the studies with ABEs.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|